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ABSTRACT
During the last decade, the world faced the mass insertion of small satellites in the space technology scenario. Every year, the 
number of micro and nanosatellites launched increases and gets more attention from players in the space market. Despite the lack 
of a national launcher, the Brazilian Space Program is known for some successful development in the last century, including its 
space assets, such as a privileged launch site near the equator, a family of flight proven and reliable sounding rockets for suborbital 
flights and microgravity experiments and universities with established small satellites programs. Thereby, the present work proposes 
a modification of the Brazilian VSB-30 sounding rocket in order to allow the launch and insertion in low Earth orbit (LEO) of 
small satellites fulfilling the gap of a national launcher. It also presents a CubeSat orbital decay simulation and orbital insertion 
simulation with the modified rocket launched from the Alcântara Launch Center as a matter of verifying the potential of national 
missions using this modified launcher.
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INTRODUCTION

During the last decade, the world faced the mass insertion of small satellites in the space technology scenario. 
The dynamism of these projects, its low relative cost for manufacturing, testing and launching, as well as its integration 
building potential and support for scientific research and technological development brought CubeSats and other small 
satellites into evidence (Wekerle et al. 2017). The presence of small satellites in the space industry has increased to such 
a degree that, in 2017, the number of these satellites launched was greater than the conventional satellites, in accordance 
with the Brazilian Center of Management and Strategic Studies (CGEE 2018). Furthermore, according to O’Donnell 
and Richardson (2020), 1364 small satellites (< 500 kg) were successfully launched between the years of 2009 and 2018. 
From those satellites, 968 (71%) were either PicoSats (< 1 kg) or NanoSats (1–10 kg), the latest being responsible for 804 
of the successful launches.

In Brazil, the initiative for launching CubeSats started at the National Institute for Space Research (INPE) in partnership with 
the Federal University of Santa Maria (UFSM). The Brazilian INPE-UFSM NANOSATC-BR, CubeSats Development Program 
launched the first Brazilian CubeSat, NANOSATC-BR1 (1U) in 2014. Additionally, the program has been developing their second 
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and third CubeSats, NANOSATC-BR2 (2U) and NANOSATC-BR3. According to the Brazilian Space Agency (AEB 2020), the 
NANOSATC-BR2 is expected to be launched in November 2020. Other initiatives include the Aeronautics Institute of Technology 
(ITA) first CubeSat, ITASAT-1 (6U), launched in 2018 (Sato et al. 2019). Moreover, their ongoing ITASAT-2 project, kicked off 
in July 2020 (ITA 2020).

Regarding the launch of these vehicles, usually they are secondary payloads on heavy launch systems, but there is a new market 
for dedicated small satellites launcher. As an example, the United States Department of Defense and NASA funding programs follow 
the idea of funding not just traditional launch services but also “launch-on-demand” systems, in view of providing both incentive 
and guidance for new fledgling companies. Additionally, the United Kingdom and China are also focusing their research on the 
development of small satellite space projects (Niederstrasser and Madry 2020), which contribute to the research and development 
of dedicated launchers for these vehicles.

In addition, Niederstrasser and Madry (2020) mention that, since the launch of the Jielong 1 launcher in April of 2019, there 
are currently eight operational systems capable of carrying payloads of less than 1000 kg to low Earth orbit (LEO). Five of those 
eight are Chinese vehicles, being the most recent ones Hyperbola-1 and the already mentioned Jielong 1, from iSpace and China 
Rocket Co. Ltd, respectively. The Chinese operational systems are expected to be commercially offered outside of China eventually, 
even though it has not yet happened. In the non-Chinese vehicles category, there are the older ones in activity, Pegasus XL and 
Minotaur I from Northrop Grumman, and the newest western launcher, the Rocket Lab Electron, which has had a 100% success 
rate since its maiden flight failure in 2017 (Niederstrasser and Madry 2020). Furthermore, a myriad of other small satellites 
launchers is in development or funding phases (Niederstrasser 2018).

In accordance with the presented trend, this work proposes the feasibility analysis of launching a CubeSat from a modification 
of the Brazilian sounding rocket VSB-30. It also presents a CubeSat orbital decay simulation, after VSB-30 modification orbital 
insertion, as a matter of verifying the potential of missions using the proposed launcher.

