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ABSTRACT: We present a model for predicting the temperature of three-unit CubeSat on a low Earth orbit, which supposes 
a single temperature common to all satellite components. Our exposition includes a detailed, to a large extent analytical, 
computation of the external heat fl uxes for a particular orbit and spacecraft assumptions based on the features foreseen for 
satellite Libertad 2 under development at Universidad Sergio Arboleda. Moreover, supported by specialized thermal analysis 
software, we compute the heat fl uxes and their associated temperature for all possible orbital orientations, and combine 
these results with a description of the satellite orbital plane rotation (nodal regression) and the solar motion on the ecliptic, to 
determine the minima and maxima of the orbital temperature oscillation for a mission lifetime of a year. We fi nd that, for feasible 
model parameters, the temperature extremes are mostly within the operating temperature range of the most sensitive satellite 
component, 0 °C ≤ T ≤ 60 °C, suggesting mission viability. Finally, we discuss possible model improvements which would allow 
testing of satellite design upgrades. In this regard, it is worth noting that the calculation of the external heat fl uxes here described 
can be carried over, almost unchanged, to a more accurate model describing heat transfer between satellite parts with different 
temperatures.

KEYWORDS: CubeSat, Low Earth orbit, Thermal analysis, Nodal regression, Beta angle, Numerical simulation, Linearization.

INTRODUCTION

Th e Universidad Sergio Arboleda of Bogotá, Colombia, is building a nano-satellite (for a classifi cation of satellites according to 
their mass see Fortescue et al. 2003) with the main goal of capturing photographs of Earth’s surface, with potential use in precision 
agriculture. Th e satellite, named Libertad 2, will have the shape of a rectangular parallelepided of sides 30 cm × 10 cm × 10 cm
(Fig. 1), thus conforming to the CubeSat standard as a three-unit (3U) spacecraft  (a description of this standard can be found on 
Th e Cubesat Program 2015). Libertad 2 constitutes the continuation of Universidad Sergio Arboleda’s satellite development program 
started by pico-satellite Libertad 1 (1U, NORAD Catalog Number 31128), launched on April 17, 2007 (Joya 2007; NASA 2014).

Th e CubeSat standard was developed in 1999 with the objective, among others, of facilitating the involvement of universities 
in the aerospace industry. Th is goal could be evaluated as “fulfi lled” on the basis of a review by Swartwout (2013), that counted 
77 university-led CubeSat-class missions out of a total of 112, between 2000 and 2012. However, the same review reports that 
university missions have been plagued by a high rate of unsuccessful missions, contributing 27 out of the total 34 failures. Many 
university missions were also found at the lowest level of mission impact, that of “beepsats”, able only to send basic telemetry. 
A cause of this situation is lack of training of the teams undertaking CubeSat missions at universities, since the “easy path” to 
space may have attracted many newcomers. Hence, to channel fruitfully this interest, it is urgent to develop resources for a rapid 
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and low-cost acquisition of the pertinent aerospace education. Failing to do so, we may be defeating one of the purposes of the 
CubeSat standard by accepting that relevant CubeSat missions are the sole privilege of well-established institutions (universities, 
government organizations, or businesses) of the aerospace sector. An example of a CubeSat mission by experienced developers 
is the Dynamic Ionosphere CubeSat Experiment (DICE) (Fish et al. 2014); a growing interest of commercial developers in nano-
satellites was reported by Buchen (2014).

Figure 1. Views of Libertad 2 with the body fixed coordinate system {x,y,z}. The faces are labeled by a numerical index and a 
word. The front face has dimensions 10 cm × 10 cm and the bottom face is 10 cm × 30 cm.The dark gray hexagons represent 

solar cells while the light gray circle represents the camera lens opening.
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Acknowledging this need, this paper intends to be a resource for quick learning of the concepts and methods involved in 
predicting the temperature of a CubeSat. Necessary background material is included to make the presentation self-contained, 
model assumptions are given a clear mathematical formulation, and the computations feature intermediate steps to facilitate their 
reproduction, thereby making the paper accessible to anyone with a solid quantitative training.

Prediction of a satellite’s temperature is justified by the need for all satellite components to function within their operating 
temperature ranges – defined as “the maximum and minimum temperature limits between which components successfully and 
reliably meet their specified operating requirements” (Garzon 2012) –, otherwise risking malfunctioning or damage. To forecast 
the effect of design choices, like the materials on the external surfaces, on the temperature, it is necessary to create a model of the 
heat transferred between the satellite and its surroundings and between the satellite parts.

The modeling techniques can be found in the available literature on thermal analysis of nano-satellites. Dinh (2012) studied 
the temperature of internal electronics in a 1U CubeSat using the software packages Thermal Desktop and ANSYS. Jacques (2009) 
conducted the thermal analysis for the OUFTI-1U CubeSat relying on the software ESATAN-TMS, whereas Garzon (2012) 
simulated the temperatures of the OSIRIS-3U CubeSat employing the multiphysics software COMSOL. Bulut and Sozbir (2015) 
investigated the temperature for different solar panel combinations in a 1U CubeSat. Optimization of thermal design parameters 
through genetic algorithms was pursued by Escobar et al. (2016). Kang and Oh (2016) performed an experimental validation of 
their model predictions using a thermal vacuum chamber. Active thermal control with phase change materials was investigated 
by Shinde et al. (2017) and Kang and Oh (2016). A simulation code implemented in MATLAB was developed by Corpino 
et al. (2015). Mason et al. (2018) compared a thermal model of the Miniature X-Ray Solar Spectrometer 3U CubeSat with actual 
on-orbit temperature measurements, finding agreement within a few degrees Celsius. Remarkably, their thermal design allowed 
for the payload to stay at an almost constant on-orbit temperature of –40.91 °C (standard deviation of 0.19 °C), isolated from the 
much wider temperature oscillations of the solar arrays, roughly from –40 °C to 50 °C.

In the present study, a model for predicting the temperature of satellite Libertad 2 is examined. For simplicity, the internal heat 
transfer is supposed to happen instantaneously, resulting in a single temperature shared by all satellite components. The ensuing 
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single temperature model (also known as a single node model), serves as a stepping stone toward the development of a more 
accurate, multiple node model (with different parts allowing different temperatures), which will be the subject of a future work. 
In particular, the irradiances associated to the external heat sources, here presented, can be passed unchanged to the multiple 
node model.

This study is structured as follows. In the section Design of Libertad 2, the satellite components and their operating temperature 
ranges are presented. The following section introduces the single node model for a special orbit and shows the model-predicted 
temperature (model solutions) together with some verification criteria. Then, the variation of the external heat fluxes over a mission 
life of a year is considered; the resulting effect on the satellite temperature is computed with the help of the thermal analysis software 
ESATAN-TMS release 5. Finally, the last section summarizes our results and discusses possible future work.

DESIGN OF LIBERTAD 2

The satellite will carry several components in addition to the photographic camera. A system of wheels and electromagnets will 
control the satellite orientation for the purpose of pointing the camera toward a particular target. These actuators together with 
orientation sensors constitute what is known as the Attitude Determination and Control System (ADCS). Instructions will be 
sent to the satellite via Very High Frequency (VHF) and Ultra High Frequency (UHF) radio waves. S-Band microwaves will be 
used to transmit the photographs as digital data. Hence, the satellite will have transmitter and receiver equipment on the above 
mentioned telecommunication bands (named, respectively, VHF-UHF transceiver and S-band transceiver). Solar cells will provide 
the satellite energy, part of which will be stored in a battery (to provide energy in the periods of low or nil solar radiation, for 
instance, when the satellite traverses Earth’s shadow), that will be distributed between the previously referred components by a 
special circuitry, the Electric Power System (EPS). The processing of instructions and the coordination of all the components tasks 
will be performed by an On Board Computer (OBC).

Table 1 shows the operating temperature range (TO
min, T

O
max), for each satellite subsystem. Operation outside these ranges 

should be avoided.

Table 1. Operating minimum and maximum temperature values (TO
min and TO

max, respectively) for the satellite subsystems.

Subsystem TO
min (°C) TO

max (°C)

Photographic camera 0 60

Batteries 0 85

ADCS –20 85

OBC –40 85

EPS –40 85

VHF-UHF transceiver –40 85

S-Band transceiver –40 85

Solar panels –40 150

SINGLE NODE MODEL

In this section, the thermal model is developed from first principles. The variation of the satellite temperature T is governed by 
the first law of thermodynamics for the case in which no work is performed by (or over) the system. Accordingly, the instantaneous 
rate of change of the satellite’s internal energy CdT/dt, with C the satellite’s heat capacity, is equal to the difference between the heat 
fluxes entering the satellite and those leaving it. This results in the differential equation for T (Eq. 1), as explained next.
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Satellite Libertad 2 will be put on an orbit with altitude in the range 600 – 900 km, which fi ts into the defi nition of a Low 
Earth Orbit (LEO), according to Vallado (1997). At this altitude, the most signifi cant heat fl uxes entering the i-th satellite face (cf.
Fig. 1 for a labeling of the faces) are QS,i(t), Qalb,i(t), and QE,i(t), whose sources are, respectively, the direct solar radiation, the 
solar radiation refl ected on the surface of Earth (albedo radiation), and the infrared radiation emitted by Earth (Fortescue 2003; 
Gilmore 2002). For the outgoing heat fl ux, we assume that the i-th satellite face emits infrared radiation as a gray body, with 
radiosity εiσT4, where εi is the face’s emissivity, 0 < εi < 1, a property of the face’s surface fi nish, and σ is the Stefan-Boltzmann’s 
constant. Combining the previous assumptions leads to the following evolution equation for the temperature T (Eq. 1),
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with Ai the area of the i-th face, and Qtot(t) is the total external heat fl ux (Eq. 3),

with and

Th e heat fl uxes QS,i(t), Qalb,i(t), and QE,i(t) depend on the satellite orbit and orientation, with QS,i(t) and Qalb,i(t) further aff ected 
by the direction of the sunrays, denoted by the (unit) solar vector ŝ, which points toward the sun. In the following sections we 
show, in a special case, how these factors enter the computation of the heat fl uxes.

