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ABSTRACT
Methods based on received signal strength measurements (RSS measurements) are used to determine the unmanned aerial 

vehicle (UAV) location using a wireless sensor network. The UAV transmitter power is usually unknown. In real conditions, it often 
becomes necessary to consider existence of anomalous measurement results. The reasons for the violation of the measurement 
process can be: the influence of interference, errors in the identification of signals during primary processing, failures of the 
equipment and similar. The optimum and quasi-optimal adaptive algorithms of UAV movement parameters filtration based on 
the RSS-measurement sensor networks in the presence of anomalous measurements at the unknown power of the transmitter 
are developed. These algorithms are obtained using Bayes’ theorems and the Markov property of a mixed process, including a 
vector of target movement parameters and a discrete component characterizing the type of measurement. Analysis of developed 
algorithm performance was carried out by Monte Carlo method on 2D plane. The quasi-optimal adaptive filtering algorithm 
detects the appearance of anomalous measurements with probabilities close to unity and allows one to eliminate their influence 
on the accuracy of UAV movement parameters estimation and also to estimate the UAV unknown transmitter power.
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INTRODUCTION

In recent years, small unmanned aerial vehicles (UAVs) (both mini and micro) have become a popular surveillance tool in the 
field of defense and security. The military also increased interest in small UAVs, which can be used to solve tactical reconnaissance, 
electronic warfare or to deliver small bombs (Baker 2014). In many countries, continuous research and development work is being 
carried out in this direction. According to IC Insights, taking into account all potential areas of use, the global sales of devices in 
2025 may exceed $ 10 billion (Business Insider Intelligence 2020; Hindle 2017).
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On the other hand, the use of UAVs has led to new potential threats to national and public security. Such UAVs can carry explosives, 
biological or chemical weapons to carry out terrorist acts. Devices can also be used to transport smuggling, drugs, jamming GPS 
signals or Wi-Fi, which will lead to interruption in communication and data transfer (Wallace and Loffi 2015; Nasr et al. 2019).

The greatest vulnerability of UAVs is due to the presence of electromagnetic radiation. The standard radio frequency UAV 
bands are ISM 2.4 GHz and ISM 5.8 GHz, in which most commercial Wi-Fi, Bluetooth and internet of things (IoT) systems (i.e., 
ZigBee, Z-Wave, LoRa) operate. The signals in these bands are freely regulated using free access rules.

Recent advances in wireless sensor networks (WSN) are opening new possibilities in solving the problem of determining 
radio sources location. Wireless sensor network is a set of miniature and inexpensive devices equipped with various types of 
sensors, a small microcontroller and a receiver, which are connected via a Wireless Local Area Network (WLAN) and uses 
radio channels for data transmission. This task has a wide range of applications, such as: rescue operations, autonomous 
surveillance and monitoring of industrial processes and the environment (monitoring of the animal world), monitoring and 
control of moving objects, etc.

One of the important features of wireless sensor networks is the ability to track moving objects (targets), including UAVs 
(Chu and Han 2019; Zhang et al. 2018). To determine the UAV location using a wireless sensor network, methods based on 
measuring received signal strength (RSS measurements) are the most common. One of the localization methods used in such 
networks is fingerprinting. In this method, the correspondence of the current signal strength is searched for with available 
reference values in the calibration database (Zegeye et al. 2016). Alternative to the fingerprinting method are various mathematical 
algorithms based on the correspondence of the received RSS measurements to the signal propagation model. The accuracy of these 
methods largely depends on the accuracy of the signal propagation model (Azmi et al. 2018; Uluskan et al. 2017; Li and Huang 
2016; Song and Yu 2008; Zou et al. 2016). However, today there is not even a single standard that defines the types of UAVs and 
their application. Therefore, the UAV transmitter power is, as a rule, unknown. This makes it difficult to use signal propagation 
model-based techniques to locate an unknown UAV.

When solving the problem of estimating UAV movement parameters (the coordinates of position, velocity, acceleration), 
it is usually assumed that the measurement results contain information about the process being evaluated with some errors. 
Of considerable practical interest are cases in which measurements may appear that either do not contain useful information 
at all or contain results with significantly larger errors. Such measurements are called abnormal (rough), as opposed to the 
normal measurement, formed during the usual mechanism of results formation (Kupriyanov and Sakharov 2007). The reasons 
for the violation of the measurement process can be: the influence of interference, errors in the identification of signals during 
primary processing, failures of the equipment etc. The appearance of anomalous measurements in the case blinds the observer 
temporarily, leading to a significant decrease in the accuracy of determining the UAV location and movement parameters (Sirota 
and Kirsanov 2006).

