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INTRODUCTION

Weight and other mass properties (such as the center of gravity and moments and products of inertia) are essential for 
the performance of an aircraft, such as cruise efficiency, payload, range, etc. (Gnadt et al. 2019; Raymer 2012, de Weck 2012). 
For example, reducing an aircraft’s weight by 30% leads to a 7% to 15% reduction in fuel consumption (Amoo 2013; Greene 
1992). Likewise, the empty weight of aircraft is an important piece of information in cost estimation methods employed in the 
early phases of development (Curran et al. 2004; Nicolai and Carichner 2010; Raymer 2012; Roskam 1990), when information 
about actual masses is still unavailable (Heim and Pertermann 2008). Furthermore, mass center and moments of inertia strongly 
influence layout optimization (Lau et al. 2014).

Given the impact that modifying mass properties may have on aircraft performance and costs, these properties should be 
tracked and managed throughout the development process. Therefore, aircraft manufacturers normally employ Mass Properties 
Management (MPM) during their product development process, following recommended practices such as the SAWE RP-7 
(Society of Allied Weight Engineers) (SAWE 2004) and technical overviews such as the SAWE TO-1 (SAWE 2018). The purpose 
of MPM is to ensure that the aircraft’s mass properties are in line with its performance requirements (SAWE 2004). The process 
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provides accurate and timely reporting of mass properties to the chief engineer, who is responsible for making decisions about 
cost balancing, scheduling, and performance requirements (SAWE 2004).

MPM must be integrated into the aircraft development process (Stegmiller et al. 2018), which, in turn, usually follows an iterative 
and concurrent approach employing both top-down and bottom-up strategies (SAE 2010). This integration is complex and requires 
the use of highly iterative information. For example, realistic estimates of empty weight and other mass properties are necessary as 
early as in the conceptual design (Gnadt et al. 2019). Modifications of mass properties in later stages of the design will lead to iterations 
back to conceptual definitions. Therefore, all the mass properties of an aircraft must be strictly controlled during its development.

Previous experience indicates that the weight of any vehicle tends to increase during design, manufacturing, and validation 
(Boze and Hester 2009), and this increase has severe consequences. For example, if the empty weight of an aircraft increases 
during the design process, it will require a proportional increase in takeoff gross weight to maintain its ability to perform the 
mission for which it was originally designed. Extra weight in the aircraft structure requires additional wing area for higher lift, 
additional engine thrust, and additional fuel to provide the same range. Hence, the addition of 1 lb in structural weight results in 
an increase of 2 to 10 lb in the aircraft’s weight (Greene 1995). This problem of iterative weight increase also affects the surface 
control effectiveness and control systems gains. Therefore, such excessive iterations of the various subsystems of the aircraft 
contribute to program delays (Kraft 2010).

Many aircraft programs have been canceled due to excessive delays resulting from the continuous cycle of increasing weight and 
redesigning aircraft structures (Andrew 2001). In fact, this is a constant issue in any new aircraft development. One of the causes 
of the low effectiveness of MPM is that the area responsible for mass management usually works in an ad-hoc way, i.e., the MPM 
and product development processes are not properly integrated.

This paper aims to address these shortcomings by proposing a concept to coordinate and improve the integration between 
the MPM and aircraft development processes in order to achieve more predictable mass properties and reduce iterations in the 
development process. This concept is implemented through a set of proposed tangible practices, which are based on systematized 
MPM process dimensions (functions, roles, rules) in the context of an aircraft manufacturer. Our contribution to the theory is 
the proposal of a structured and coordinated integration of the two processes. Practitioners could apply this proposal to replicate the 
procedure in their own organizations, defining possible improvements to implement the proposed practices. Companies that develop 
vehicles other than aircraft can also use the practices as inspiration for MPM and product development integration in their own 
contexts. The methodology employed here consists of a literature review, an exploratory case study, a three-year longitudinal case 
study, and verification and validation by experts. The aspect that distinguishes this paper from other articles in the literature is its 
holistic and integrated approach of analyzing the MPM process and comparing it with the theory, as well as describing the results 
of a real case based on a world-class aircraft manufacturer. This paper is divided into six sections: Introduction; Mass Properties 
Management (MPM) – Theory; Methodology; Case studies, synthesis, and practices; Verification of the proposal; and Conclusion.

MASS PROPERTIES MANAGEMENT – THEORY

AIRCRAFT DEVELOPMENT PROCESS AND MPM
An aircraft development process is defined according to the context, company, type of aircraft, and other factors. In order 

to employ a common vocabulary for the development process, this paper divides the aircraft development process using the 
structure proposed by Torenbeek (2013), as shown in Fig. 1. In this figure, the first stage consists of the aircraft’s conceptual design 
and addresses basic issues such as its configuration, size, weight, and performance, among other factors. In the second stage 
(preliminary design), engineers design and analyze the aircraft systems for which they are responsible (Raymer 2012). The third 
stage consists of the detailed design phase, when the final parts to be manufactured are designed. This is the phase in which the 
entire aircraft is broken down into individual parts (Raymer 2012). The subsequent phases (manufacturing and testing phases) 
end with the granting of a Certification of Airworthiness and the first delivery to the customer (support design) (Torenbeek 2013). 
At the bottom of Fig. 1, note the MPM process embedded throughout the entire development process:
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Figure 1. Aircraft Development Process (adapted from Torenbeek 2013).