SATELLITE ORBIT, SATELLITE ATTITUDE, AND SOLAR VECTOR
Th e satellite orbit is described in relation to the Geocentric Equatorial Coordinate System (GECS) (Vallado1997) with origin 

at Earth’s center and axes {X, Y, Z}, with unit vectors {û1, û2, û3}, oriented as follows. û3 points toward the North Pole (Fig. 2), 
while û1 and û2 are contained in the plane of Earth’s equator and have fi xed directions (described in the next section) in relation 
to the distant stars.

Figure  2. Satellite orbit and orientation in relation to the Geocentric Equatorial Coordinate System {û1, û2, û3}.
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Throughout the paper, we assume for Libertad 2 a perfectly circular orbit of radius R = 7110 km (similar to the orbit of 
Libertad 1, discussed in the next section). In this section, the orbit is supposedly in the û1 – û3 plane (Fig. 2) and the solar vector 
is taken as ŝ = û1. General orbital planes and ŝ are considered in the following sections.

The satellite’s orientation (or attitude) is described in terms of a body fixed coordinate system {x, y, z}, with unit vectors 
{ê1, ê2, ê3}, oriented with respect to the satellite as shown in Fig. 1. The camera’s optical axis will be parallel to ê1 and the lens will 
look through an orifice on face 2. A satellite on a LEO is subject to atmospheric drag that reduces the satellite’s kinetic energy 
causing it to eventually fall on Earth. To minimize atmospheric friction, the satellite’s longer edges, parallel to ê3, will be aligned 
with the satellite’s velocity. The vector –ê1 will point toward the center of Earth (–ê1 parallel to nadir) to enable the camera to 
photograph the globe’s surface. This orientation scenario (Fig. 2), which we label as velocity-nadir attitude, could be maintained 
throughout the entire orbit, despite external torques, thanks to the ADCS.

For quick face identification, we find it convenient to use a word labeling (Fig. 1), alternative to the index i, based on the 
mnemonic of imagining the satellite as a miniature land vehicle with the vector from the rear to the windshield parallel to 
the velocity and its bottom looking toward Earth.

Having specified the orbit and satellite orientation, we proceed to the calculation of the incoming heat fluxes.

CALCULATION OF DIRECT SOLAR RADIATION
Figure 3 shows the satellite on its orbit as viewed from the –û2 direction. An arc of the orbit, with angle measure 2ξ, given by 

(Eq. 4),
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Figure 3. Satellite orbit as viewed from the –û2 direction (see Fig. 2 for the coordinate 
system definition). The dark gray region represents the orbit eclipse zone. ξ is half the 

angle measure of the eclipse zone and v is the true anomaly. 
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and
with RE = 6378 km (Bate et al. 1971) the radius of Earth, passes through the shadow projected by Earth (eclipse zone) where the 
direct solar radiation heat fluxes (solar heat fluxes, for short) QS,i are zero. Outside the eclipse zone, QS,i will depend on the angle 
bi between the outward unit vector normal to the face, n ˆ

i , and the solar vector ŝ (Eq. 5)

cos bi ≤ 0 means the sunrays do not reach the face, so, also in this case, QS,i = 0. When cos bi > 0, the face will project, onto a plane 
perpendicular to the solar rays, an area A cos bi, absorbing a heat flux (Eq. 6)

where αi is the face’s absorptivity, 0 < αi < 1 which, as the emissivity, is a property of the face’s external surface finish, and IS is the 
solar irradiance (the energy transported by the solar radiation per unit of area and unit of time). The solar irradiance IS depends 
on the satellite-sun distance, implying that, for a LEO, IS is highest (lowest) at perihelion (aphelion). In this work we use the 
recommended mean value, known as the solar constant, IS = 1367 W/m2 (Anderson et al. 2001), thus neglecting the variation of 
IS around this mean (±3.4%).

The angle bi will be determined by the satellite position on the orbit, denoted by the true anomaly v, measured from the û1 
direction (Fig. 3). To calculate the product n ̂i ∙ s ŝ  we express both n ̂i and ŝ in the {û1, û2, û3} basis. Therefore, for the top face, we 
have n ˆ

4 = e ˆ
1 = cos v u ˆ

1 + sin v u ˆ
3. So, cos b4 = n ˆ

4∙ s ŝ = cos v. Similar calculations apply to the remaining faces.
Faces left, right and space will be partially covered by six solar cells (Fig. 1), each cell with an area of 30.18 cm2 (AZUR 
SPACE 2016). A fraction of the solar power absorbed by a cell, equal to the cell’s efficiency η = 28% (AZUR SPACE 2016), 
becomes electric energy rather than heat. Hence, the cell’s effective absorptivity is given by αeff = αc – η, where αc = 0.91 is 
the cell’s nominal absorptivity. As a result, each one of the faces possessing solar cells will exhibit an average absorptivity 
(Eq. 7),
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where fc = 60.36% is the fraction of the face’s area covered by solar cells, and αu = 0.5 is the absorptivity of the non-solar-cell 
surfaces, yielding αavg = 0.578.

Figure 3. Satellite orbit as viewed from the –û2 direction (see Fig. 2 for the coordinate system definition). The dark gray region 

represents the orbit eclipse zone. ξ is half the angle measure of the eclipse zone and v is the true anomaly.
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where αc = 0.91 is the cell’s nominal absorptivity. As a result, each one of the faces 

possessing solar cells will exhibit an average absorptivity (Eq. 7) 
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where fc = 60.36% is the fraction of the face’s area covered by solar cells, and αu = 0.5 is 

the absorptivity of the non-solar-cell surfaces, yielding αavg = 0.578. 

 Figure 4, shows the total solar heat flux 𝑄𝑄9 = ∑ 𝑄𝑄9,4
6
478  as function of the true 

anomaly v. 

 

Figure 4. Total solar heat flux QS (solid line) and total albedo heat flux Qalb (dashed line) 
as functions of the true anomaly v. Both QS and Qalb fall to zero inside the eclipse zone, 

180° – ξ ≤ v ≤ 180° + ξ (see Fig. 3). 
 

 By considering the variation in time of v, we can express the heat fluxes as functions 

of time, QS,i(t) = QS,i[v(t)]. For a circular orbit, the true anomaly changes with constant 

angular velocity ω (Eq. 8) 

 

 𝜈𝜈(𝑡𝑡) = 𝜈𝜈a + 𝜔𝜔𝜔𝜔, (8) 
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Figure 4, shows the total solar heat flux  as function of the true anomaly v.

By considering the variation in time of v, we can express the heat fluxes as functions of time, QS,i(t) = QS,i[v(t)]. For a circular 
orbit, the true anomaly changes with constant angular velocity ω (Eq. 8),

where the initial value is chosen for convenience as v0 = 0 and ω is given by Kepler’s third law (Vallado 1997) (Eq. 9),
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where the initial value is chosen for convenience as v0 = 0 and ω is given by Kepler’s third 

law (Vallado 1997) (Eq. 9) 

 

 𝜔𝜔 = c
𝜇𝜇
𝑅𝑅Z	, (9) 

 

where µ = 3.986004415 × 105 km3/s2 is the Earth’s gravitational parameter (Vallado 1997). 

This gives an orbital period (Eq. 10) 

 

 𝑃𝑃 =
2𝜋𝜋
𝜔𝜔 ≈ 99.4	min. (10) 

  

Calculation of Infrared Radiation 

 The Earth emits thermal radiation with highest values of the spectral distribution 

inside the infrared wavelength band (Anderson et al. 2001; Anderson and Smith 1994). A 

patch on the surface of Earth is approximated as a perfectly diffuse radiator (Palmer and 

Grant 2010; Wolfe 1998) with radiosity IE, defined as the radiant flux leaving the patch per 

unit area. IE is higher (lower) in warmer (colder) areas of the globe and clouds absorb 

infrared radiation, decreasing the value of IE perceived by a spacecraft on orbit (Anderson 

et al. 2001; Anderson and Smith 1994). As a result, IE changes both in space and time, IE = 

IE (θ, ϕ, t), where θ and ϕ are angular coordinates describing a point on the surface of Earth. 

However, for the sake of simplicity, IE may be modeled as uniform over the globe, IE = IE(t), 

with the time-variation taking into account the change of the part of the globe viewed by the 

satellite as it traverses its orbit, as well as the intrinsic time-fluctuation of IE. 

where μ = 3.986004415 × 105 km3/s2 is the Earth’s gravitational parameter (Vallado 1997). This gives an orbital period (Eq. 10),
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CALCULATION OF INFRARED RADIATION
The Earth emits thermal radiation with highest values of the spectral distribution inside the infrared wavelength band (Anderson 

et al. 2001; Anderson and Smith 1994). A patch on the surface of Earth is approximated as a perfectly diffuse radiator (Palmer 
and Grant 2010; Wolfe 1998) with radiosity IE, defined as the radiant flux leaving the patch per unit area. IE is higher (lower) in 
warmer (colder) areas of the globe and clouds absorb infrared radiation, decreasing the value of IE perceived by a spacecraft on 
orbit (Anderson et al. 2001; Anderson and Smith 1994). As a result, IE changes both in space and time, IE = IE (θ, ϕ, t), where θ 
and ϕ are angular coordinates describing a point on the surface of Earth. However, for the sake of simplicity, IE may be modeled 
as uniform over the globe, IE = IE(t), with the time-variation taking into account the change of the part of the globe viewed by the 
satellite as it traverses its orbit, as well as the intrinsic time-fluctuation of IE.

During the Earth Radiation Budget Experiment (ERBE) the infrared radiation falling over three LEO satellites was recorded 
every 16 s during 28 months (Anderson et al. 2001; Anderson and Smith 1994). The infrared intensity was reported as the 
radiosity IE(t) of a spherical surface at an altitude of 30 km above the surface of the Earth, termed Top of Atmosphere (TOA). The 
measured IE(t) changed erratically and was treated as a random time series. For orbits of inclination above 60° (see the next section 
for the definition of inclination) a time-averaged IE-value of 211 W/m2 was found (Anderson et al. 2001). In this work, we assume a 
spatially uniform time-constant radiosity IE equal to this mean, scaled following conservation of energy from TOA to the surface of 
Earth by the factor (RE + 30 km)2/, yielding the final value of IE = 213 W/m2.