Brazilian Space Assets
The development of space projects in Brazil started with the Sonda rocket family with SONDA I, launched in 

1965, followed by SONDA II, launched in 1970, SONDA III, launched in 1976, and SONDA IV, launched in 1984. 
The Sonda rocket family was launched at the Barreira do Inferno Launch Center (CLBI), located near Natal, capital of 
Rio Grande do Norte (Palmerio 2017). The main objective of the Sonda family was to be the base of a Brazilian research 
and development space project. Additionally, the lessons learned, some of the developed technologies and even parts 
of the previous rockets are used with each new rocket. For example, S20, motor from SONDA II, is the second stage of 
SONDA III; S30, motor of the first stage of SONDA III, is the second stage of SONDA IV. The research and development 
acquired from the SONDA rockets led to the projects of VLS and eventually VSB-30, both followed the idea of using 
former developed technologies, for instance, the motors S20 in the first two versions of VLS and S30 used on the second 
stage of VSB-30 (Palmerio 2017). Unfortunately, since the VLS accident in 2003, the Brazilian space project did not 
continue with the same grit as before.

Adding to the active Brazilian space assets, there are the projects of CubeSats by INPE and ITA, as previously mentioned. 
Furthermore, universities all over Brazil have been working towards student programs for space research, either for competitions 
or for academic purposes, as this is a low-cost technology to be implanted in universities. Research in the aerospace field has also 
been encouraged recently by the creation of the Brazilian Aerospace Congress (CAB) in 2018.

Another driver for a space mission proposal to take place in Brazil is the Alcântara Launch Center (CLA). Located near the 
city of Alcântara, in the state of Maranhão, in a privileged location, 2°18’ south of the Equator, the CLA is a known Brazilian asset 
in the space industry. As stated by the Department of Science and Aerospace Technology (DCTA 2019), the region has positive 
characteristics for launchings.

The advantages that justify the use of this launch center in the defined national mission proposal are, among others:
• Fuel saving for low inclination orbits when compared to centers located in high latitudes;
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• Favorable safety conditions for launches on trajectories towards polar, inclined and equatorial orbits since the launch vehicle 

can avoid inhabited areas with small need of correction maneuvers;

• Favorable climatic conditions, with a well-defined rainfall regime and tolerable winds, in addition to small temperature 

variations throughout the year;

• Geological stability;

• Good logistic support due to its proximity with São Luís, Maranhão’s capital city;

• Use and appreciation of installed national facilities;

• Support from trained and national technical staff.

Modified VSB-30 Launch vehicle
The VSB-30 is a two-stage, unguided and rail launched sounding vehicle. The vehicle consists of a solid propellant S31 rocket 

booster, a boost adapter, the second stage S30, payload, a recovery and a service system (Garcia et al. 2011). The vehicle is designed 

to fly in a spin stabilized unguided mode. The VSB-30 is an adaptation proposed by the German Aerospace Center to substitute 

the British vehicle, Skylark 7, on the European microgravity program (Palmerio 2017). The VSB-30 is currently used mainly as 

a sounding vehicle in order to perform experiments in microgravity through suborbital flights. It can deliver up to 400 kg of 

payload at 250 km of altitude, allowing 350 s of microgravity environment. It has an apogee of 250 km and its dispersion point 

has a radius of 50 km from its launch center (Garcia et al. 2011; Palmerio 2017).

Within the scope of this work is the suggestion of modifications to this vehicle turning its service module in a third stage, 

in order to allow the launch and insertion in LEO of small satellites. Hence, the modified VSB-30 (VSB-30M) can be defined 

as a three-stage vehicle, with two solid-propellant engines and a third engine that should deliver the necessary amount of extra 

thrust necessary to achieve a stable orbit. The development of the third stage was done according to a number of requisites and 

references described throughout this work. The proposed modification of the VSB-30 is based on an analysis of small satellite 

launch vehicles currently in operation or development. Moreover, the number of stages to be added shall follow a trade-off 

between increment of performance and complexity, so the minimum number of stages that accomplish mission requirements 

shall be selected (Sutton and Biblarz 2001).

Figure 1 shows the current configuration of the launcher, and Table 1 presents the characteristics of each stage.

2nd Stage fins

1nd Stage fins

Booster adapter

S30 Motor

Motor-payload adapter

Payload

S31 Booster

Figure 1. VSB-30 launch vehicle. Adapted from Silva et al. (2013).
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Table 1. VSB-30 original parameters.