MPM is present in every phase of the aircraft development process, and must be adapted to each maturity level of this process 
(Boze and Hester 2009). Andrew (2001) studied the development process of four different aircraft and found that all the designs 
had problems involving the control of weight and other mass properties, negatively affecting their performance and leading to 
delays in product delivery. Table 1 describes this variance in aircraft and program metrics of those four aircraft, which is expected. 
The analysis of variance in aircraft metrics considered the difference between the metric that was initially specified (in the conceptual 
design phase) and the metric upon entry into service. The analysis of program metrics considered the number of months of delay 
of some major milestones (first flight, type certifications, and initial delivery) when compared to the initial planning.

Table 1. Variance of aircraft and program metrics in four aircraft programs (adapted from Andrew (2001).

Aircraft metrics/ Program metrics Bush BA140 SW-24 M700 SW-40

Empty Weight +21% +7% +36% +12%

Payload +16% +3% -18% +7%

Maximum Takeoff Weight (MTOW) +18% +3% +11% +10%

Range -30% +1% -22% +8%

Altitude -36% +22% +9% -27%

First flight + 8 months +9 months +9 months +21 months

Type certification (Visual flight rules – VFR) +11 months +6 months +12 months +48 months

Type certification (Instrument flight rules – IFR) +17 months +8 months +33 months +48 months

Initial Delivery +10 months +8 months +12 months +44 months

A fundamental mass property in aircraft development is its empty weight, which should be reduced as much as possible. 
However, as indicated in Table 1, the empty weight of the four development projects analyzed by Andrew (2001) increased from 
7% to 36% during the process (19% variation on average). This increase has negative impacts on other aircraft metrics, such 
lower payload, smaller range, or a reduction in altitude. It also affects many program metrics, leading to significant delays in all 
the major milestones.

Increases in weight usually follow a given pattern through the phases, as illustrated in Fig. 2. This figure shows a typical 
increase in aircraft weight during the development phases when a strong weight control strategy (approx. 5% weight increase in 
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each stage) and a weak weight control strategy (approx. 12% weight increase in each stage) is adopted (Andrew 2001). This figure 
also illustrates Andrew’s (2001) proposed strategy, called “Planned Value Profile” (PVP). In this strategy, the aircraft’s target empty 
weight in the early stages of development (preliminary design) should be 5% lower than calculated to allow for an increase of 2% 
during the detailed design phase, 1% during the fabrication phase, and 2% during the testing phase. Thus, if the aircraft’s weight 
meets the goal in all the development stages, its final weight will be the same as that initially specified. Andrew (2001) considered 
this strategy a significant contributing factor to enhance the success of weight control.

Specified 
Goal

Typical development weight growth / weak weight control
Typical development weight growth / strong weight control
Planned value profile

12%

10%

8%

6%

4%

2%

0%

-2%

-4%

-6%
Preliminary 

design
Detailed design Manufacturing Testing

Figure 2. Planned Value Profile: Typical increase in weight during development is 12% (weak 
weight control) and 5% (strong weight control) (adapted from Andrew 2001).

Andrew (2001) stated that in typical development projects with strong weight control, the development team adopts a policy of 
“pound in/pound out mandate,” i.e., a decrease in weight should compensate every increase in weight. In such projects, the team 
believes that the weight status reflects the overall soundness of an aircraft development program (Andrew 2001). However, the 
massive workload that has to be managed and shared, and that is concurrently performed by a large number of people, makes 
it challenging to ensure that the final aircraft has the same properties it had throughout the development process. The aircraft 
development process depends on the expertise, experience, and creativity of numerous people, who are often from different 
companies in the aircraft manufacturing value chain. The design approach currently in use is to compartmentalize subsystems 
and to break down the subsystem design tasks into discipline-specific tasks. This division is mainly driven by the need to share 
the workload (Hammond 2012). Hence, the path for solving challenges is to follow an integrated, effective, and efficient approach 
in aircraft development, known as systems engineering (SE). 

SYSTEMS ENGINEERING, TECHNICAL INTEGRATION AND REQUIREMENT MANAGEMENT
Systems engineering (SE) is a holistic approach for product development that comprises several components and involves 

interaction among disciplines (INCOSE 2015). It has become a state-of-the-art methodology for organizing and managing 
aerospace production (Price et al. 2006).

A product is considered a system if it is composed of “a combination of interacting elements organized to achieve one or more 
stated purposes.” Hammond (2012) states that the key to providing a product with quality is its development process, emphasizing 
that everything that exists is the result of a process. The ISO/IEC 15288 standard (ISO/IEC/IEEE 2008) specifies how the full life 
cycle of systems should be engineered, including conception, development, production, utilization, support, and retirement of 
systems. In this context, SE is “an interdisciplinary, collaborative approach that derives, evolves, and verifies a life-cycle balanced 
system solution” (INCOSE 2015).
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The SE perspective deals with an inherent contradiction of the design process between specialization in disciplines and 
technologies – known as differentiation, and the need for integration – defined as the process of achieving unity of effort among 
various subsystems (Lawrence and Lorsch 1967). Technical integration is the fundamental element that pervades every aspect of 
aerospace system design, becoming increasingly concrete as the design process progresses through the various phases (Hammond 
2012; Silva and Rozenfeld 2003). ISO/IEC 15288 describes technical integration as one of the main processes of the system life 
cycle, defining it as “a process that combines system elements to form complete or partial system configurations in order to create 
a product specified in the system requirements” (INCOSE 2015). However, technical integration requires a multidisciplinary 
approach to support the design process, and for participants to gain a better understanding of the relationship among systems 
and the analysis models generated during the design process (Price et al. 2006).