Due to the uniformity and time-invariance of IE, the Earth heat fluxes QE,i are independent of the satellite position on its orbit, 
thus constant in time. Conforming to Lambert’s law, a surface element on the globe of area dS will emit, in the direction of the 
satellite, a radiant intensity (power per solid angle) IE cos aE dS/π, where aE is the angle between the unit vector pointing from 
the surface element toward the satellite  ˆ ρ and the unit vector normal to the surface element ˆ nE (see Fig. 5). The i-th face will 
intercept the radiant energy traveling in a solid angle Ai cos ai/ρ

2, with ai the angle between –  ̂  ρ and ̂  ni. Of this energy a fraction εi 
will be absorbed. As a result, the contribution of the surface element to the heat flux QE,i is (Eq. 11),

(10)

(11)

(12)

(14)

(13)

Integrating over all surface elements yields (Eq. 12),

where FiE is the radiative view factor (Eq. 13),

To evaluate the integral in (Eq. 13), we express it in spherical coordinates (r, θ, ϕ), with û3 acting as the z-axis. We begin recalling that 
cos aE = ̂  ρ · ̂  nE and cos ai = –  ̂  ρ ·  ̂  ni . Next, we define ρ = rsat – rE, where rsat is the satellite position and rE is the surface element position (Eq. 14),

Therefore, ρ = ||ρ|| , ̂  ρ ρ  = ρ/ρ, and  ̂  nE  = rE/RE. The view factor FiE is independent of the true anomaly v. Hence, for ease, we chose rsat = Rû3. 
As an example, we compute FiE for the bottom face, F2E, in which case, ˆ ni = –û3. Substituting the previous vector relationships into 
(Eq. 13) leads to (Eq. 15),
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Figure 5. Quantities involved in the calculation of the infrared heat flux over the i-th 
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where the initial value is chosen for convenience as v0 = 0 and ω is given by Kepler’s third 

law (Vallado 1997) (Eq. 9) 

 

 𝜔𝜔 = c
𝜇𝜇
𝑅𝑅Z	, (9) 

 

where µ = 3.986004415 × 105 km3/s2 is the Earth’s gravitational parameter (Vallado 1997). 

This gives an orbital period (Eq. 10) 
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Calculation of Infrared Radiation 

 The Earth emits thermal radiation with highest values of the spectral distribution 

inside the infrared wavelength band (Anderson et al. 2001; Anderson and Smith 1994). A 

patch on the surface of Earth is approximated as a perfectly diffuse radiator (Palmer and 

Grant 2010; Wolfe 1998) with radiosity IE, defined as the radiant flux leaving the patch per 

unit area. IE is higher (lower) in warmer (colder) areas of the globe and clouds absorb 

infrared radiation, decreasing the value of IE perceived by a spacecraft on orbit (Anderson 

et al. 2001; Anderson and Smith 1994). As a result, IE changes both in space and time, IE = 

IE (θ, ϕ, t), where θ and ϕ are angular coordinates describing a point on the surface of Earth. 

However, for the sake of simplicity, IE may be modeled as uniform over the globe, IE = IE(t), 

with the time-variation taking into account the change of the part of the globe viewed by the 

satellite as it traverses its orbit, as well as the intrinsic time-fluctuation of IE. 
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where h = R/RE and the limit of integration θ < θM, with θM = cos–1 (RE/R), is determined by the condition cos aE > 0, which states 
that infrared rays do not traverse the Earth. Evaluation of Eq. 15 yields (Eq. 16),

Figure  5. Quantities involved in the calculation of the infrared heat fl ux over the i-th satellite face, QiE (Eqs. 12 and 13).
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For faces front, rear, left  and right (i = 1,3,5,6), evaluation of Eq. 13 yields (Eq. 17)

We assume an emissivity εu = 0.05, corresponding to a shiny metallic surface fi nish (Gilmore 2002), for all surfaces not covered 
by solar cells (this includes the totality of the faces devoid of solar cells). Hence, the faces that do possess solar cells will display 
average emissivity (Eq. 18),

where εC = 0.89 is the solar cells’ emissivity (AZUR SPACE 2014), so εavg = 0.557.

Table 2 presents the value of QE,i calculated for each face.

Table  2. Infrared heat fl uxes QE,i computed using Eq. 12 and the program ESATAN. The table total corresponds to QE = ∑ 6 i = 1 QE,i

Face
QE,i (W)

Eq.12 ESATAN

Front 0.0243 0.0242

Bottom 0.2571 0.2585

Left 0.8119 0.8006

Top 0 0

Right 0.8119 0.8404

Rear 0.0243 0.0247

Total 1.9294 1.9484
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where h = R/RE and the limit of integration θ < θM, with θM = cos–1 (RE/R), is determined by 

the condition cos aE > 0, which states that infrared rays do not traverse the Earth. Evaluation 

of Eq. 15 yields (Eq. 16) 
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1
ℎk ≈ 0.80. (16) 

 

 For faces front, rear, left and right (i = 1,3,5,6), evaluation of Eq. 13 yields (Eq. 17) 
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CALCULATION OF REFLECTED SOLAR RADIATION
We suppose that a patch on the surface of Earth reflects light diffusely and equally in all directions (Lambertian reflectance) 

with diffuse reflectance (also known as albedo) γ, defined as the reflected fraction of the incident radiant flux. More accurate 
models use the bidirectional reflectance distribution function (Schaepman-Strub et al. 2006), employed, for instance, in processing 
the data provided by NASA’s MODIS Instruments on board the Aqua and Terra satellites (NASA 2015; Strahler et al. 1999). The 
albedo varies considerably across the globe: it is usually higher over areas covered with ice and snow, deserts, and cloudy regions, 
and generally lower over the oceans, in the absence of clouds (Anderson et al. 2001; Anderson and Smith 1994). Therefore, the 
albedo depends on place and time, γ = γ(θ, ϕ, t), but, for simplicity, it is modeled as if it were uniform, γ = γ(t). The albedo γ(t) 
of the TOA measured during the ERBE behaved like a random time series (as did IE(t)) with a mean value of 0.23 for orbits of 
inclination superior to 60° (Anderson et al. 2001). In this work, we assume for γ a time-constant value equal to this mean plus the 
correction for zero β angle (see the next section for the definition of the β angle) of 0.04 found in Anderson et al. (2001), scaled 
from the TOA to the surface of Earth, for a final value of γ = 0.273.

For the calculation of the albedo radiation heat fluxes, we follow Fitz et al. (1963). An element on the surface of Earth, of area 
dS, diffusely reflecting solar radiation may be considered as a diffuse radiator with radiosity cos (bE) γIS, where bE is the angle 
between the normal to the surface element ˆ nE and the solar vector ŝ (Eq. 19),

(19)

(20)

(21)

(22)

(23)

(24)
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 cos(𝑏𝑏=) = 𝒏𝒏N= ∙ 𝒔𝒔T. (19) 

 

 Hence, the albedo heat flux contributed by the surface element can be obtained by 

replacing in Eq. 11 IE by cos (bE) γIS and εi by αi, yielding (Eq. 20) 
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cos 𝑎𝑎= cos𝑎𝑎4 cos 𝑏𝑏=

𝜋𝜋𝜌𝜌k 𝑑𝑑𝑑𝑑. (20) 

 

 Integrating over the surface of Earth, we have (Eq. 21) 
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where the albedo view factor 𝐹𝐹Å4= is given by (Eq. 22) 
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cos𝑎𝑎= cos𝑎𝑎4 cos 𝑏𝑏=

𝜋𝜋𝜌𝜌k 𝑑𝑑𝑑𝑑. (22) 

 

 For the evaluation of the integral in Eq. 22, we use a rotating system of coordinates, 

{𝒆𝒆T8É , 𝒆𝒆TkÉ , 𝒆𝒆TZÉ }, with origin at the center of the Earth and 𝒆𝒆TZÉ -axis aligned with the position of 

the satellite rsat. This system agrees with the GECS, {û1, û2, û3}, when v = 0. In the rotating 

system the solar vector is given by (Eq. 23) 

 

𝒔𝒔T = sin 𝜈𝜈 𝒆𝒆T8É + cos 𝜈𝜈 𝒆𝒆TZÉ . (23) 

  

 In a way analogous to the computation of the infrared view factors presented before, 

the cosines in Eq. 22 are written as dot products of vectors expressed as linear combinations 

of the basis {𝒆𝒆T8É , 𝒆𝒆TkÉ , 𝒆𝒆TZÉ } with coefficients in terms of spherical coordinates (θ, ϕ, r), with 

𝒆𝒆TZÉ  acting as the polar axis. Applying this procedure, for the bottom face, Eq. 22 is 

transformed into Eq. 24 

 

 𝐹𝐹Åk=(𝜈𝜈) =
1
𝜋𝜋
q q

(1 − ℎ cos𝜃𝜃)(cos𝜃𝜃 − ℎ)
(1 + ℎk − 2ℎ cos 𝜃𝜃	)kÖÜ(x)

xy

xá
× (24) 

 (sin 𝜃𝜃 cos𝜙𝜙 sin 𝜈𝜈 + cos 𝜃𝜃 cos 𝜈𝜈) sin 𝜃𝜃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 

 

where the integration limit θm and the integration range over ϕ, Iϕ(θ), are discussed next. 