Parameters First stage (S31) Second stage (S30) Service module

Specific impulse (in vacuum) 260 s 260 s

400 kg
Structural mass 240 kg 250 kg

Propellant ratio 0.7363 0.7778

Propellant mass 670 kg 875 kg

Adapted from Palmerio (2017).

METHODOLOGY

Launch Vehicle Parameters
The propulsive model used for the first two stages is obtained from Palmerio (2017), while the parameters of the third stage 

are estimated from other vehicles that fulfill the envisaged mission for the VSB-30M. An exception is made in determining the 
structural ratio (SR) of the third stage of the VSB-30M, which was defined after the analysis of the Tsiolkovsky equation results 
and feasible values given in the literature.

Other features of the third stage are the result of a simplified review of commercial launchers (2019 Review of Commercial 
Launchers of Small Satellites by Moraes D. D.; unreferenced, see “Acknowledgments” section) and the data for the ISAS/JAXA 
modified SS-520 vehicle, or SS-520-5 (Inatani and Ohtsuka 2018). The data acquired from the commercial launchers review is 
compared with the values that solve the Tsiolkovsky equation for the ΔV presented in the next section. For the commercial review, 
49 small satellite launch vehicles were evaluated looking for the following characteristics:
• That the vehicle could reach the 3-stage configuration;
• That the vehicle had a third liquid stage.

Focus was given to determining the following characteristics of the third stages:
• Propellants used and their characteristics;
• Specific impulse;
• Ratio of inert mass to mass of propellant;
• Thrust;
• General physical dimensions and diameter of the service modules;
• General engine information.
• Reliable and recent data from each project.

From 49 launchers only launchers that fulfill the previous requisites are presented in Table 2, which summarizes some 
data of interest about the launchers that fit the requirements given above, in the case of rocket families, a model was chosen 
for representation.

The main source of data for determining characteristics of the third stage was the JAXA SS-520-5 launcher. As described by 
Inatani and Ohtsuka (2018), this small satellite launcher is a three-stage rocket with “SS-520s two stage rocket” and a “small third 
solid rocket motor housed in a fairing”. Its configuration and development history are in accordance with the proposal of this 
work, as a result of the modification of a two-stage, flight proven, sounding rocket by adding a third stage in view of inserting small 
satellites into Earth’s orbit. Furthermore, the SS-520-5 successfully launched and delivered a 3U CubeSat into orbit in January 2018. 
This achievement reached by ISAS/JAXA, makes the SS-520-5 the likely best benchmark for improvements of sounding rockets 
to becoming small satellite launchers. Thus, it is used as the reference for data on solid third stage rockets and the characteristics 
of interest are shown in Table 2.

The term diameter of interest (DI) represents the diameter of the third stage structure, while Isp indicates the specific impulse; 
T, in turn, refers to the thrust generated by the engine. While total mass (TM) is linked with the complete launch vehicle.
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Table 2. General information about small satellite launch vehicles for decision making about the VSB-30M.

Launcher
Payload 

[kg]
Orbit 
[km]

DI 
[m]

TM 
[kg]

Vacuum Isp [s] 
(3rd Stage)

T [kN] 
(3rd Stage)

Propellant
Engine 

(3rd Stage)

Taymyr-1A 12 - ~0.45 2600 ~187-224 3.92
Hydrogen peroxide (HTP) 

(PV-85) and aviation 
kerosene (TS-1)

RLD-100s

Electron 150 500 1.2 12500 N/D 0.12 - Currie

Skyora XL 320 600 - - ~290-306 7 Hydrogen peroxide (HTP) 
and kerosene (RP-1) -

Bloostar 75-140 200 
–600 - 5818 355 - Liquid methane and 

oxygen Teide 1

Neptune 
N1 20 500 ~0.64 2449 245-300 ~3.3-4.4 Steaming nitric acid 

(WFNA) and turpentine
GPRE 

0.75KNTA

SS-520-5 4 - 0.52 2579 282.6 12.76 BP-211J -

Based on this analysis, two modifications were proposed. One considering a liquid third stage and another considering a solid 
third stage. It is worth mentioning that the solid motors technology is well known in Brazil, which may make it the best alternative 
for this modification, since it would be possible to develop the third stage solid rocket with national technology. While, the 
commercial development of liquid rocket engines is not fully dominated in Brazil, developing the third stage as a liquid rocket 
engine could be considered as an effort to the development of Brazilian technology.