Due to the highly complex and integrated nature of modern aircraft systems, regulatory authorities have pointed out their 
concerns about the possibility of development errors causing or contributing to conditions that facilitate aircraft operational failures. 
The Aerospace Recommended Practice (ARP) 4754A (SAE 2010) proposes a methodology to address those concerns. It establishes 
levels of confidence for aircraft systems as a whole, presenting guidelines for the development of aircraft level, system level, and 
item level requirements. The process includes validating requirements and verifying if requirements are met, as well as configuration 
management and process assurance activities (SAE 2010). During most of the systems development, requirements and assumptions 
must be established based on hypotheses, since real information is not yet available, and this may lead to miscommunication about 
the basis and scope of assumptions, endangering the implementation of safety requirements. Therefore, assumptions should be 
identified, and their reasonableness and rationale should be established based on the specific system (SAE 2010).

The Society of Allied Weight Engineers – SAWE (2004) states that MPM is part of the overall systems engineering design 
process. The aircraft mass properties contain every part of the overall design. They define the locations of all those parts, how their 
mass affects the total design, and how their aggregation achieves and limits the goals of the design. The mass properties data must 
be continuously updated, always comparing the mass properties of the complete aircraft against the goals and limits of the design. 
Mass properties are assumptions made during the development process. These assumptions become a vital part of the overall system 
requirements package, and should therefore involve the same validation activities as those to which other requirements are subjected.

The aircraft and system development is iterative, concurrent, and subject to top-down and bottom-up influences (Rogers 
2008; SAE 2010). According to the SAWE (2004), all the phases of the aircraft development process should be associated with an 
iterative MPM process that is scalable from the lowest design team level to the system level. The MPM process consists of eight 
subprocesses that interact with the SE, classified as “Management” or “Technical.” These subprocesses are listed in Table 2.

The MPM process and SE should be better combined, with strong emphasis on integrating information across and through 
disciplines. A key factor to successful SE is an environment that embeds the development process – adequate communication 
across all disciplines is essential (Hammond 2012).

Table 2. Subprocesses that make up the iterative MPM process according to SAWE (2004).

Category  Subprocess

Management Plan mass properties technical effort

Management Manage mass properties risk

Management Develop mass properties metrics

Management Control mass properties baseline

Technical Analyze mass properties requirements

Technical Allocate mass properties requirements

Technical Optimize mass properties

Technical Verify and validate mass properties (analysis and measurement)
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VALUE IN THE AIRCRAFT DEVELOPMENT PROCESS
This section focuses on the value, which is not a technical property of the aircraft but a subjective characteristic intrinsic 

to the client. This value reflects the commercial potential of a solution and justifies the customer’s choices when acquiring it. 
The value of an entity (tangible or intangible) is defined as the benefits or worth that may be derived from it, considering its 
trade-off with the losses or sacrifices related to the entity (Reber et al. 2019; Shen et al. 2010; Slack 1998; Wang et al. 2014).

Value is a multidimensional attribute, and its dimensions are described differently by each author. Table 3 summarizes 
98 dimensions that some authors consider when defining value. A detailed explanation of the table is given in the 
subsequent paragraphs:

Table 3. Dimensions considered by each author when describing “value” (Source: the authors).

Author Dimensions of value

Reber et al. (2019) Availability; Exchange worth; Cost; Price; Usefulness; Utility

Slack (1998) Usefulness; Importance of satisfying the need; Availability; Cost of ownership

Collopy (2012), Collopy and 
Hollingsworth (2011) Utility; Worth - (Measurable preference)

Murman et al. (2000) Performance; Mission effectiveness; Purchase price; Affordability; Sustainability; Delivery time

Reber et al. (2019) state that the value of a generic entity (regardless of the field in which it operates) is commonly referred to 
in terms of availability, exchange worth, cost, price, usefulness, and utility.

In the aeronautical context, some authors also discuss the term value. Slack (1998), for example, states that value is a function 
of usefulness, the importance of satisfying the need, availability, and cost of ownership. For those who adopt value-driven design, 
value is seen from the perspective of utility or worth of a given entity, which should be quantifiable through value models so that 
the preference for one entity over another can be “measured” (Collopy 2012; Collopy and Hollingsworth 2011). From a broader 
standpoint, Murman et al. (2000) specify aircraft value in terms of performance, mission effectiveness, purchase price, affordability, 
sustainability, and delivery time.

All the terms employed by Murman et al. (2000) to describe aircraft value are directly linked with the mass properties of 
aircraft (Raymer 2012), which can be explained as follows. From the standpoint of commercial flight passengers, a basic need 
to be satisfied is to be able to travel long distances in the shortest possible time, preferably at low prices. The ability of the 
airplane to satisfy this need depends directly on the aircraft’s performance (speed, range, and fuel consumption) and mission 
effectiveness. Aircraft performance and mission effectiveness can be affected by new technologies, such as new composite 
materials (Zhang et al. 2018), and by structural efficiency (Curran et al. 2004), both of which influence mass properties. 
At the same time, airlines seek to maximize their profits, which they can achieve by carrying more passengers and cargo at 
lower operating costs and an aircraft purchase price proportional to its functional worth (affordability) (Curran et al. 2004). 
An aircraft’s purchase price is correlated with its empty weight (Liem et al. 2014). Its direct operating costs are a function of 
purchase price, fuel efficiency, maintenance, crew, navigation, and ground services (Curran et al. 2004), where fuel efficiency 
is also highly dependent on empty weight (Liem et al. 2014). Therefore, it can be stated that affordability directly correlates 
with the airplane’s empty weight. The sustainability of an airplane is also directly related to its fuel efficiency (Gössling et al. 
2007), and is also correlated with the aircraft’s empty weight (Liem et al. 2014). Lastly, delivery time depends on the efficiency 
of the development process (Markham and Lee 2013), which may be hindered by excessive iterations due to ineffective control 
of mass properties. 