The region of integration is the intersection of the spherical region ℛ = {(θ, ϕ) such that θ 

≤ θM} (θM has been defined previously) and the lit hemisphere, bounded by the great circle 
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Hence, the albedo heat flux contributed by the surface element can be obtained by replacing in Eq. 11 IE by cos (bE) γIS and 
εi by αi, yielding (Eq. 20),

Integrating over the surface of Earth, we have (Eq. 21),

where the albedo view factor ˜ FiE is given by (Eq. 22),

For the evaluation of the integral in Eq. 22, we use a rotating system of coordinates, {ê'1, ê'2, ê'3}, with origin at the center of 
the Earth and ê'3-axis aligned with the position of the satellite rsat. This system agrees with the GECS, {û1, û2, û3}, when v = 0. In 
the rotating system the solar vector is given by (Eq. 23),

In a way analogous to the computation of the infrared view factors presented before, the cosines in Eq. 22 are written as dot 
products of vectors expressed as linear combinations of the basis {ê'1, ê'2, ê'3} with coefficients in terms of spherical coordinates 
(θ, ϕ, r), with ê'3 acting as the polar axis. Applying this procedure, for the bottom face, Eq. 22 is transformed into Eq. 24,

where the integration limit θm and the integration range over ϕ, Iϕ(θ), are discussed next. The region of integration is the intersection 
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of the spherical region R = {(θ, ϕ) such that θ ≤ θM} (θM has been defined previously) and the lit hemisphere, bounded by the great 
circle normal to the solar vector ŝ. For v ∈ [0, π/2 – θM] and v ∈ [3π/2 + θM, 2π], the region R is contained into the lit hemisphere, 
so the region of integration is R itself, θm = 0, Iϕ(θ) = [0, 2π]. For v ∈ [π/2 + θM, 3π/2 – θM], the intersection is empty, so ˜ F2E(v) = 
0 (in general ˜ F(v)iE = 0). For π/2 – θM < v < π/2 + θM, the part of the region R invaded by the dark hemisphere must be excluded 
from the integration region, as depicted by Fig. 6.

Figure 6. Region of integration of the albedo view factor (Eq. 24), for π/2 – θM < v < π/2 (light gray). The dark gray 
zone represents the part of the region R (definition in text) invaded by the dark hemisphere, bounded by the curves 

ϕa(θ) = cos–1 (– cot v cot θ) and ϕb(θ) = 2π – ϕa(θ). For π/2 – v < θ < θM, the range of integration in ϕ, Iϕ(θ), is the union of the 
intervals [0, ϕa(θ)] and [ϕb(θ), 2π].
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Similar considerations apply to the cases v ∈ [π/2, π/2 + θM] and v [3π/2 –θM, 3π/2 + θM].
The integral (Eq. 24) was computed numerically with the MATLAB function quad2d for different values of v to obtain the 

albedo view factor ˜ F2E shown in Fig. 7. Figure 4 displays the total albedo heat flux with Qalb,i = ∑6 
i = 1 Qalb,i computed using Eq. 21.

Figure 7. Albedo view factor F ̃2E (v).
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SOLUTION AND TESTING CRITERIA (LINEARIZATION OF THE TEMPERATURE EQUATION)
We now present the temperature predicted by the model. To the satellite was assigned the heat capacity of one kilogram of 

aluminum, C = 921.6 J/°C (Gilmore 2002). For the Stefan-Boltzmann constant, we used the 2014 CODATA recommended value 
σ = 5.670373 × 10–8 (NIST 2015). The total external heat power Qtot = QS + Qalb + QE is portrayed in Fig. 9a.

We solved numerically Eq. 1 using the function ode45 of MATLAB (relative and absolute tolerances set to 10–6 and 10–4, 
respectively). To avoid the possible adverse effect of the discontinuities of the total external heat flux Qtot(t) and of its derivative 
on the solution’s accuracy, we divided the interval [0, P] in the following five subintervals, [0, 90°/ω], [90°/ω, (180° – ξ)/ω], 
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[(180° – ξ)/ω, (180° + ξ)/ω)],  and [270°/ω, 360°/ω]. The intervals [nP, (n + 1)P], n = 1,2,..., were divided analogously. Using the 
solution computed at the end of a given subinterval as initial condition for the next subinterval, we prevent the differential equation 
solver from stepping across discontinuities. The solutions calculated for different initial temperatures are shown in Fig. 8. They 
approach the same periodic oscillation regardless of the initial value.

Figure 8. Predicted satellite temperature obtained from the numerical solution of Eq. 1 for different initial conditions.
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A checking criterion is available for the numerical solution: the long term mean value of T4(t) can be known without solving 
Eq. 1, as follows. Integrating Eq. 1 over one period gives (Eq. 25),

(25)

(26)

(27)

(28)

(29)

For n sufficiently large, T(t) has reached the asymptotic periodic behavior, T(nP) = T[(n + 1)P], and so the integral on the 
left-hand side of Eq. 25 vanishes, giving the relation (Eq. 26),

where we have used the periodicity of Qtot(t) to change the limits of integration on the right-hand side. Defining the mean 
temperature T0 as (Eq. 27),

from Eq. 26, we obtain (Eq. 28),

where Q0 is the mean heat flux (Eq. 29),
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We computed T0 by two alternative ways: (i) applying the definition Eq. 26 to the numerically computed T(t) with n = 50; and 
(ii) using Eq. 27. The two T0-values found agreed within the first six significant figures, T0 = 270.210 K ≈ –2.9 °C, supporting the 
validity of the numerical solution.

Additional features of the solution T(t) can be understood through linearization of Eq. 1 around T0. We define the deviation 
from T0 as T*(t) = T(t) – T0. Substituting T* into Eq. 1, we have (Eq. 30)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

where Q*(t) = Qtot – Q0. Assuming |T*| << T0 allows the use of the approximation (1 + T*/T0)
4 ≈ 1 + 4T*/T0 which, together with 

Eq. 28, turns Eq. 30 into its linearization (Eq. 31),

where the time constant τ is given by (Eq. 32),

To solve Eq. 30, we rely on the Fourier series expansion of Q*(t) (Eq. 33),

where (Eq. 34),

Fig. 9a shows the approximation to Qtot given by the three-term partial sum Q2(t) = Q0 + a1 cos(ωt) + a2 cos(2ωt). The steady 
state solution of Eq. 31 can be written as (Eq. 35),

where pn(t) is the steady state solution of (Eq. 36),

given by (Eq. 37),

with (Eq. 38),

and (Eq. 39),
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where we have used the periodicity of Qtot(t) to change
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where the Q0 is the mean heat flux,
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Qtot(t)dt. (23)

We computed T0 by two alternative ways: (i) ap-
plying the definition (21) to the numerically computed
T (t) with n = 50; and (ii) using (22). The two T0-
values found agreed within the first six significant fig-
ures, T0 = 270.210 K ≈ −2.9◦C, supporting the validity
of the numerical solution.

Additional features of the solution T (t) can be under-
stood through linearization of (1) around T0. We define
the deviation from T0 as T ∗(t) = T (t) − T0. Substituting
T ∗ into (1), we have

C
dT ∗

dt
= −Aeffσ(T0 + T ∗)4 + Q0 + Q∗(t), (24)

where Q∗(t) = Qtot(t) − Q0. Assuming |T ∗| � T0,
allows use of the approximation (1 + T ∗/T0)4 ≈ 1 +
4T ∗/T0 which, together with Eq. (22), turns (24) into
its linearization,

dT ∗

dt
= −T ∗

τ
+

Q∗(t)
C
, (25)

where the time constant τ is given by
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To solve (25), we rely on the Fourier series expansion
of Q∗(t),

Q∗(t) =
∞∑

n=1

an cos(nωt),

where

an =
2
P

∫ P

0
Q∗(t) cos(nωt)dt.

Fig. 9(a) shows the approximation to Qtot given by
the three-term partial sum Q2(t) = Q0 + a1 cos(ωt) +

a2 cos(2ωt). The steady state solution of (25) can be
written as

T ∗(t) =
∞∑

n=1

pn(t),

where pn(t) is the steady state solution of

dpn

dt
= − pn

τ
+

an

C
cos(nωt),

given by
pn(t) = An cos(nωt − ψn),

with
An =
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C
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1 + (nτω)2
(27)

and
ψn = tan−1(nωτ).

Fig. 9(b) shows the approximation T2(t) to the solu-
tion T (t) given by the first three Fourier modes, T2(t) =
T0+A1 cos(ωt−ψ1)+A2 cos(2ωt−ψ2). Note how T2(t)
is able to capture the amplitude of the oscillations. The
analysis based on linearization, here shown, although
approximate, has the advantage of providing simple re-
lations (Eqs. (22), (26), and (27)) between the model
parameters and attributes of the solution. To appreci-
ate the usefulness of Eq. (27), the reader is invited to
reckon a1 from visual inspection of Fig. 9(a), substitute
the approximate a1-value on (27), and compare the tem-
perature oscillation amplitudeA1 so calculated with the
actual one shown in Fig. 9(b).

We end this section explaining a detail of Fig. 9(b):
T2(t) is slightly above T (t). This is due to T2(t) − T0
and T ∗(t) having different time-averages. 1/P

∫ p
0 [T2(t)−

T0]dt = 0, while δ = 1/p
∫ P

0 T ∗(t)dt < 0. To see this,
integrate T ∗(t) = T (t) − T0 over one period to obtain

δ = T − T0,

where T = 1/P
∫ P

0 T (t)dt. Jensen’s inequality (Rudin,
1970) implies that, for non-constant T (t), T < T0.
Hence, δ < 0.

4. Yearly variation of the radiation scenario

In this section, we discuss important changes in the
solar and albedo heat fluxes that take place over a time
scale of several months for general satellite orbits. They
are the result of variations in the angle between the
satellite orbital plane and the solar vector ŝ (the mini-
mum of the angles between all orbital positions rsat and
ŝ), known as the β angle. To see how β affects the solar
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are the result of variations in the angle between the
satellite orbital plane and the solar vector ŝ (the mini-
mum of the angles between all orbital positions rsat and
ŝ), known as the β angle. To see how β affects the solar

9
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Figure 9b shows the approximation T2(t) to the solution T(t) given by the first three Fourier modes, . Note how T2(t) is able to 
capture the amplitude of the oscillations. The analysis based on linearization, here shown, although approximate, has the advantage 
of providing simple relations (Eqs. 28, 32 and 38) between the model parameters and attributes of the solution. To appreciate the 
usefulness of Eq. 38, the reader is invited to reckon a1 from visual inspection of Fig. 9a, substitute the approximate a1-value on 
Eq. 38, and compare the temperature oscillation amplitude  so calculated with the actual one shown in Fig. 9b.