The liquid third stage should be composed of, at least, a nose cone, Pico Orbital Deployer (POD), fuel tanks, injector, pumps, 
feed system, valves, combustion chamber and nozzle. Similarly, the solid third stage should be composed of, at least, a nose 
cone, POD, case, grain and nozzle. Their total mass is defined as the same as the original service module for calculation purpose. 
The main characteristics for each of them are summarized in Table 3.

Tsiolkovsky Equation
The Tsiolkovsky equation establishes the speed gain of rockets, the equation relates the maximum change of velocity of the 

rocket, ΔV, to the effective exhaust velocity, which is a product of the specific impulse and Earth’s gravitational acceleration at sea 
level, Ispg0, and the initial and final mass of the rocket,M0 and Mb, respectively. Since there are three stages on the VSB-30M, the 
equation is developed for multiple stages, that way, as each stage burns, they are discarded. Thus, the equation is written as a sum 
of ΔV achieved by each stage. The Tsiolkovsky equation for three stages is shown in Eq. 1:

  (1)

Both initial and final mass for each of the stages are calculated as a function of the propellant mass (Mp), consumed during 
the flight, structural mass (Ms) of each stage, discarded after the burnouts and payload mass (Ml) for each stage, which considers 
nonburned stages as payloads for the first ones. Thus, the interest mass for a stage after and before burnout is defined in Eqs. 2–4, 
as follows:

  (2)

  (3)

  (4)

where i is the stage number and k is the last stage number.
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To guarantee a LEO orbit delivering, the first necessary step is to compare the needed ΔV for achieving these orbits and the 
ΔV generated by the rocket (delta-V budget).

Starting from the mass characteristics of the original VSB-30 and the minimum value of ΔV to reach LEO accounting for 
disturbance losses, defined by Ley et al. (2009) as 9300 m/s, it is necessary to evaluate a feasible Isp of the third stage and the 
fractions of the service’s module 400 kg that are dedicated to propellant, payload and structure. The payload mass was chosen 
as the upper mass limit for defining a satellite as a CubeSat, 10 kg. The Isp was chosen regarding the data presented in Table 2. 
In addition, the 9300 m/s ΔV value was corrected to 9500 m/s to ensure higher LEO orbit insertion. Finally, with the inputs 
the propellant and structure mass were calculated with the aid of the Tsiolkovsky equation. The resultant third stage mass 
characteristics were then transformed in dimensionless coefficients, in order to validate the gathered results by comparison 
with the values in literature. Equations 5 –8 show the calculation of the payload ratio (λ), structural coefficient (ϵ), mass ratio 
(µ) and propellant ratio (ζ).

  (5)

  (6)

  (7)

  (8)

At last, Table 3 presents the discussed data for each of the proposed modifications.

Table 3. VSB-30M third stage.

VSB-30M parameters Solid rocket third stage Liquid rocket third stage

Specific Impulse (in vacuum) 282.6 s 305 s

Total mass 400 kg 400 kg

Structural mass 29.29 kg 35.4976 kg

Propellant ratio 0.9249 0.9090

Propellant mass 360.71 kg 354.5024 kg

For medium-sized solid motors (45–450 kg), the maximum propellant ratio according to Sutton and Biblarz (2001) is 
around 0.91. As seen in Table 3, for a third solid stage, the propellant ratio is a bit over the maximum value in the literature. 
However, as this parameter is used to make approximate and preliminary design estimates, it was decided to not discard 
this modification already. According to Sutton and Biblarz (2001), a high value of ζ indicates a low inert motor mass, an 
efficient design of the hardware, and a high stress. Values over the maximum can be reached using top-level materials and 
technologies during the development of the motors. In addition, achieving the third liquid stage propellant ratio is feasible 
in accordance with the data presented in Costa and Vieira (2010), retrieved from Isakowitz et al. (1999), which presents 
motors such as the Chinese YF-40 (ζ = 0.93), the Russian 11D49 (ζ = 0.93), the American RS27A (ζ = 0.93) and the Soviet 
RD-171 (ζ = 0.92).
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Gravity Turn Maneuver
The launcher simulation considers a gravity turn maneuver to insert the satellite in Earth’s orbit. In this kind of orbit insertion, 

the orbit is achieved solely by carefully choosing both the launch direction and the waiting times direction and the waiting times 
before igniting each of the rockets engines after its preceding engine burnout. In this way, for a three-stage rocket, the orbit is 
achieved by using the first two stages subsequently (i.e., with the burnout of the first stage close to the ignition time of the second 
stage), and then, after the second burnout, waiting for the gravity turn effect to bring the flight path angle ϕ to zero. When this is 
achieved, the third stage is ignited and then, the gross part of the third stage energy is used to gain the necessary orbital velocity, 
while the first two are mainly used for gaining altitude and exiting the denser initial atmosphere.