The above discussion explains how the benefits that comprise the perceived value of an aircraft are highly dependent on its 
mass properties. Therefore, it can be assumed that if an effective MPM process positively impacts the aircraft’s mass properties, 
the process will consequently also enhance its perceived value.
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METHODOLOGY

As discussed in the introduction of this paper, we propose a concept to coordinate and improve the integration between the MPM and 
aircraft development processes. To this end, a methodology was employed that combines the following set of methods to achieve its goals:
• Literature review to systematize the theory on mass property management (MPM).
• An exploratory case study to compare practice and theory, and to highlight and confirm the limitations and relevance of this study.
• Inductive reasoning to summarize the characteristics of the MPM process integrated with aircraft development.
• A longitudinal participatory case study to define improvement projects.
• A technique for assessing the consensus of opinions from experts, validating the proposed projects based on a questionnaire.

Fig. 3 represents the general methodology of this project, which is explained in detail in the subsequent paragraphs:

1. Research clarification

7. Results verification

6. Results analysis

5. Longitudinal case study

4. MPM synthesis

2. Literature review 3. Exploratory case study

Figure 3. Research Methodology (Source: the authors).

Phase 1 identifies a meaningful problem and discusses the existing process and situation, as described in the Introduction 
of this paper. Phase 2 covers the identification of the main factors that influence the MPM, based on a literature review (Section 
“Mass Properties Management - Theory”). Phase 3 consists of an exploratory case study, also aimed at identifying the main factors 
that influence the MPM. One of the authors of this paper headed the MPM process in an aircraft development program for three 
years, employing as research instruments for this case study documentation analysis, participatory observation, logbook, and 
semi-structured interviews with major stakeholders of the development process (Subsection “Exploratory Case Study“).

The results of Phase 2 and Phase 3 converged through inductive reasoning to a synthesis of the MPM characteristics (Subsection 
“Synthesis of MPM characteristics“), which covers Phase 4. The structure of this synthesis must be compatible with the goal of this 
study: the proposal of a concept to coordinate the integration between the MPM process and the aircraft development process. 
Therefore, the nature of those processes had to be evaluated in order to identify the most suitable structure. Both MPM and aircraft 
development are business processes, i.e., “the combination of a set of activities within an enterprise with a structure describing 
their logical order and dependence whose objective is to produce a desired result” (Aguilar-Savén 2004). This concept of business 
process replaces the classical functional view with a horizontal view, whereby the unit of analysis becomes a chain of activities and 
events (Silva and Rozenfeld 2003). Product development processes are a specific type of business process that involves creativity 
and innovation and is nonlinear and iterative. Although certain activities may be repeated, the desired overall result is unique, 
which characterizes each development as a project. According to Browning et al. (2006), process models support the integration 
of project system models and the effective management of projects. Therefore, we posit the hypothesis that a process model 
representing the main process perspectives would be an adequate structure to synthesize the MPM characteristics.

In addition, according to Silva and Rozenfeld (2003), the product development process consists of four dimensions, which 
should work hand in hand. The dimensions are as follows: 
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• Goal/strategy (involving portfolio management, performance evaluation, cross-functional relationships, and partnerships 
with suppliers); 

• Activities/deliverables (set of specific operational activities performed in the product development process and the 
corresponding information involved); 

• Resources/tools (techniques, methods, tools and systems used to support the performance of the activities aimed at achieving 
the stated goals/strategies); 

• Organization/roles and responsibilities (involving the organizational structure and leadership, teamwork culture, and 
learning conditions).
Therefore, a synthesis of MPM characteristics was proposed considering the main dimensions of MPM: goal/strategy, activities/

deliverables, resources/tools, and organization/roles and responsibilities (Phase 4, Subsection “Synthesis of MPM characteristics“).
Phase 5 consists of a longitudinal participatory case study (Subsection “Longitudinal Case Study“), in which one of the authors 

participated in the MPM of an aircraft development project at an aircraft manufacturing company. The MPM synthesis from 
Phase 4 provided input for a protocol, which structured the longitudinal case study and defined the unit of analysis, following 
the guidelines proposed by Yin (2003). In Phase 6, the findings of the longitudinal case study were compared to the synthesis of 
MPM characteristics that resulted from Phase 4 (Subsection “Longitudinal Case Study“). The final analysis was structured in the 
form of a diagnosis, considering the main dimensions and characteristics of the process.

Lastly, the proposal of the integrated model and the improvement projects were presented in a workshop at the company and 
verified by experts using a structured questionnaire (Section “Verification of the proposal“). Based on the dimensions proposed 
by Vernadat (1996), we defined the evaluation criteria proposed in Table 4.

Table 4. Evaluation criteria proposed for the structured questionnaire employed to verify the proposal (adapted by the authors).

Evaluation criteria Definition

Scope Definition and clarification of the content under analysis, integrated model, improvement 
projects, and identification of border conditions.

Depth Level of detail of the presented information.

Objectivity Information precision, considering the goals of the analysis.

Comprehensiveness Evaluation of the comprehensiveness of the application, considering the different development phases.

Utility Problem identified concisely to contribute to the effectiveness of the solution.

Simplicity and clarity It is easy for users to understand.

Consistency Information compatibility and adherence.