The article is devoted to the development of an adaptive estimation algorithm of UAV movement parameters based on RSS 
measurements sensor networks at unknown transmitter power and the presence of anomalous measurements.

PROBLEM DEFINITION

The UAV movement in the rectangular coordinate system can be described by using a stochastic dynamic system with random 
structure having the form (Tovkach and Zhuk 2019):

  (1)

where   is the state vector including parameters of UAV movement 
along coordinates of the rectangular coordinate system; ,  are known matrices:



J. Aerosp. Technol. Manag., São José dos Campos, v13, e0921, 2021

Using Multiple Deep Neural Networks Platform to Detect Different Types of Potential Faults in Unmanned Aerial Vehicles 3

  (2)

  (3)

  (4)

  (5)

a is the root mean square (RMS) of random fluctuations of the rate of change of the UAV acceleration; T is the period of receipt 
of measurements from network sensors; ω(k)T = (ωx(k), ωy(k), ωz(k)) is the uncorrelated sequence of Gaussian vectors with zero 
expected value and identity correlation matrix Qω = I; k - is a discrete time instant.

Wireless sensor network has S sensors. For determination of UAV location on the 2D plane, the wireless sensor network has to 
consist of at least three sensors. The use of the RSS method must take into account the dependence of the received signal strength 
on the distance between the sensor and UAV. Wide range of applications use the model of signal forward propagation, which takes 
into account only its attenuation (Tovkach and Zhuk 2017a). In this case, the observation/measurement equation describing the 
measurement of UAV coordinates has the form:

  (6)

where  are the measured UAV signal strength by s-th WSN sensors, ; ajs
(k)υs(k) are the errors of UAV signal strength 

measurement by s-th WSN sensors; υs(k) are the uncorrelated sequence of Gaussian values with zero expected value and dispersion 
σ2, which are independent.

Switching variables  determine the type of measurement error. The first type of measurement error 
is normal  the second is abnormal a2s

(k)=γ, s= 0
—
,S, where γ determines how many times the RMS of normal 

measurement error σ increases. Switching variables are independent and take values with probabilities .
Nonlinear function  in Eq. 6 is described by the expression:



J. Aerosp. Technol. Manag., São José dos Campos, v13, e0921, 2021

Tovkach IO, Zhuk SY4

  (7)

where  are UAV position coordinates;  are coordinates of the s-th WSN sensors position, ; a is 
the signal attenuation coefficient (close to 2); p0 is the signal strength at a radial distance r0 to the sensor, which is an unknown 
parameter (Tomic et al. 2015). At unknown transmitter power, the parameter p0 is unknown.

DEVELOPMENT OF THE ADAPTIVE ALGORITHMS

Extending of the model state vector
For the decision of the formulated task, the bayesian method of the adaptive filtering is applicable (Aoki 1971), whose main 

idea is to include unknown parameters in the state vector of the process. Following this method, the state vector of the process 
subject to filtering in the considered task can be extended to the form:

  (8)

It includes a vector  and UAV transmitter power  (Tovkach et al. 2018). In this case, the model of the dynamical 
system (1) is described by the expression:

  (9)

in which the extended matrices F and G are defined as:

  

The equation of the RSS measurements eq. 6 does not change and the state vector  is replaced by the extended state vector .
Equation 6 described the observation of a single sensor. Combine the switching variables into a vector Γ(k) . 

Also combine Eq. 6 for all sensors into a single equation:

  (10)

where  is joint measurement vector;  is joint vector-valued 
measurement function; v(Γ(k)) = [aj1

(k)υ1(k),...,ajS
(k)υS(k)]T is joint vector of measurement errors with a zero mean vector and 

covariance matrix  σ2,...,a2
js
(k)σ2).

A posteriori probability density function of a mixed Markov process
In Zhuk (1989), it was shown that an extended process involving a continuous component  and discrete components 

 is a mixed Markov process in discrete time. The a posteriori probability density function (p.d.f.) of a mixed Markov 
process is described by the expression , where . Based on the Markov 
property of the mixed process, Bayes’ theorem and following the procedure given in Zhuk et al. (2019) p.d.f.  is recurrently 
calculated by the equation:
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  (11)

where  is the conditional p.d.f. defined by the eq. (5) [N(*,*) – the notation for the 
Gaussian probability density with the corresponding mathematical expectation and correlation matrix]; 

  is one-step likelihood function;  
- conditional p.d.f. defined based on the Eq. 6 and 7;  is the conditional p.d.f., executing role of a normalizing 
multiplier. Equation 11 describes an algorithm for nonlinear cofiltering of the state vector  and discrete components .