MATHEMATICAL MODELLING

Reference Systems
The modelling of any dynamic behavior depends on the reference system used. In this work, four different coordinate systems 

compose the complete reference system utilized for modelling of the transatmospheric and space flights of the launch vehicle and 
orbit analysis of the satellite.

The first essential reference frame is called the inertial reference frame and is defined as the frame where the absolute acceleration 
is equal to zero. Even though such a frame does not exist in reality, a fixed coordinate system with negligible acceleration can be 
defined as an inertial frame of reference.

For Earth orbits, the inertial frame is traditionally defined as a coordinate system fixed with respect to distant stars. This reference 
frame is known as celestial reference system (SXiYiZi) or Earth centered inertial (ECI). The ECI is fixed at the Earth’s center of 
mass, with the SXi axis pointing towards the vernal equinox, and the SZi axis normal to the Earth’s ecliptic plane. The SYi axis 
completes the orthogonal coordinate system. Another description of this frame of reference is by means of the unit vectors Ii, Ji, 
Ki, which are parallel to SXi, SYi and SZi axis, respectively.

During launch maneuvers and in low earth orbits, the atmospheric influences are not negligible. Since the atmosphere 
moves with Earth’s surface, it is convenient to define a frame of reference with the same angular velocity as the Earth. 
This frame of reference is called Earth-centered, Earth-fixed (ECEF). Their axes are SX, SY and SZ pointing towards the I, 
J and K unity vectors, respectively. The origin of the ECEF coincides with the ECI’s origin. The SZ axis points towards the 
true north and is coincident to the SZi axis. The position of SX and SY axes is obtained through a rotation of γG + ωet radians 
around the SZi axis, where γG is the initial angular position, ωe is Earth’s angular velocity and t is the transcribed time with 
respect to the reference time t0.

The direction cosine matrix that relates the ECEF and the ECI frames is shown in Eq. 9.

  (9)

In orbital dynamics, it is more convenient to express movement and position with spherical coordinates. A spherical coordinate 
system can be deduced from the ECEF reference frame using the radial distance r, and the δ and λ angles, which represent, 
respectively, the orbit radius, celestial latitude and celestial longitude.

The next reference frame is defined in order to specify the velocity v. It is called the local horizontal vertical (LHV), denoted 
by oxxyz. The ox axis points towards the radial distance vector, the oz axis points towards the true north, and the oy axis completes 
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the orthogonal system pointing towards the east. The unity vectors which represent the LHV reference system are i, j and k. The 

LHV system is related to the ECI system through the rotation matrix shown in Eq. 10.

  (10)

Finally, a reference frame parallel to the velocity vector is adopted in order to handle the influence of aerodynamic variables in 

the atmospheric flight dynamics. This frame is called the Aerodynamic Reference Frame. No turbulent wind models or components 

are modelled. Thus, the direction of the wind velocity vector is idealized as parallel to the body’s velocity relative to the ECEF 

frame, v. This frame has axes Sxv, Syv and Szv pointing towards the iv, jv and kv unity vectors, respectively. The first presented axis is 

written along the instantaneous, relative velocity vector, v, defined previously. The remaining axes are normal to v and mutually 

perpendicular. Those three axes are called the wind axes.

Figure 2 presents the relationships between the ECI, ECEF and LHV frames. Figure 3 shows the LHV and aerodynamic frames.
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Figure 2. The ECI, ECEF and LHV systems. Adapted from Tewari (2007).
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Figure 3. The LHV and aerodynamic coordinate system. Adapted from Tewari (2007).
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The last reference frame is useful to write the satellite equations. It is called the local vertical local horizontal (LVLH) reference 
frame in which SZLVLH points towards the nadir, SYLVLH axis is normal to the orbit plane and SXLVLH completes the orthogonal 
system (WIE 2008).

Equations of Motion
The translational motion of a body is completely described by three dynamic equations and three kinematic equations. 