The results obtained from the questionnaire were analyzed based on the average and the inter-rater reliability (IRR) index 
of the scores assigned to each of the questions asked (Section “Verification of the proposal“). The IRR was employed to analyze 
the reliability of the input from the different specialists. The purpose of the IRR is to verify the degree of “interchangeability” of 
experts by measuring the level of agreement of a set of notes. This index may vary from zero to one, with “one” indicating complete 
homogeneity of the respondents’ opinions and “zero” indicating complete heterogeneity of their opinions (James et al. 1984).

The IRR can be calculated using Eq. 1:

 IRR=1-Sj
2⁄σj

2 (1)

where j is the number of respondents, S is the observed standard deviation, and σ is the deviation expected when all the opinions 
are random. The expected standard deviation can be determined by Eq. 2:

 σj
2=(A2–1)⁄12 (2)

where A is the number of alternatives on the score scale. Eq. 2 assumes that each question is distributed uniformly (James et al. 1984).
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CASE STUDIES, SYNTHESIS, AND PRACTICES

This section discusses the results obtained from the proposed methodology. The first subsection describes the exploratory case 
study conducted to collect evidence for the MPM characteristics. The second subsection contains a table synthesizing the MPM 
characteristics derived from the literature and the exploratory case study, establishing how those characteristics are integrated 
into the aircraft development process. Lastly, the third subsection describes the longitudinal case study, from which practices were 
extracted to improve the integration between the aircraft development process and MPM.

EXPLORATORY CASE STUDY
To help understand MPM within the aircraft development process and to compare it to the theory, an exploratory case study 

was conducted at a major airplane manufacturing company that is a market leader. The company is engaged in various development 
projects that are currently in different phases of development, which was a valuable factor contributing to this research. During the 
exploratory case study, we conducted semi-structured interviews with company employees from different areas/disciplines and 
distinct hierarchical positions, whose responses contributed to the formulation of a summary of the main MPM characteristics.

This study used multiple sources of evidence collected over a three-year period, such as documentation, observation, and 
logbooks. The results were structured based on the main dimensions of the process and the development phases proposed by 
Torenbeek (2013) (Subsection “Aircraft Development Process and MPM“). The findings of the exploratory case study clarified 
MPM characteristics and also provided input for defining the model characteristics. These results are presented in the Subsection 
“Synthesis of MPM characteristics.”

SYNTHESIS OF MPM CHARACTERISTICS
A set of characteristics was proposed for each of the four main dimensions of MPM (Section “Methodology“) to define the 

relationship between MPM and aircraft development jointly. These characteristics describe the MPM features and are the central 
part of the conceptual model proposed in this paper. The MPM characteristics are listed in four tables (Tables 5, 6, 7, and 8), each 
of which is related to a distinct dimension (“Goals/Strategy,” “Activities/Information,” “Resources/Tools,” and “Organization/Roles 
and Responsibilities,” respectively). Each characteristic is related to the reference that originated it (literature references and/or 
exploratory case study) and its definition.

Table 5. Synthesis MPM characteristics in the dimension of “Goals/Strategy” (Source: the authors).

Characteristic References Definition

Target Weight 
for each phase 
(strategies such 

as Planned Value 
Profile (PVP)

(Andrew 2001, SAWE 2004), 
Exploratory Case Study

Establishing a target weight for aircraft in each phase, which should not be 
exceeded. This is an essential characteristic of MPM. This target is based 
on former product generations or a reference product. It should be noted 

that it determines the maximum allowed value. However, weight may vary 
between the maximum target weight and the minimum potential weight (see 

“Opportunities and risk monitoring to have a probabilistic value”).

Local target 
weight

(Heim and Pertermann 
2008, SAWE 2004), 

Exploratory Case Study

Establishment of a target weight for each aircraft system, subsystem, or part. 
This is an essential characteristic of MPM. This target derives from former 
product generations or a reference product, and it determines a maximum 
allowed value. However, local weight may also vary between a maximum 

target weight and the minimum potential weight.

Leadership 
support

(Andrew 2001, SAWE 2018), 
Exploratory Case Study

Involving and engaging the leadership for the success of the MPM process. 
This is an essential characteristic of MPM.

Weight 
information in 

trade-offs

(Murman et al. 2000, SAWE 
2004), Case Study

Evaluating how much impact derives from MPM information when 
compared to cost and schedule in the decision-making process.
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Table 6. Synthesis of MPM characteristics in the dimension of “Activities/Information” (Source: the authors).

Characteristic References Definition

Weight estimation 
is critical

(Andrew 2001, Raymer 
2012, SAWE 2004, 2018), 
Exploratory Case Study

Determining whether weight estimation is considered a core activity in the 
company and should be present in conceptual design and preliminary design 

phases. This is considered a crucial characteristic of MPM.

Weight subprocess 
categories

(ISO/IEC/IEEE 2008, 
SAWE 2004), 

Exploratory Case Study

This characteristic is related to the classification of MPM activities in the 
organization. These activities are present in each product development phase 

and can be classified as technical, management, or integrative.

Weight Saving 
Award (SAWE 2004) The activity of identifying all the parts involved in the project due to weight 

saving during detailed design and later phases.

Table 7. Synthesis of MPM characteristics in the dimension of “Resources/Tools” (Source: the authors).

Characteristic References Definition

Methods 
and tools for 
calculation in 

each development 
phase

(Price et al. 2006), 
Exploratory Case Study

There are specific methods and tools for calculating mass properties in 
each phase of development (e.g., mathematical estimations for conceptual 

design, and CAD for detailed design). This characteristic evaluates the 
manufacturer’s adaptability and the quality of calculation.