Using the probability multiplication theorem, Eq. 11 can be represented as:

  (12)

  (13)

  (14)

  (15)

  (16)

where  is the conditional predicted p.d.f. of vector ;  is the conditional a posteriori p.d.f. of the vector 
 on condition Γ(k);  is unconditional a posteriori p.d.f. of the vector , defined on k-th step;  

are predicted and a posteriori probabilities discrete components;  is the conditional p.d.f., determined 
by the formula:

 

 is determined by the formula:

  

The initial conditions for algorithm Eqs. 12 to 16 have the form . By means of the Eqs. 13, 14 and 16 filtering 
of continuous component and Eqs. 12 and 15, filtration of discrete components is executed. An inseparable connection of filtration 
equations for discrete and continuous components is a specific feature of this algorithm.

The optimal device realizing algorithm Eqs. 12 to 16, is multichannel with the number of channels 2S. Each channel is coordinated 
with a certain combination of parameters of the switching variables Γ(k). In this case, the unconditional a posteriori p.d.f.  of 
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the vector  is determined by averaging the conditional a posteriori p.d.f.  using a posteriori probabilities , 
determined in each channel of the optimal device.

DEVELOPMENT OF A QUASI-OPTIMAL ESTIMATION ALGORITHM

Large computational costs related to the need of integrating multidimensional p.d.f. and also the considerable number of 
channels in case of big S are a disadvantage of the optimal algorithm. A quasi-optimal adaptive filtering algorithm can be obtained 
by linearizing Eq. 6 and a Gaussian approximation of the a posteriori p.d.f. . At the same time, predicted p.d.f.  is 
also Gaussian and its expected value  and covariance matrix  are calculated by the formulas (Zhuk 1989):

  (17)

  (18)

where ,  are expected value and correlation matrix of a posteriori p.d.f .
Determination of a posteriori p.d.f.  (13) comes down to calculating its expected value  and covariance matrix 
 (Evlanov and Zhuk 1990) using notation :

  

In synthesis of the quasi-optimal algorithm, a sequential method of processing incoming data is used (Tovkach et al. 2019). 
The procedure is recurrent when measurements are received from the s-th sensor. In the first step, the expected value  and 
correlation matrix  of conditional a posteriori p.d.f.  are calculated, provided that the value of the switching variable 

 is known precisely. These equations coincide with the well-known equations of the extended Kalman filter:

  (19)

  (20)

  (21)

where - quasi-optimal filter channel gain;  is the dispersion of a discrepancy determined by a formula:
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At the second step, in contrast to the Kalman filter, this algorithm calculates the posterior probabilities  of values of the 
switching variable ajs

(k) by the formula:

 (22)

 is the conditional p.d.f. measurements , determined by the formula

  

 is a posteriori probability  derived from measurements   
;  is the conditional p.d.f. measurements , determined by the formula:

  

In contrast to the Kalman filter, at the third step, the unconditional estimate of the continuous component  and the 
correlation matrix of the estimation error  are calculated by the formulas

  (23)

  (24)

Estimated ûs(k) and the correlation matrix of the estimation error P̂ s(k) are the mathematical expectation and the correlation 
matrix of the Gaussian approximation of the a posteriori p.d.f. . This allows to obtain a quasi-optimal device with a number 
of channels equal to two.

Initial conditions for the procedure Eqs. 17 to 24 at s = 0 have the form  and, respectively, 
resultant values in case at s = S have the form . 

In case of implementation of the procedure Eqs. 19 to 24 on each l-th step, Gaussian approximation of a posteriori p.d.f. 
 is executed and only the moments remain , .

ANALYSIS OF PERFORMANCE OF THE ALGORITHM 

Analysis of algorithm performance Eqs. 17 to 24 was carried out by Monte Carlo method on 2D-plane. The wireless sensor 
network, represented in Fig. 1, consists of eight sensors located at the following:
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Table 1. The position sensors of the wireless sensor network.

S 1 2 3 4 5 6 7 8

X 0 70.71 100 70.71 0 -70.71 -100 -70.71

Y 100 70.71 0 -70.71 -100 -70.71 0 70.71

1
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4

5

UAV
Y

X

S1

S2

S3

S4

S5

S6
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S8

Figure 1. Configuration of the sensor network consisting of eight sensors and UAV movement trajectory.