The kinematic equations define the motion of the body without reference to the forces that cause the motion. The dynamic 
equations describe the relation between the forces applied at the system and its acceleration.

Launch Vehicle
The kinematic equations shown in Eq. 11 are deducted in Tewari (2007) for a rotating planet and constitute the first part of 

the set of six dynamic equations that describe the translational motion of the launch vehicle.

  (11)

Besides the previously defined variables, this set of equations also contains the variables flight path angle (ϕ) and velocity 
azimuth (A). Opportunely, the up dot defines, as usual, a derivative.

For the launch vehicle, the acting forces have an aeropropulsive component that is written directly in the aerodynamic frame 
and a weight component due to gravity, given in the LHV frame and represented in the aerodynamic frame through a rotation 
matrix. In addition, the application of Newton’s second law in a noninertial reference frame generates virtual forces due to the 
angular velocities between the frames of reference. The dynamic equations at the aerodynamic frame for the launching vehicle 
are shown in Eqs. 12–14 and are given by Tewari (2007). They define the dynamic motion of a body during transatmospheric 
flight such as reentry or launching.

  (12)

 (13)

  (14)

where fT is the applied thrust, ϵ and μ are the nozzle heading angles, D is the atmospheric drag, L is lift, fY is the lateral aerodynamic 
force, gc is the gravity centripetal component, gδ is the gravity north component, and ω is the planet rotational velocity.

Satellite
The motion of the satellite is said to be purely translational and the related equations are similar to those of the launch 

vehicle. The equations of motion are written in the reference frame of choice. The external forces are the weight component, with 
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gravitational acceleration calculated by the axis-symmetric model of high order and the drag force due to atmospheric resistance. 
The disturbance forces from the Sun and the Moon are deemed negligible for the proposed analysis. Further discussion about this 
decision is given bellow. The satellite position is written in spherical coordinates in terms of the body velocities, as shown in Eq. 15.

  (15)

The terms uLVLH, vLVLH and wLVLH are the velocities in the LVLH’s X, Y and Z axis, respectively, and are given in a vector form 
as V=[uLVLH vLVLH and wLVLH]T. Thus, the accelerations can be obtained by its time derivative with respect to the inertial frame, 
defined in Eq. 16:

  (16)

where vector Ω is the angular velocity vector of the LVLH in respect to the ECI system. Using the relation V. = F
msat

 where  
F = [Fx Fy Fz]

T is the force vector in the LVLH system, and msat the satellite mass, Eq. 17 is obtained:

  (17)

Disturbance Forces
In simulations with few orbital periods, usually faster than a day at Earth, the third bodies, Sun and Moon, can be considered 

as stationary at the ECI frame. Thus, these two bodies are assumed to be fixed in a point at the ECI frame. The Moon generate 
perturbations at the satellite in the form of forces and torques due to its gravitational field. The Sun perturbs the satellite in the 
same way, but also generates solar pressure. However, the lower the satellite orbit, the smaller is the contribution of the solar flux 
on the decay in comparison with the atmospheric drag. For the gravitational disturbance forces, it is possible to show that, when 
analyzing orbit decay in LEO, the influence of the third body is negligible.

Assuming the idealized model of spherical and homogenous bodies for both the Sun and Moon. The gravitational force for each 
of the bodies can be found through Eqs. 18 and 19. Where fgSun is the Sun gravitational force, and fgMoon is the Moon gravitational 
force acting on the satellite.

  (18)

  (19)

where msat is the satellite mass, r13 is the satellite position vector relative to the Sun center of mass, mSun the Sun mass and  is 
the Sun gravitational constant. Similarly, r14 is the satellite position vector relative to the Moon center of mass, mMoon is the mass 
of the Moon and  is the Moon gravitational constant.
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Hence, fgSun and fgMoon can be obtained in a reference system of preference, as a function of the reference system used to express 
the position vectors, and incorporated in the satellite dynamic equations. However, for LEO the distance between the satellite 
position and the third bodies is big enough to ensure that the magnitude of fgSun and fgMoon is small enough that the third body 
disturbance is negligible.

Gravitational Model
For the modelling of Earth’s gravitational field, a high order axis symmetric model of the planet is utilized. The model employs 

high order spherical harmonics to account for the measured deviation between the real gravitational field of Earth and the one 
estimated with a perfectly spherical and homogenous planet model.