Integrated 
mass properties 

database

(Dahm 2007), 
Exploratory Case Study

Use of a data management module for mass properties with controlled 
access, multiple users, and adequate response time. Essential to ensure data 

quality in all the development phases.

Integration 
among database/

CAD/DMU

(Price et al. 2006), 
Exploratory Case Study

Mass properties management and control in the CAD and DMU 
environment. An essential characteristic in all the development phases.

Opportunities and 
risk monitoring 

to have a 
probabilistic value

(Dahm 2007), 
Exploratory Case Study

Information maturity does not evolve homogeneously during product 
development. Therefore, weight and other mass properties should be seen 

as probabilistic values. This is essential to ensure data quality in all the 
development phases.

Automated weight 
status visibility (Dahm 2007) The databases should be integrated for automated weight status visibility 

during all the development phases.

Integrated 
engineering 

change 
management with 

mass properties 
information

(ISO/IEC/IEEE 2008, 
SAWE 2004)

Integration of the change management process and mass properties 
information, protecting the integrity and availability of information. This is 

essential to ensure data quality in all the development phases.

Fig. 4 shows an overview of the integration of the MPM process characteristics and the aircraft development process. This overview 
is structured based on the typical dimensions of a process model (indicated by dashed rectangles): activities/information, resources/
tools, goals/strategy, and organization/roles and responsibilities. Each rectangle under the aircraft development process phases 
represents the main characteristics identified here. The length and position from each rectangle are associated with the phases 
(upper part of the figure) of the aircraft development process to which they are linked (e.g., the characteristic of “weight estimation 
is critical” is connected with the conceptual design and the beginning of the preliminary design phases). Note the overlap of the 
development process phases, as can be seen in Fig. 1. This overlap was omitted in Fig. 4 to facilitate the interpretation of the image, 
but the overlap between phases must be kept in mind. The characteristics of resources/tools were divided into three groups: “quality 
database” (identified inside the light grey rectangle), integration (identified by each arrow), and methods and tools for each phase. 
The rectangles in the lower part of the figure indicate the variables of organization/roles and responsibilities, indicating that they 
should be considered as part of the whole development process and embedded in the organization.
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Table 8. Synthesis of MPM characteristics in the dimension of “Organization/Roles and Responsibilities” (Source: the authors).

Characteristic References Definition

Technical 
integration

(Hammond 2012, 
SAWE 2018), 

Exploratory Case Study

Ensuring that the effectiveness of information exchange among groups in 
different fields of expertise and the integration of all different outputs from 
each group meets the requirements. This includes the formal existence of 
this role in the organization. Thus, it is essential to MPM, and an essential 

characteristic in all the development phases.

MPM: a shared 
responsibility

(Raymer 2012, SAWE 2004), 
Exploratory Case Study

The ability of everyone involved in the product development to continually 
analyze and update the mass properties. Continuous evaluation of the 

MPM workload distribution among designers, engineers, and managers. 
This characteristic is essential in all the development phases.

Aviation Culture (SAWE 2004), 
Exploratory Case Study

Determines whether the MPM is entitled to request changes and drive 
design. This characteristic is essential in all the development phases.

Use of new 
technologies (Dahm 2007, Dray 2013)

Evaluation of the level of application of new technologies in the product. 
A positive relationship was identified between the characteristic “use of 

new technologies” and MPM, and was found to be more present from the 
beginning of the development up to the detailed design phase.

Aircraft development process

Weight sub process categories: technical, management and integration

Methods and tools for calculation in each development phase

O
rg

an
iz

at
io

n 
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Target weight for each phase (strategy such as PVP)

Weight information in trade-offs

Leadership support

Local target weight

Weight saving award

Conceptual 
design Preliminary design

Technical integration MPM: People’s responsibility Aeronautical culture Use of new technologies

Weight estimation 
is critical

Integration data 
base/CAD/DMU

Automated weight 
status visibility

Activities / information

Resources/tools

Goals/strategy

Quality database
Integrated mass properties data base
Opportunities and risk monitor to have a probabilistic value
Integrated engineering chance management with mass 
properties information

Detailed design Manufacturing Testing Support design

Figure 4. Coordination of the MPM process and aircraft development process (Source: the authors).
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LONGITUDINAL CASE STUDY
We conducted a 12-month longitudinal case study, as described in the Section “Methodology.” The dimensions and characteristics 

of the integration depicted in Fig. 4 influenced the design of the case study. Moreover, the case study was structured based on a 
protocol to measure the evidence of the characteristics, establishing potential values that each variable could assume. The protocol 
was derived from the synthesis of the MPM characteristics (see Tables 5, 6, 7, and 8). In this protocol, we established the variables 
that could be used to measure each characteristic, which values those variables could assume, and which question should be posed 
to measure this variable. An excerpt from this protocol is given in Table 9 as an example.

Table 9. Synthesis of the characteristics of MPM (Source: the authors).

Objective Characteristic
Variable (how to measure 

the characteristics)
Possible assumed 

values
Question

Analyze 
goals/ 

strategy 
dimension

Target weight 
for each phase

Existence of a target 
weight strategy in each 

development phase

Yes Does the company use a 
target weight implementation 
strategy depending on all the 

development phases?
No

Local target 
weight

Existence of a local 
target weight for every 

development phase

Yes Is there a target weight allocation 
at the lowest possible level in all 

the development phases?No

Leadership 
support

Existence of guidelines for 
the development: “pound-in 

pound-out” mandate

Yes Has the company 
adopted a policy of 

“pound-in-pound-out” mandate?No

Weight 
information in 

trade-offs

Scale pertaining to 
the weighting of mass 

properties information in 
trade-offs when compared 

to time and cost

Higher than 
cost and time

Is the MPM information in trade-
offs as important as time and cost?