Figure 9. (a) Total external heat flux Qtot (solid line) and three-term partial sum of the Fourier series expansion of 
Qtot, Q2(t) = Q0 + a1 cos(v) + a2 cos(2v) (dashed line). (b) Numerically computed asymptotic periodic temperature T(t) (solid line) 

and three-Fourier-mode approximation T2(t) = T0 + A1cos (ωt – ψ1) + A2cos (2ωt – ψ1)(dashed line).
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We end this section explaining a detail of Fig. 9b: T2(t) is slightly above T(t). This is due to T2(t) – T0 and T*(t) having different 
time-averages. 1/P ∫ P 

0
 [T2(t) – T0 ]dt = 0, while δ = 1/P ∫ P 

0
 T*(t)dt < 0. To see this, integrate T*(t) = T(t) – T0 over one period to 

obtain (Eq. 40),

where T 
–

 = 1/P ∫ P 

0
 T*(t)dt. Jensen’s inequality (Rudin 1970) implies that, for non-constant T(t),  T 

–
 < T0. Hence, δ < 0.

YEARLY VARIATION OF THE RADIATION SCENARIO

In this section, we discuss important changes in the solar and albedo heat fluxes that take place over a time scale of several 
months for general satellite orbits. They are the result of variations in the angle between the satellite orbital plane and the solar 
vector ŝ (the minimum of the angles between all orbital positions rsat and ŝ), known as the β angle. To see how β affects the solar 
heat flux QS falling on the satellite, contrast the time-periodic QS found for the orbit in the previous section (β = 0°) to the time-
constant QS expected for velocity-nadir attitude and a circular orbit on a plane perpendicular to ŝ (β = 90°). The orientation of 
the orbital plane is given by the normal vector l ̂ computed as the direction of the orbital angular momentum l = rsat × vsat, with vsat the 
satellite velocity, l ̂ = l/||l||. Moreover, from the definition of β, we have (Eq. 41)

(40)

(41)

During the year, both l ̂ and ŝ rotate with respect to the GECS. We will express both vectors on the {û1, û2, û3} basis, and, using 
Eq. 41, obtain β. But first, we introduce the standard way of presenting a general spacecraft orbit.
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 𝒜𝒜é =
𝑎𝑎é𝜏𝜏

𝐶𝐶†1 + (𝑛𝑛𝑛𝑛𝑛𝑛)k
 (38) 

 

and (Eq. 39) 

 

 𝜓𝜓é = tanD8( 𝑛𝑛𝑛𝑛𝑛𝑛) (39) 

 
 Figure 9b shows the approximation T2(t) to the solution T(t) given by the first three 

Fourier modes, 𝑇𝑇k(𝑡𝑡) = 𝑇𝑇a + 𝒜𝒜8cos(𝜔𝜔𝜔𝜔 − 𝜓𝜓8) +𝒜𝒜kcos(2𝜔𝜔𝜔𝜔 − 𝜓𝜓k). Note how T2(t) is 

able to capture the amplitude of the oscillations. The analysis based on linearization, here 

shown, although approximate, has the advantage of providing simple relations (Eqs. 28, 32 

and 38) between the model parameters and attributes of the solution. To appreciate the 

usefulness of Eq. 38, the reader is invited to reckon a1 from visual inspection of Fig. 9a, 

substitute the approximate a1-value on Eq. 38, and compare the temperature oscillation 

amplitude 𝒜𝒜8 so calculated with the actual one shown in Fig. 9b. 

 We end this section explaining a detail of Fig. 9b: T2(t) is slightly above T(t). This 

is due to T2(t) – T0 and T*(t) having different time-averages. 1/𝑃𝑃∫ [𝑇𝑇k(𝑡𝑡) − 𝑇𝑇a]𝑑𝑑𝑑𝑑 = 0,ê
a  

while 𝛿𝛿 = 1/𝑃𝑃 ∫ 𝑇𝑇∗(𝑡𝑡)𝑑𝑑𝑑𝑑 < 0ê
a . To see this, integrate T*(t) = T(t) – T0 over one period to 

obtain (Eq. 40) 

 

𝛿𝛿 = 𝑇𝑇£ − 𝑇𝑇a  (40) 
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where 𝑇𝑇£ = 1/𝑃𝑃 ∫ 𝑇𝑇(𝑡𝑡)𝑑𝑑𝑑𝑑ê
a . Jensen’s inequality (Rudin 1970) implies that, for non-constant 

T(t), 𝑇𝑇£ < 𝑇𝑇a. Hence, δ < 0. 

  

Figure 9. (a) Total external heat flux Qtot (solid line) and three-term partial sum of the 
Fourier series expansion of Qtot, Q2(t) = Q0 + a1 cos(v) + a2 cos(2v) (dashed line). (b) 

Numerically computed asymptotic periodic temperature T(t) (solid line) and three-Fourier-
mode approximation 𝑇𝑇k(𝑡𝑡) = 𝑇𝑇a +𝒜𝒜8cos(𝜔𝜔𝜔𝜔 − 𝜓𝜓8) + 𝒜𝒜kcos(2𝜔𝜔𝜔𝜔 − 𝜓𝜓k) (dashed line). 
 

YEARLY VARIATION OF THE RADIATION SCENARIO 

 In this section, we discuss important changes in the solar and albedo heat fluxes that 

take place over a time scale of several months for general satellite orbits. They are the result 

of variations in the angle between the satellite orbital plane and the solar vector ŝ (the 

minimum of the angles between all orbital positions rsat and ŝ), known as the β angle. To 

see how β affects the solar heat flux QS falling on the satellite, contrast the time-periodic QS 

found for the orbit in the previous section (β = 0°) to the time-constant QS expected for 

velocity-nadir attitude and a circular orbit on a plane perpendicular to ŝ (β = 90°). The 

orientation of the orbital plane is given by the normal vector 𝒍𝒍•,	computed as the direction 

of the orbital angular momentum l = rsat × vsat, with vsat the satellite velocity, 𝒍𝒍• = l/||l||. 

Moreover, from the definition of β, we have (Eq. 41) 

 

 cos(90° − 𝛽𝛽) = 𝒔𝒔T	 ∙ 𝒍𝒍• (41) 

 

(a) (b)
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KEPLERIAN ORBITAL ELEMENTS
On a first approximation, the satellite orbit is described by a solution of Kepler problem (Vallado 1997), namely, an ellipse 

with one of its foci at the origin of the GECS. The orbit shape is described by the semimajor axis a and the eccentricity e = c/a, 
where c is half the distance between the foci. As e → 0, the ellipse approaches a circle (e = 0).

l ̂ is determined by the inclination i and the right ascension of the ascending node (RAAN) Ω through (Eq. 42) (see Fig. 10),

The ascending node is the orbital point on the equatorial plane at which the satellite moves from south to north. The orientation 
of the semimajor axis within the orbital plane is given by the argument of perigee g, defined as the angle between the position 
vectors of the ascending node and the periapsis, the location at which the satellite is closest to the origin (Fig. 10). Finally, the 
satellite position on the ellipse is set by the true anomaly v, measured from the periapsis. The Keplerian orbital elements a, , Ω, i, 
g, and v completely specify a solution of Kepler problem (Vallado 1997; Bate et al. 1971).

(42)

l̂
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g
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vû3

û1 Υ

û2
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The orbital elements of Libertad 1 are available online from Space-Track (a service of the United States Department of Defense 
(JFCCS 2015)) in the two line element set (TLE) format. Elements , Ω, i, and g can be retrieved straightforwardly from a TLE. 
On the other hand, a needs to be computed from the mean motion (mean angular velocity) using Eq. 9 with R substituted by a. 
Similarly, ν is obtained from the mean anomaly (Vallado 1997).

Table 3 shows the orbital elements of Libertad 1 on April 18, 2007, 21 h 54 min 52.4 s Coordinated Universal Time (according 
to Portilla (2012), the orbital elements of Libertad 1 disclosed for prior times are possibly inaccurate). Note the low value of the 
eccentricity, which justifies our assumption of a circular orbit for Libertad 2. Observe also the closeness between a and the value 
of R assumed in the previous section.

The orbital elements of a spacecraft on a LEO do not stay constant. Of relevance to the thermal analysis is the change of the 
RAAN Ω, known as nodal regression and determined next.

Table 3. Orbital elements of satellite Libertad 1 on April 18, 2007, 21 h 54 min 52.4 s (JFCCS 2015). a: semi-major axis; e: 

eccentricity; v: true anomaly; i: inclination; Ω: Right Ascension of the Ascending Node (RAAN); g: argument of perigee (see Fig. 10).

a (km) e i (°) Ω (°) g (°) v (°)

 7097.87 0.0102 98.08 184.09 207.97 154.07

Figure 10. Four of the six Keplerian orbital elements. i: inclination; 

Ω: right ascension of the ascending node; g: argument of perigee; and v: true anomaly.
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 During the year, both 𝒍𝒍• and ŝ rotate with respect to the GECS. We will express both 

vectors on the {û1, û2, û3} basis, and, using Eq. 41, obtain β. But first, we introduce the 

standard way of presenting a general spacecraft orbit. 

Keplerian Orbital Elements 

 On a first approximation, the satellite orbit is described by a solution of Kepler 

problem (Vallado 1997), namely, an ellipse with one of its foci at the origin of the GECS. 

The orbit shape is described by the semimajor axis a and the eccentricity 𝑒𝑒 = c/a, where c 

is half the distance between the foci. As 𝑒𝑒 → 	0, the ellipse approaches a circle (𝑒𝑒 = 0). 