The solution for the deviation problem is given, as shown in Tewari (2007), using the gravitational potential function. 
This potential function is obtained based on the radial distance of the test mass, r, and colatitude ζ , as Eq. 20 presents. For the 
simulations, the test mass can be either the launch vehicle or the satellite.

  (20)

where G, MT and Re are the gravitational constant, Earth’s mass and radius at the equator, respectively. Further, the Pn terms are 
found from the Legendre polynomial described in Eq. 21 and Jn are the Jeffery’s constants.

  (21)

For this work the model is calculated with n = 4 and the constants are J2 = 0.00108263, J3 = 0.0000254 and J3 = 0 .000000161. 
Hence, the gravity acceleration can be determined through Eq. 22.

  (22)

Aerodynamic Model
The aerodynamic model of the launch vehicle calculates the atmospheric drag, which depends on the flow regime. The calculated 

atmospheric drag is function of the drag coefficient, CD, the launch vehicle velocity, v, the atmospheric air density, ρ, and the 
vehicle cross sectional area, S. The utilized drag coefficient is based on the model by Tewari (2007) for a reentry capsule and is 
a function of the Knudsen number (Kn), Mach number (Ma), and Reynolds number (Re). Thus, the drag on the launch vehicle, 
Dlauncher, is defined in Eq. 23.

  (23)

The aerodynamic forces on the satellite are, together with the gravitational force, the most important influence on the satellite 
decay. The atmospheric drag is the main component of these forces. Thus, the torques due to interaction with the atmosphere 
were not included in the simulation. For the drag calculation, a nonrotating 1U CubeSat with the center of mass coincident with 
the geometric center was considered. The total drag is the sum of the drag on each of the satellite faces point towards the velocity 
vector. First, the vector dynamic pressure in the ECI frame is calculated through Eq. 24.

  (24)
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where ρ is the atmospheric density and vrel is the velocity in the ECI relative to the ECEF. Next, the dynamic pressure is transformed 
to body axes for each altitude and attitude of the satellite. Finally, the total drag is calculated as the sum of the drag on each face 
pointing towards the velocity vector. The drag in the face of the satellite, calculated through Eq. 25, is the product of the dynamic 
pressure magnitude, q‒sat, the face reference area, Sref, and the drag coefficient, CD, which is given by Oltrogge and Leveque (2011) 
for a 1U CubeSat and is equal to 2.2.

  (25)

Propulsive Model
The propulsive model is only applicable to the launching vehicle, as the satellite is assumed to not have a propulsive system. 

The vehicle propulsive model considers a continuous and homogeneous burning rate. The thrust is calculated for each stage and 
is defined as a rectangular pulse, in other words, it goes instantaneously to maximum when the engine is activated and stays in 
maximum thrust until the end of the burn, when the thrust goes immediately to zero. The thrust is a function of the specific 
impulse and burn time, as presented in Eq. 26.

  (26)

where g0 is the magnitude of the gravity acceleration at sea level and m. is constant for each stage.

RESULTS

Launch
After modeling the launch vehicle and its parameters, the launch of VSB-30M was simulated using the gravity turn 

maneuver to insert payload into orbit. Table 4 displays ignition, burnout and separation chosen time parameters to achieve 
the gravity turn maneuver. It is worth noting that those times were chosen with a small optimization procedure, the general 
idea is that, for a circular orbit, the flight path angle ϕ need to be close to zero, hence the rocket was launched with just the 
first two stages with the times shown in Table 4 and the time where ϕ cross the zero was observed. In that way, one knows 
that the actual ti,3 must be close to this observed time and only small adjustments are necessary to obtain the desired orbit. 
For the solid rocket, the initial time for the nth stage is ti,n, the burning time is tq,n, finally the ts,n is the separation time all of 
them have n = 1,2,3.

Table 4. Ignition, burnout and separation time for the VSB-30M.

ti,1(s) ti,2(s) ti,3(s) tq,1(s) tq,2(s) tq,3(s) tS,1(s) tS,2(s) tS,1(s)

0.0 15.0 232.7 13.5 44.0 262.7 13.5 59.0 267.7

These times, for the VSB-30M with a solid third stage engine can also be seen in the Fig. 4. In addition, the thrust pattern is 
evident in the figure.