Higher than cost only

Higher than time only

Lower than cost and time

Although the longitudinal case study was conducted at the same manufacturer as the exploratory case study, the main objective 
of the longitudinal case study was to make an in-depth comparison of its findings with the proposed integration of the MPM process 
and aircraft development. Discrepancies between MPM characteristics and the integration of MPM and aircraft development 
were analyzed jointly by the research team and stakeholders, aiming to propose and plan practices to coordinate the integration 
of the two processes in a transparent way for the participants of a new aircraft program. The evidence from this case study came 
from different data sources: document analysis, historical records, interviews, and participant observation. This diversity of data 
sources allowed for data triangulation (Yin 2003).

To understand the context of the company, we offer a few qualitative comments regarding the longitudinal case study. In this 
company, the MPM process is not expressed explicitly in any of the product development model guidelines. However, the MPM 
process pertains to supplier management and selection, tools, business plan, risk management, requirements management, and 
product development management.

According to our observations and feedback from interviews, the company engages in MPM throughout the phases of the 
product development process. Furthermore, the company was working on ongoing development projects during the period of this 
study. We found that the company had a reference model for structuring the product development process, which is documented 
according to business standards and is followed in all the company’s product development projects. However, the company 
does not have a reference model to support MPM activities. There is no record of documents that explicitly discuss the product 
development process and the MPM activities for the development phases. Some documents provide implicit connections between 
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both processes in the phases of conceptual design, preliminary design, detailed design, manufacturing, and testing. But there is 
no documentation indicating this relationship in the support design phase, even if only implicitly. 

The interviewees were unanimous in stating that everyone involved in the product development process is also connected to 
the MPM process. However, there is no documentary evidence linking their fields of expertise with MPM. The company has a 
specific department officially responsible for aircraft mass properties. This department is functionally connected to the engineering 
management level, which assigns one MPM team to each product development project. The MPM team is active in all the phases 
of product development, except for the conceptual design phase, which is characterized by intense interactions among groups in 
different fields of expertise.

Fig. 5 illustrates the performance of the MPM process in the company, indicating the increase in empty weight of five different 
aircraft under development, showing the percent variation of the empty weight initially specified in the conceptual design phase 
(0%) to the aircraft’s empty weight upon entry into service. As can be seen, the company’s MPM process produces different results, 
depending on the degree of novelty of the aircraft under development. Aircraft 1 and 2 are incremental development projects 
based on products that are already operating in the company’s portfolio. The weight deviation of these airplanes was lower than 
3%. In contrast, aircraft 3 and 4 are innovative development projects, presenting deviations higher than 5% (about 14% and 6%, 
respectively). The interviewees also highlighted this aspect, pointing out that innovative development projects should allow more 
significant deviations in mass properties.

One aspect regarding aircraft 5 should be pointed out, namely, the fact that the variation in its empty weight between the 
manufacturing and testing phases was significantly reduced. This drop in the final development phases was only possible due to an 
intense effort to reduce the empty weight and ensure the desired product performance. The performance of aircraft 5 was critical, 
leading to a delay of a few months in the development project, so the empty weight variation was lower than 3%.

Specified 
Goal

Aircraft 1
Aircraft 2
Aircraft 3
Aircraft 4
Aircraft 5

14%

12%

10%

8%

6%

4%

2%

0%

-2%

-4%
Preliminary 

design
Detailed design Manufacturing Testing

phases (Source: the authors).

Figure 5. Aircraft percent deviation from initial empty weight throughout the development 

From an overall standpoint, the research team considered that the company would benefit from keeping better records of the 
relationship between the aircraft development process and MPM. Such records are needed, since employees are tacitly aware of this 
relationship but it is not explicit. Furthermore, a comparison of the company structure and the synthesis of MPM characteristics 
revealed other gaps in the manufacturer’s current MPM process. These gaps correspond to sixteen practices that should help the 
company improve the integration between the aircraft development process and the MPM process. Improvement projects were 
outlined to implement the proposed practices, which will serve as a roadmap for the company to coordinate the integration 
between its MPM and aircraft development processes, with each proposition to be considered a step towards improvement. 
Table 10 describes those practices, which are grouped by dimension and represent the key output of this paper.
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Table 10. Main practices for improving integration between aircraft development and MPM processes (Source: the authors).

Dimension Main practices

Goals/Strategy
1) Increase awareness of the target weight in the strategy development phase

2) Increase the allocation of local target weights in all the development phases
3) Establish the correlation between MPM and value to the customer

Activities/
Information

4) Increase the number of people involved in the weight estimation activity: a core activity.
5) Include the savings award activity in the company’s MPM process

6) Enhance the relationship between MPM and supply chain

Resources/Tools

7) Create an integrated mass properties database
8) Develop an automated tool for updating the MPM database 

9) Increase the homogeneity of MPM tools within the company
10) Weight visibility should consider that information is probabilistic

11) Create tools that generate automatic online weight visibility
12) Enhance the relationship between MPM and engineering change management

Organization/
Roles and 

Responsibilities

13) Document roles and responsibilities in MPM
14) Increase the relationship between technical integration and MPM

15) Heighten awareness about the importance of MPM among those involved in the development process
16) Increase the exchange of information among departments in order to increase the use of new weight 

saving technologies

To explain how the improvement projects were based on the gaps, an example is given here of the characteristic “integrated mass 
properties database” of the resources/tools dimension. During the case study, we found that the company keeps only mass information 
in the database. Other types of MPM information (such as center of gravity and products and moments of inertia) are controlled in 
several non-integrated worksheets. Therefore, we propose that the company adopt item (7) of Table 10 as an improvement project.