For clarity of the algorithm, a test UAV motion trajectory (Fig. 1) was formed. It contains  steps. The trajectory consists of five 
sections (Tovkach and Zhuk 2017b). Abnormal measurement errors occur in the following time instants: for the first sensor k = 14, 85, 87; for 
the second sensor k = 26, 27, 28; for the sixth sensor k = 55; for the seventh sensor k = 105. Error RMS of measurement is σ  dBm, the rate 
of receipt of measurements from network sensors Т = 1 s, number of realizations is L = 100. The simulation was conducted with  
The probability of appearance of anomalous sensor measurements at any sensor is equal to  and parameter γ=6.

Using the Monte Carlo method means, ,  and RMS errors ,  of estimation UAV locations were 
calculated by the formulas:

  (25)

  (26)

  (27)

  (28)
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where ,  are estimations of the X,Y coordinates on the k-th step in the l-th test (trajectory); ,  are true coordinates; 
ε̂ , ε̂  are X,Y coordinates estimation errors at the k-th step in the l-th test (trajectory); L is the number of tests.

Figure 2 shows RMS (curve 3) errors of estimation ,  of the coordinates X,Y, obtained when algorithm Eqs. 17 
to 24 is executed. Also Fig. 2 shows mean (curve 1) ,  and RMS (curve 2) ,  errors of estimation, obtained 
by statistical simulation. Theoretical and actual RMS errors estimation are close, which indicates the correct operation of algorithm.
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Figure 2. Characteristics of error in estimating the UAV localization while using an adaptive filter and 
Kalman filter. (a) Estimation errors of X-coordinate ; (b) Estimation errors of Y-coordinate.

Also, Fig. 2 shows RMS (curve 4) ,  errors of estimation when using the Kalman filter obtained by statistical modeling.
Figure 3 shows the relationships of the probabilities of detecting anomalous errors of measurements for all sensors. The adaptive 

filter provides a high probability of recognition of abnormal measurements.
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Figure 3. The probability of detecting anomalous measurement errors when using adaptive filter.

Figure 4 shows RMS (curve 3) errors of UAV transmitter power estimation and also their means (curve 1) and RMS (curve 2) 
using the algorithm Eqs. 17 to 24, obtained by statistical simulation. The developed filter allows reducing the RMS (curve 3) 
of UAV transmitter power errors from 5 to 0.3 dBm (Tovkach et al. 2018). After completing the adaptation process, occupying 
30 steps, the developed filter allows to determine the location of the UAV with the accuracy characteristics close to an algorithm, 
in which the known power of the transmitter is used.
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Figure 4. RMS errors of the UAV transmitter power estimation when using adaptive filter.

As follows from Fig. 2, the appearance of anomalous measurement errors leads to a significant increase in the estimation errors of 
the Kalman filter. The application of the developed quasi-optimal adaptive algorithm of trajectory filtering allows one to eliminate their 
influence on the accuracy of estimating UAV movement parameters in comparison with the Kalman filtering algorithm, as shown in Fig. 
2. When abnormal measurement errors appear, the RMS error of the estimation increases by 2 - 5 times when using the Kalman filter.

CONCLUSIONS

To identify the unknown transmitter power, the method of expanding the state vector is applied, according to which the 
unknown parameter is included in the state vector of the filtered process.

Using the optimal adaptive filtering algorithm (Eqs. 12 to 16), the calculation of the joint a posteriori p.d.f. state vector and switching 
variables is performed. It is recurrent, due to the Markov property of the extended mixed process. The optimal filter is multichannel. 
Each channel is matched to a specific combination of switching variable parameters. The disadvantage of the optimal algorithm is the 
large computational costs associated with the need to integrate multidimensional p.d.f., as well as a significant number of filter channels.

The quasi-optimal adaptive filtering algorithm (Eqs. 17 to 24) was obtained by linearizing the measurement in Eq. 6 and 
Gaussian approximation of the a posteriori p.d.f. state vector. It performs sequential processing of incoming measurements. 
The number of channels of the quasi-optimal device is equal to two. The inclusion of unknown transmitter power in the state 
vector allows simultaneously with solving the main task of estimating UAV movement parameters, also to estimate its power, 
which can be useful for UAVs identification.

The quasi-optimal adaptive filtering algorithm detects the appearance of anomalous measurements with probabilities close to 
unity and allows one to eliminate their influence on the accuracy of UAV movement parameters estimation in comparison with the 
Kalman filtering algorithm. After completing the adaptation process of RMS (curve 3) of UAV, transmitter power error is 0.3 dBm.

A further area of research is the development of trajectory filtering algorithms for maneuvering UAVs with the integrated use 
of data from the sensor network, using the time difference of arrival (TDOA), angle of arrival (AOA) and RSS methods.
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