 𝒍𝒍• is determined by the inclination i and the right ascension of the ascending node 

(RAAN) Ω through (Eq. 42) (see Fig. 10), 

 

 𝒍𝒍• = sin 𝑖𝑖 sin Ω𝒖𝒖N8 − sin 𝑖𝑖 cos	Ω	𝒖𝒖Nk + cos 𝑖𝑖 𝒖𝒖NZ. (42) 

 

 The ascending node is the orbital point on the equatorial plane at which the satellite 

moves from south to north. The orientation of the semimajor axis within the orbital plane is 

given by the argument of perigee g, defined as the angle between the position vectors of the 

ascending node and the periapsis, the location at which the satellite is closest to the origin 

(Fig. 10). Finally, the satellite position on the ellipse is set by the true anomaly v, measured 

from the periapsis. The Keplerian orbital elements a, 𝑒𝑒, Ω, i, g, and v completely specify a 

solution of Kepler problem (Vallado 1997; Bate et al. 1971). 

 The orbital elements of Libertad 1 are available online from Space-Track (a service 

of the United States Department of Defense (JFCCS 2015)) in the two line element set 
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NODAL REGRESSION
Th e assumptions of Kepler problem are satisfi ed only when the planet has a perfectly spherical mass distribution. In actual 

fact, Earth presents a protrusion around the Equator, which can be thought of as a ring added to a sphere. Th is ring applies a 
gravitational torque that rotates the satellite orbital angular momentum, causing a drift  of Ω (Fortescue et al. 2003) (Eq. 43),

û1

û3

Υ

û2

Ωs

δ
s

Sun

λecl

E

Ecliptic
Celestial Equator

ŝ

with a constant rate of nodal regression Ω 
.
. . Th e protrusion is measured by the coeffi  cient J2 = 1.0826 × 10–3 of the expansion in 

spherical harmonics of the gravitational potential generated by Earth (Fortescue et al. 2003; Vallado 1997). J2 determines the rate 
of nodal regression through the relation (Fortescue et al. 2003; Vallado 1997) (Eq. 44),

(43)

(44)

(45)

where terms O (J 2 
2) were neglected and a circular orbit of radius R and angular velocity ω, given by Eq. 9, was assumed.

VARIATION OF THE SOLAR VECTOR S ̂ AND OF β
For a satellite on a LEO, the solar vector ŝ is essentially the unit vector in the direction of the Sun’s position with respect to 

the GECS. Due to the tilt of the Earth’s rotational axis relative to the plane of its orbit, from the geocentric point of view, the Sun 
traverses an orbit on a plane (the ecliptic) inclined roughly 23° with respect to the Equatorial plane (Fig. 11). In fact, by defi nition, 
the û1 vector points toward the ascending node of the Sun’s orbit, or point of Aries () (Fig. 11). ŝ is determined by the Sun’s 
longitude ΩS and declination δS with respect to the GECS (Fig. 11) (Eq. 45),

Th e evolution of ΩS and δS can be computed by algorithms available in Vallado (1997), Nautical Almanac Offi  ce (2008), and 
Fitzpatrick (2010) or it can be obtained from online resources (Jubier 2004), such as NASA’s HORIZONS system (JPL 2015a). 
To produce an initial β angle similar to that of Libertad 1, we assume Libertad 2 will be deployed into orbit on April 19, 2019 at
0 h 0 min 0 s UTC. Figure 12 shows ΩS and δS from the time of insertion into orbit, computed using the algorithm in Fitzpatrick 
(2010) (presented in Appendix A). Our values agree with HORIZONS apparent ephemeris within 0.01°.

Figure 11. Solar orbit on the Ecliptic in relation to the GECS. The fi gure also depicts the obliquity of the Ecliptic E, the ecliptic 
longitude of the Sun λecl, the Sun’s longitude ΩS, and the Sun’s declination δS.
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that rotates the satellite orbital angular momentum, causing a drift of Ω (Fortescue et al. 

2003) (Eq. 43), 
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 Ω̇ =
3
2
𝐽𝐽k𝑅𝑅=

k

𝑅𝑅k 𝜔𝜔 cos 𝑖𝑖 (44) 

 

where terms 𝑂𝑂(𝐽𝐽kk) were neglected and a circular orbit of radius R and angular velocity ω, 

given by Eq. 9, was assumed. 
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Sun’s orbit, or point of Aries (^) (Fig. 11). ŝ is determined by the Sun’s longitude ΩS and 

declination δS with respect to the GECS (Fig. 11) (Eq. 45), 
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 For a satellite on a LEO, the solar vector ŝ is essentially the unit vector in the 

direction of the Sun’s position with respect to the GECS. Due to the tilt of the Earth’s 
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 𝒔𝒔T = cosδ∞ cosΩ∞ 𝒖𝒖N8 + cos δ∞ sin Ω∞ 𝒖𝒖Nk + sin δ∞ 𝒖𝒖NZ. (45) 

 

 The evolution of ΩS and δS can be computed by algorithms available in Vallado 

(1997), Nautical Almanac Office (2008), and Fitzpatrick (2010) or it can be obtained from 

online resources (Jubier 2004), such as NASA’s HORIZONS system (JPL 2015a). To 

produce an initial β angle similar to that of Libertad 1, we assume Libertad 2 will be 

deployed into orbit on April 19, 2019 0 h 0 min 0 s UTC. Figure 12 shows ΩS and δS from 

the time of insertion into orbit, computed using the algorithm in Fitzpatrick (2010) 

(presented in Appendix A). Our values agree with HORIZONS apparent ephemeris within 

0.01°. 

 

Figure 11. Solar orbit on the Ecliptic in relation to the GECS. The figure also depicts the 
obliquity of the Ecliptic E, the ecliptic longitude of the Sun λecl, the Sun’s longitude ΩS, 

and the Sun’s declination δS. 
 

 For the computation of β, we assume that Libertad 2 will be inserted into a circular 

orbit with the same radius R used in the previous section (7110 km), and values of 

inclination and RAAN similar to those in Table 3, i = 98°, and Ω0 = 184°. For these, Eq. 44 

yields Ω̇ ≈ –0.948°/day. 

 Figure 13 displays β(t) obtained from Eq. 41 with Ω(t) given by Eq. 43, i assumed 

constant (Portilla 2012), and ΩS(t) and δS(t) calculated as described previously. 
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For the computation of β, we assume that Libertad 2 will be inserted into a circular orbit with the same radius R used in the 
previous section (7110 km), and values of inclination and RAAN similar to those in Table 3, i = 98°, and Ω0 = 184°. For these, 
Eq. 44 yields Ω 

.
  ≈ –0.948°/day.

Figure 13. β angle in the days following the time of Libertad 2 insertion into orbit.
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Figure 12. Right ascension, ΩS, and declination, δS, of the Sun in the days following the hypothetical time of deployment into 
orbit of Libertad 2, April 19, 2019 0 h 0 min 0 s UTC (t = 0).

Figure 13 displays β(t) obtained from Eq. 41 with Ω(t) given by Eq. 43, i assumed constant (Portilla 2012), and ΩS(t) and δS(t) 
calculated as described previously.

YEARLY VARIATION OF THE TEMPERATURE EXTREMES

Here, we determine the changes of the minima and maxima (extremes) of the temperature oscillation in response to the 
variation of the β angle throughout the year. A conceivable way of accomplishing this would be to compute the year-long solution 
T(t) of Eq. 1 with Qtot(t) now including the dependence on β (in addition to the true anomaly v), Qtot(t) = Qtot [v(t), β(t)]. However, 
a more efficient and insightful approach is possible. Since β changes much more slowly (over intervals of several months) than ν 
(over a period of about 100 min), for an interval of a few orbital periods, the solution for Qtot [v(t), β(t)] can be approximated by 
the solution for Qtot [v(t), β] with β fixed in time at some representative value. Let Tβ(t) denote the long term periodic solution for 
constant β. We can then approximate the year-long solution T(t) using the solutions Tβ(t) by means of T(t) ≈ Tβ(t)(t); the accuracy of 
this approximation, which we did not appraise, might be estimated by the perturbative technique of multiple scales (Hinch 1991).

Next, we look for a convenient way of computing Tβ(t). To this end, it is pertinent noting that circular orbits with identical 
radius R but different orientation (i, Ω) are equivalent for the purposes of thermal analysis if they share the same β-value. For 



J. Aerosp. Technol. Manag., São José dos Campos, v10, e4918, 2018

Thermal Analysis of Satellite Libertad 2: a Guide to CubeSat Temperature Prediction xx/xx17/24

velocity-nadir attitude, orbits with identical β are subject to the same variation of the solar heat fl ux, QS(v – ψS), with possible 
diff erences only in the phase angle ψS. Furthermore, under the model of uniform time-constant albedo γ, they also present equal 
profi les of albedo heat fl ux change, Qalb(v – ψalb), again, except for eventual diff erences in ψalb.

For polar orbits, those with i = 90°, the simple relationship β = Ω holds when ŝ = û1 (Fig. 14). Considering the straightforward 
geometrical confi guration involved, we use polar orbits to compute Tβ(t). Note that, because any circular orbit is equivalent to a 
polar one, all possible radiation scenarios are encompassed when considering polar orbits within the range 0 ≤ Ω ≤ π/2.

Figure  14. Polar orbits (thick lines) seen from the û3 direction. The dark-gray region represents the eclipse zone of Earth 
(light-gray disk). Values of β = Ω displayed: (i) 0°, (ii) 30°, and (iii) 90°.

û2

û1

Ω = β

(i) Υ

(ii)

(iii)ŝ

For velocity-nadir attitude and polar orbits, the computation of the albedo view factor FiE through the integration in Eq. 22 
becomes impractically complicated for Ω-values other than 0° or 90°. An alternative for FiE calculation is the Monte Carlo ray tracing 
method (MCRTM), which follows the paths of rays with random directions, send from random points on the surfaces exchanging 
radiation (Walker et al. 2010). To establish Tβ(t), we used the thermal analysis soft ware ESATAN-TMS release 5 (ITP Engines 
UK Ltd. 2013a; 2013b), which implements the MCRTM and solves the associated diff erential equations for the temperatures. In 
operating ESATAN, we approximated the single-node model by a multiple-node model as explained below.