Note that these improvement projects were proposed in the specific context of this aircraft manufacturing company. 
However, they can also be considered as suggested practices for other aircraft developers in the context of the integration of their 
MPM and product development processes.

VERIFICATION OF THE PROPOSAL

The proposed integration between MPM and aircraft development processes (Fig. 4), as well as the suggested improvement 
projects, were evaluated using the questionnaire described in the section “Methodology”. Our analysis and proposed improvement 
projects were presented to a group of thirteen experts at the company, comprising engineers, technicians, and managers of different 
development programs. This presentation was given during a 2-hour workshop. The group filled out the questionnaire, providing 
answers regarding the analysis criteria. As explained in the methodology section, the answers were evaluated based on the IRR 
index, which measures the level of consensus of a set of scores. The results are presented in Table 11. The evaluation criteria were 
already discussed in the section “Methodology.” 

The overall average of the evaluations was 83%, which corresponds to the median value between the standard answers “satisfied 
(75%)”and “extremely satisfied (100%)”. All criteria had an average higher than 75%, and the IRR of each criterion was higher 
than 0.5, indicating agreement among the answers. The criterion with the lowest average was consistency. This may be explained 
based on the comments elicited during the interview. As mentioned earlier herein, this presentation was given during a 2-hour 
workshop. Therefore, due to the very brief time available, our presentation focused on the practices rather than on a step by step 
explanation of the research work. As a result, some of the interviewees stated that because of the brevity of this presentation, 
they had failed to grasp some of the points. The criterion with the highest average was objectivity, indicating that the accuracy of 
information was high, considering the purpose of the analysis.
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Table 11. Verification of the answers to the questionnaire based on the IRR. (Source: the authors).

Criteria Average IRR

Scope 87% 0.63

Depth 77% 0.8

Objectivity 90% 0.64

Comprehensiveness of use 81% 0.68

Usefulness 87% 0.63

Simplicity and Clarity 87% 0.52

Consistency 75% 0.71

CONCLUSIONS

In this paper, the process of MPM was analyzed considering its main dimensions, i.e., strategies/goals, activities/deliverables, 
resources/tools, and organization/roles and responsibilities. The main characteristics of these dimensions derive from the 
synthesis of MPM characteristics garnered from the literature review, which served as the basis for conducting a case study at 
an aircraft manufacturing company. Lastly, this paper proposed sixteen practices aimed at enhancing the integration between 
the aircraft development process and MPM. These practices cannot be generalized, since they are based on a specific case study. 
However, this case study was conducted at a world-class aircraft manufacturer, whose stated problems and limitations in integrating 
its MPM and aircraft development process were in consonance with the findings garnered in our literature research. Therefore, 
the sixteen practices can be considered an initial version of good practices to coordinate the integration of MPM and aircraft 
development processes.

A group of experts from the company evaluated and verified the recommendations of this study, and expressed their “satisfaction” 
or “extreme satisfaction” with the results of this work. In this analysis, the criteria that received the best evaluation were objectivity, 
scope, and usefulness, which confirms the positive contribution of this research to the practitioners, since it solved a significant 
challenge in the industry problem. This allows us to state that we have successfully met the goal of proposing a concept to coordinate 
the integration between the MPM and aircraft development processes. 

The main contribution of this work to the theory is the proposal of the coordinated integration of the MPM and aircraft 
development process. Practitioners may use this case study to replicate this procedure in their organization, considering the proposed 
practices. Companies in other fields of transportation that also build vehicles (Boze and Hester 2009), such as the automotive 
industry (Stegmiller et al. 2018), may also be inspired by the techniques proposed herein. Furthermore, as explained in the 
subsection “Value in the aircraft development process,” the use of a more effective and integrated MPM process may enhance 
the aircraft’s perceived value and reduce the airplane’s environmental impact during its life cycle, since its impact is tied to fuel 
efficiency (Gössling et al. 2007), which in turn is correlated with its empty weight (Liem et al. 2014)

As further contributions to the theory, this paper summarizes the body of knowledge about how MPM, customer value, SE 
standards (INCOSE 2015, ISO/IEC/IEEE 2008), and the ARP4754A (SAE 2010) are connected. The approach of this research also 
offers a broader view of the MPM process than that proposed in the literature (Dahm 2007; Raymer 2012; SAWE 2004, 2018).

A major limitation of this study is the fact that the outcomes of the proposed practices were not validated through practical 
application. However, the benefits of these practices may be evaluated as a continuation of this work. 

The aspect that distinguishes this work from other publications in the literature is its holistic and integrated approach in 
analyzing the MPM process and comparing it with the theory, as well as providing results based on a concrete case study conducted 
at a world-class aircraft manufacturing company.
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The MPM process, while still under-researched, is essential for the success of aircraft development processes. The efficiency 
of the MPM process directly influences the perceived value of an aircraft, impacting its commercial potential and its market 
competitiveness. Measuring the effective impact of each practice on the performance in managing mass properties, for example, 
could contribute to the creation of a knowledge base for selecting the practices that contribute the most to MPM effectiveness. 
The authors therefore suggest that further research in this field be considered and conducted. 
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