The initial state for the simulation has the initial velocity v0 = 1 m/s, the initial azimuth A0 = 90°, the initial flight path angle 
ϕ  = 78°, the initial radius r0 = 6378137.0, and latitude and longitude are those of the CLA.

The altitude through time is shown in Fig. 5, it is clear that the launch succeeds in placing the payload in an eccentric orbit 
with perigee of 6.591807 . 103 km and an apogee of 7.055137 . 103 km. However, this is not the desired circular orbit, which could 
be achieved by means of a more precise selection of the launching times and initial conditions, but, since this is an optimization 
problem on its own, it won’t be treated here.
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Figure 4. Thrust through time.
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Figure 5. Altitude through time using the solid engine.

The ϕ angle is shown in the Fig. 6, evidencing the orbit insertion approach. It can be noticed the final flight path is close to 
zero, as desired.

0 100 200 300 400 500 600 700 800 900 1000
t (s)

70

60

50

40

30

20

10

0

ϕ(
Â
°)

Figure 6. Flight path angle through time using the solid engine.
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A second launch simulation, for the third stage with a liquid engine was performed. It is worth noting that the objective of the 
simulations is to show that an orbit insertion can be achieved with both third stages and should not be used as a matter of comparison 
between the two proposed modifications. For this rocket, the orbit insertion is achieved and its altitude through time is shown in Fig. 7.
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Figure 7. Altitude through time using the liquid engine.

The same initial conditions as the previous launch were used. The times intervals are the same ones described in Table 4. 
The achieved orbit, seen in Fig. 8 and 9, has a higher eccentricity with a perigee of 6.59 . 103 km and an apogee of 7.32 . 103 km. The flight 
path angle follows the same approach as described earlier.
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Figure 8. Three-dimensional orbit visualization.
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Orbit propagation
The results obtained from the launch vehicle simulation were used as input for the satellite orbit simulation to evaluate the 

mission lifetime of a CubeSat at this altitude and, consequently, the feasibility of such a mission. The method for this evaluation 
was to simulate the satellite orbit until it entered a condition of decay where it did not gained altitude by oscillating, considering 
that as its reentry and consequent end of lifetime. A second simulation was performed in order to evaluate the impact of small 
altitude changes (an increase of 7.9%) in the orbit lifetime. Table 5 presents the initial conditions for both simulations.

Table 5. Initial condition in Keplerian elements.

Simulation Altitude Inclination Eccentricity Mean anomaly
Right ascension of 
the ascending node

First 213 km 2.33° 0 0° 0°

Second 230 km 2.33° 0 0° 0°

The results show a mission lifetime of 60 h, as displayed in Fig. 10. The oscillations in altitude indicate the increase in the orbit 
eccentricity due to the atmospheric drag. Thus, the orbit becomes elliptical. At the end of its lifetime (around 60 h), the spacecraft 
begins a constant reentry phase.
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Figure 10. Altitude through time for the first case.

The specific orbital energy variation as a function of time corroborates the previous results, as Fig. 11 indicates. The energy 
variation is not linear, since the decrease in altitude increases drag, thus increasing the rate of decay. The negative specific energy also 
indicates an elliptical orbit (positive indicates hyperbolic).
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Figure 11. Specific orbital energy through time for the first case.
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Figure 12 shows the altitude through time for the second case, which indicates an increase of 93.3% in mission lifetime from 
60 to 116 h.
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Figure 12. Altitude through time for the second case.

CONCLUSION

Both modified VSB-30s proposals were successful in reaching the necessary altitude and velocity to insert a satellite into orbit, 
changing its original profile from suborbital launcher to orbital launcher. The satellite decay simulations show that short time 
space missions are feasible at the attained orbit, supporting the proposed modifications.

In addition, a small change of 17 km in the orbit altitude resulted in a mission lifetime increase of 93.3%, indicating that further studies 
could improve the mission lifetime significantly adopting optimal trajectory, closed-loop control systems or propulsive systems in the 
satellite. In addition, a more detailed analysis of the third stage modifications could result in both better structural ratios and performance.

The fact that Brazil has mature solid rockets technology corroborates with the feasibility of the proposed modifications and 
mission. Moreover, when available, liquid engines would allow taking advantage of its characteristics such as precise orbit insertion, 
burn control, and higher specific impulses, increasing the range of possible missions.

Furthermore, modifications of a national vehicle could collaborate with the development of the Brazilian space industry, 
increasing the country’s autonomy in this segment.
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