USE OF ESATAN FOR TEMPERATURE COMPUTATION
Th e calculation of a satellite’s temperature using ESATAN proceeds through three stages (ITP Engines UK Ltd. 2013a; 2013b): 

(i) the geometrical model, (ii) the radiative case, and (iii) the analysis case. During the fi rst stage, the satellite’s geometrical model is 
assembled from shells with predetermined shapes. For our case, we built a parallelepiped-shaped empty box using six rectangular 
shells of thickness 2 mm. Th e inwardly looking shell faces were declared thermally inactive, while the outer faces were given 
thermo-optical properties (εavg, αavg) or (εu, αu). To each shell we assigned a node (thus, an individual temperature), producing a 
six-node satellite model. To approximate a single-node model the shells’ bulk material was given an unrealistically high thermal 
conductivity of 106 W/(m⋅K). Th e density and specifi c heat were set to 3.291429 × 106 kg/m3 and 2 J/(kg K), respectively, so that 
the box total heat capacity was equal to the value of C used previously.

In the radiative case, the thermal environment, orbit, and satellite attitude are defi ned. We gave the solar irradiance IS, the 
albedo γ, and the Earth radiosity IE the values employed in the previous section. IS was set using the solar constant override option, 
while IE was assigned indirectly through the planet emissivity εE and the planet temperature TE following the relationship (Eq. 46),

In particular, we used εE = 1 and TE = 247.567 K. Th e Sun’s right ascension and declination were set to ΩS = δS = 0, yielding ŝ = û1.

(46)
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Use of ESATAN for Temperature Computation 

 The calculation of a satellite’s temperature using ESATAN proceeds through three 

stages (ITP Engines UK Ltd. 2013a; 2013b): (i) the geometrical model, (ii) the radiative 
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shell faces were declared thermally inactive, while the outer faces were given thermo-optical 

properties (εavg, αavg) or (εu, αu). To each shell we assigned a node (thus, an individual 

temperature), producing a six-node satellite model. To approximate a single-node model the 

shells’ bulk material was given an unrealistically high thermal conductivity of 106 W/(m⋅K). 

The density and specific heat were set to 3.291429 × 106 kg/m3 and 2 J/(kg K), respectively, 

so that the box total heat capacity was equal to the value of C used previously. 

 In the radiative case, the thermal environment, orbit, and satellite attitude are 

defined. We gave the solar irradiance IS, the albedo γ, and the Earth radiosity IE the values 

employed in the previous section. IS was set using the solar constant override option, while 

IE was assigned indirectly through the planet emissivity εE and the planet temperature TE 

following the relationship (Eq. 46) 

 

 𝐼𝐼= = 𝜀𝜀=𝜎𝜎𝜎𝜎=+. (46) 

 

 In particular, we used εE = 1 and TE = 247.567 K. The Sun’s right ascension and 

declination were set to ΩS = δS = 0, yielding ŝ = û1. 
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The satellite’s altitudes of apogee and perigee were both assigned values of 732 km, thus producing a circular orbit with the 
same radius R used in the previous section. We set the inclination to i = 90° and used 52 different values of 0 ≤ Ω ≤ 90°. For all 
orbits, the satellite was put in velocity-nadir attitude. The planet’s gravitational parameter μ was set indirectly using the acceleration 
of gravity ga = 9.79871 m/s2, which, through the relationship (Eq. 47),

produces the value of μ used in the previous section. We directed ESATAN to calculate the heat fluxes for a hundred different 
values of the true anomaly v (orbital positions) with default parameters used for the MCRTM.

In the analysis case, the Stefan-Boltzmann constant was set, through the variable STEFAN, to the value referred previously. 
We chose the routine SLCRNC for the numerical solution of the temperature differential equations with time step of 0.01 s. The 
six nodal temperatures were computed for an interval of about 20 orbital periods, long enough for the temperature oscillations 
to reach the periodic regime.

Each Ω-value required an independent ESATAN temperature simulation. For Ω = 0, the simulation parameters were set up 
using ESATAN’s graphical user interface (“workbench”), which saves logfiles with the configuration instructions. For the remaining 
Ω-values, we found it more expeditious to use a Cygwin (Cygwin 2017) shell script that updated Ω in the logfiles and fed them 
to ESATAN processes running in batch mode.

TEMPERATURE EXTREMES
For Ω = 0, the six nodal temperatures computed with ESATAN at no time differed by more than 0.03 °C from the nodal average, 

indicating close approximation to a single node model. On the periodic regime, ESATAN’s nodal average temperature was at all 
times roughly 0.2 °C above the single node model temperature computed previously (Fig. 15). This small difference is attributed 
to a less exact estimation of the heat fluxes by the MCRTM (see Table 2) compared to the integrations in the previous section.

Let the maximum and minimum temperatures be denoted by Tmax(β) = maxt Tβ(t) and Tmin(β) = mint Tβ(t). Figure 16 
shows Tmax(β) and Tmin(β) computed with ESATAN for three different values of the emissivity εu, keeping all other parameters 
values.

In the three cases, Tmax(β) increases from β = 0 to β = ξ (see Eq. 4 for the definition of ξ), where it reaches a maximum with 
a kink, to then decrease. Similar behavior is observed for Tmin(β). In this context, ξ has a special meaning: when β < ξ, orbits 
have an eclipse zone, while when β ≥ ξ, they do not. For β = 90°, the external heat fluxes are constant, and so Tmax(β) = Tmin(β). 
Additionally, for fixed β, the higher εu is, the lower both Tmax(β) and Tmin(β) are. Figure 17 shows the temperature extremes Tmax 
and Tmin as functions of the time t since deployment into orbit. Tmax(t) is obtained by composition of the function Tmax(β) (Fig. 16) 
with the function β(t) (see Fig. 13), Tmax(t) = Tmax[β(t)].

(47)

Figure 15. Comparison of temperatures computed with the procedure of the third section (solid gray line) and with ESATAN 
(black dashed line). Both computations start at T (0) = 0 °C.
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 The satellite’s altitudes of apogee and perigee were both assigned values of 732 km, 

thus producing a circular orbit with the same radius R used in the previous section. We set 

the inclination to i = 90° and used 52 different values of 0 ≤ Ω ≤ 90°. For all orbits, the 

satellite was put in velocity-nadir attitude. The planet’s gravitational parameter µ was set 

indirectly using the acceleration of gravity ga = 9.79871 m/s2, which, through the 

relationship (Eq. 47) 
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≥¥
µ (47) 

 

produces the value of µ used in the previous section. We directed ESATAN to calculate the 

heat fluxes for a hundred different values of the true anomaly v (orbital positions) with 

default parameters used for the MCRTM. 

 In the analysis case, the Stefan-Boltzmann constant was set, through the variable 

STEFAN, to the value referred previously. We chose the routine SLCRNC for the numerical 

solution of the temperature differential equations with time step of 0.01 s. The six nodal 

temperatures were computed for an interval of about 20 orbital periods, long enough for the 

temperature oscillations to reach the periodic regime. 

 Each Ω-value required an independent ESATAN temperature simulation. For Ω = 

0, the simulation parameters were set up using ESATAN’s graphical user interface 

(“workbench”), which saves logfiles with the configuration instructions. For the remaining 

Ω-values, we found it more expeditious to use a Cygwin (Cygwin 2017) shell script that 

updated Ω in the logfiles and fed them to ESATAN processes running in batch mode. 
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For the single node model, the acceptable satellite temperature range is the intersection of the operating temperature intervals 
of all the components. Hence, according to Table 1, for Libertad 2, this range is 0 °C ≤ T ≤ 60 °C. For εu = 0.05, Tmax(t) is within 
the acceptable range but Tmin(t) can be below the lower limit by as much as 9 °C. Similar behavior is observed for εu = 0.1, with the 
lower limit being exceeded by a higher amount, 13 °C, in the worst case. εu = 0.5, in contrast, corresponds to Tmin(t) substantially 
below the lower limit, implying that an external cover with this emissivity must be ruled out.

The problem of Tmin(t) exceeding the lower limit for εu = 0.05 and 0.1 could be solved in at least two ways. First, an orbit exposed 
to higher β angles (Fig. 16) could be chosen. Second, the satellite could be wrapped on a thermally insulating material, such as a 
multilayer insulation blanket (MLIB) (Gilmore 2002). An MLIB can withstand a high temperature difference between the elements 
enclosed within it, on one side, and its outer cover, on the other. So while the outer cover’s temperature may fluctuate wildly, due to 
direct exposition to the external heat fluxes, the internal components’ temperature would oscillate with much smaller amplitude. 
As a result, Tmin would be drawn up, closer to the oscillation average, which is determined by the outer cover’s absorptivity and 
emissivity. A quantitative prediction of this effect, however, requires a model with at least two nodes (outer cover and internal 
components, respectively), which is beyond the scope of the present work.

CONCLUDING REMARKS

We carried out a preliminary thermal analysis of a three-unit CubeSat with the features envisioned for satellite Libertad 2, 
under development at Universidad Sergio Arboleda (Bogota, Colombia).

In particular, we thoroughly showed the computation of the most significant heat fluxes affecting the CubeSat’s temperature 
on a particular low-Earth, circular, polar orbit. These are the fluxes due to the direct solar radiation, the solar radiation reflected 

Figure 16. Maximum, Tmax, (upper branch) and minimum, Tmin, (lower branch) of the temperature oscillation as functions of 
the β angle, for εu = 0.05(solid line), 0.1 (dashed line), and 0.5 (dot-dashed line).
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Figure 17. Maximum, Tmax, (upper branch) and minimum, Tmin, (lower branch) of the temperature oscillation as functions of 
the time t since deployment into orbit, for εu = 0.05 (solid line), 0.1 (dashed line), and 0.5 (dot-dashed line).
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on Earth (albedo), and the infrared radiation released by Earth. The time-periodic fluxes were included into a differential equation 
model describing the evolution of a single temperature, assumed shared by all satellite components (single-node model). We found 
that the model solutions approach a unique periodic temperature oscillation, independently of the initial condition.

Additionally, we considered circular orbits with arbitrary orientation. For these, the heat fluxes are determined by the angle 
between the orbital plane and the direction of the sunrays, or β angle, making any orbit equivalent to a polar one, for thermal 
analysis purposes. With the help of the thermal analysis software ESATAN-TMS, we calculated the temperature Tβ(t) for polar 
orbits with 0° ≤ β ≤ 90°. Based on data from the previous CubeSat mission Libertad 1, we established a hypothetical evolution of 
β(t) for a mission life of a year, tracking the solar position on the ecliptic and including the nodal regression of the satellite orbit. 
Combining Tβ(t) and β(t), we determined the minima and maxima (extremes) of the temperature oscillation during the mission 
life. For plausible values of the relevant satellite parameters, the temperature extremes were mostly within the operating range of 
the most sensitive satellite component, 0° ≤ T ≤ 60°, suggesting viability of the mission.

The thermal model considered can be improved in ways that build upon the work presented here. The most important 
enhancement would consist of assigning distinct temperatures to different satellite parts, producing a multiple node model able to 
handle heat exchange between satellite components (as described in Karam (1998), for instance). For this model, the irradiances 
associated to the external heat fluxes would be identical to the ones presented here, as a result of they being determined solely by 
the external geometrical configuration. Since the solar cells’ effective absorptivity is influenced by the electrical power drained from 
them, it would be pertinent to relate the thermal analysis to the satellite’s electrical energy consumption (a preliminary analysis 
of electrical energy utilization for Libertad 2 is provided in Sanchez-Sanjuan et al. 2016). Coupling of the thermal and electrical 
analyses would be also necessary when studying the heat release from electrical circuits, be it unintended or deliberate, as in the 
use of heaters for active thermal control. As priorly mentioned, the multiple node model would allow the representation of passive 
control mechanisms (thermal insulation) or additional active control methods (such as louvers) (Gilmore 2002).

The temperature analysis could additionally include the fluctuations of the thermal environment, represented by the infrared 
radiosity IE and the albedo γ. This would involve solving a statistical ensemble of thermal models, each with a particular realization 
of uniform and time invariant IE and γ drawn from the joint probability distribution of these two parameters found by the ERBE 
(Anderson et al. 2001). Of special interest would be the minima and maxima of IE and γ, as they would supply the temperature 
extremes. Alternatively, if the desired degree of accuracy calls for it, the parameters could be introduced in the model as stochastic 
signals IE(t) and γ(t).

Other phenomena to consider in the model are the following: the yearly variation of the solar irradiance IS depending upon 
the Earth-Sun distance (Anderson et al. 2001), the correction of the albedo coefficient of reflection γ following the change of the 
orbit’s β angle (Anderson et al. 2001), and the possible effect of the deposition of space dust on the external surfaces’ emissivity 
and absorptivity (Gilmore 2002).
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APPENDIX – A Computation of the Sun’s Longitude and Declination 

 Here, we explain the procedure followed for calculation of the Sun’s longitude and 

declination relative to the GECS, ΩS and δS, respectively. Basic geometry shows that ΩS and 

δS are related to the Sun’s longitude on the ecliptic plane λecl (depicted in Fig. 11 of the main 

text) by (Eqs. 1 and 2) 

 

 Ω9 	= tanD8(cos𝐸𝐸 tan 𝜆𝜆)^;), (1) 

 

 δ9 	= sinD8(sin𝐸𝐸 sin 𝜆𝜆)^;), (2) 

 

where E = 23.439° (Vallado 1997) is the ecliptic obliquity (see Fig. 11 of the main text) and 

ΩS is in the same quadrant as λecl. 

 To determine λecl, we used the algorithm presented in Fitzpatrick (2010) (similar 

algorithms can be found in Vallado (1997) and in Nautical Almanac Office (2008)). As 

shown by Fig. 1, λecl is related to the Sun’s true anomaly vS and the Sun’s orbit argument of 

periapsis gS by (Eq. 3) 

  

 𝜆𝜆)^; 	= 𝑔𝑔9 + 𝜈𝜈9. (3) 

 

Figure 1. The Sun’s orbit seen from a direction perpendicular to it. Definitions of vS, gS, 
and λecl shown. The Earth sits at one of the ellipse’s foci; the symbol × marks the other 

one. The orbit’s eccentricity eE (actual value shown in Table 4) has been exaggerated for 
clarity. 
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where t' is the time expressed as the Julian Date (Vallado 1997) and Mep (Table 1) is the 

mean anomaly at the reference time t'ep = 2451545.0 (Julian Date), corresponding to the 1st 

January 2000 at 12:00 UT, known as the J2000 epoch. 

 

Table 1. Parameter values used in the calculation of the Sun’s ecliptic longitude λecl 
(Fitzpatrick 2010). 

 Parameter Value 
Mep 357.588° 
M 0.98560025°/day 
Lep 280.458° 
L 0.98564735°/day 
eE 0.016711 

  

 To second order in the Sun’s orbit eccentricity eE (Table 1), the relationship between 

vS and M is (Eq. 5) 

 

 ν9 	= 𝑀𝑀 + 2𝑒𝑒= sin𝑀𝑀 +
5
4 𝑒𝑒=

k sin 2𝑀𝑀. (5) 

 

 Substitution of Eq. 5 into Eq. 3 leads to (Eq. 6) 

 

Figure  1. The Sun’s orbit seen from a direction perpendicular to it. Defi nitions of vS, gS, and λecl shown. The Earth sits at one 
of the ellipse’s foci; the symbol × marks the other one. The orbit’s eccentricity eE (actual value shown in Table 4) has been 

exaggerated for clarity.
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where t’ is the time expressed as the Julian Date (Vallado 1997) and Mep (Table 1) is the mean anomaly at the reference time
t’ep = 2451545.0 (Julian Date), corresponding to the 1st January 2000 at 12:00 UT, known as the J2000 epoch.

Table  1. Parameter values used in the calculation of the Sun’s ecliptic longitude λecl (Fitzpatrick 2010).
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To second order in the Sun’s orbit eccentricity eE (Table 1), the relationship between vS and M is (Eq. 5),
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(6)

(7)
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 vS can be found with the help of the Sun’s mean anomaly M, which changes in time 

at a constant rate 𝑀̇𝑀 (value presented in Table 1) (Eq. 4), 

 

𝑀𝑀 = 𝑀𝑀)ö + 𝑀̇𝑀π𝑡𝑡É − 𝑡𝑡)öÉ ∫, (4) 

 

where t' is the time expressed as the Julian Date (Vallado 1997) and Mep (Table 1) is the 

mean anomaly at the reference time t'ep = 2451545.0 (Julian Date), corresponding to the 1st 

January 2000 at 12:00 UT, known as the J2000 epoch. 

 

Table 1. Parameter values used in the calculation of the Sun’s ecliptic longitude λecl 
(Fitzpatrick 2010). 

 Parameter Value 
Mep 357.588° 
M 0.98560025°/day 
Lep 280.458° 
L 0.98564735°/day 
eE 0.016711 

  

 To second order in the Sun’s orbit eccentricity eE (Table 1), the relationship between 

vS and M is (Eq. 5) 

 

 ν9 	= 𝑀𝑀 + 2𝑒𝑒= sin𝑀𝑀 +
5
4 𝑒𝑒=

k sin 2𝑀𝑀. (5) 

 

 Substitution of Eq. 5 into Eq. 3 leads to (Eq. 6) 
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𝜆𝜆)^; = 𝐿𝐿 + 2𝑒𝑒= sin𝑀𝑀 +
5
4 𝑒𝑒=

k sin 2𝑀𝑀 , 

 (6) 

 

where L is the Sun’s mean ecliptic longitude, L = gS + M, that changes linearly with time 

(Eq. 7), 

 

𝐿𝐿 = 𝐿𝐿)ö + 𝐿̇𝐿π𝑡𝑡É − 𝑡𝑡)öÉ ∫ (7) 

 

with values of Lep and 𝐿̇𝐿 displayed in Table 1. 

 t' is related to the time elapsed since orbital insertion t (in units of day) used in Eq. 

43 (main text) by t' = t'0 + t, where t'0 is the Julian Date of the time of orbital insertion, 

determined from the Gregorian calendar date (February 1, 2019, 0 h 0 min 0 s) with the 

function juliandate of Matlab, an algorithm for the calculation of the Julian Date from the 

Gregorian calendar date is explained in Vallado (1997). Internet resources for the same 

purpose are available in JPL (2015b) and Jubier (2004). 
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𝜆𝜆)^; = 𝐿𝐿 + 2𝑒𝑒= sin𝑀𝑀 +
5
4 𝑒𝑒=

k sin 2𝑀𝑀 , 

 (6) 

 

where L is the Sun’s mean ecliptic longitude, L = gS + M, that changes linearly with time 

(Eq. 7), 

 

𝐿𝐿 = 𝐿𝐿)ö + 𝐿̇𝐿π𝑡𝑡É − 𝑡𝑡)öÉ ∫ (7) 

 

with values of Lep and 𝐿̇𝐿 displayed in Table 1. 

 t' is related to the time elapsed since orbital insertion t (in units of day) used in Eq. 

43 (main text) by t' = t'0 + t, where t'0 is the Julian Date of the time of orbital insertion, 

determined from the Gregorian calendar date (February 1, 2019, 0 h 0 min 0 s) with the 

function juliandate of Matlab, an algorithm for the calculation of the Julian Date from the 

Gregorian calendar date is explained in Vallado (1997). Internet resources for the same 

purpose are available in JPL (2015b) and Jubier (2004). 

 

Substitution of Eq. 5 into Eq. 3 leads to (Eq. 6),

where L is the Sun’s mean ecliptic longitude, L = gS + M, that changes linearly with time (Eq. 7),

with values of Lep and L 
.
  displayed in Table 1.

t’ is related to the time elapsed since orbital insertion t (in units of day) used in Eq. 43 (main text) by t’ = t’0 + t, where t’0 is the  
Julian Date of the time of orbital insertion, determined from the Gregorian calendar date (April 19, 2019, 0 h 0 min 0 s) with 
the function juliandate of Matlab, an algorithm for the calculation of the Julian Date from the Gregorian calendar date is explained 
in Vallado (1997). Internet resources for the same purpose are available in JPL (2015b) and Jubier (2004).


