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ABSTRACT
!e use of arti"cial intelligence, along with its various components, is rapidly increasing in various "elds of study today, 

going beyond the traditional domains of computer science and mathematics. To gain insights into how arti"cial intelligence 
is being applied in the air transport industry, uncover underlying correlations and trends in the literature, and identify 
potential research gaps, we conducted a systematic literature review supplemented with bibliometric elements such as keyword 
co-occurrence and author in#uence. !e key "ndings of our research shed light on the most proli"c institutions and authors 
globally involved in generating knowledge about AI applications in air transport. Additionally, we identi"ed "ve research 
clusters that dominate the overall research direction: prediction and optimisation (constituting 65% of the articles), inter-
industry collaborations (17% of the articles), human experience (9% of the articles), safety, risks, and ethical considerations 
(6% of the articles), and ecology and sustainable development (3% of the articles). Overall, further research is needed to 
explore the ethical implications, legal considerations, integration processes, and impact on employment and the environment 
in the air transport industry.
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INTRODUCTION

!e usage of analytical and numerical methods has pervaded two main "elds today, business and research. In the former, 
these methods are increasingly used to improve and enhance returns, which could take the form of "nancial gains or simply 
optimised operations e$ciency (Delen and Ram 2018). While in research, the rapidly growing usage of analytical methods could 
be assimilated to a re#ection of scienti"c progress (Mazanec et al. 2010). In the current advanced technological era, the usage of 
analytical, statistical, and other scienti"c methods is given an even greater depth by the introduction of “intelligent” elements, 
commonly de"ned under the non-expert term of Arti"cial Intelligence (AI). In many areas today, AI and its sub"elds are constantly 
reshaping and challenging our view of what can be accomplished (Allam and Dhunny 2019).
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As any other "eld, air transport relies heavily on di%erent quantitative and qualitative analysis methods in order to provide 
adequate insight for researchers and practitioners alike. In today’s inextricably connected world, where the use of Arti"cial 
Intelligence is surging in every industry, in addition to the insight provided by previous literature reviews, there is an actual 
demand for "nding, studying and explaining the links tying AI and air transport. !is work aims at "lling this gap by studying 
available literature and identifying the various applications of AI in air transport.

Arti!cial intelligence
Arti"cial Intelligence, despite its widespread use, remains a complex concept that de"es a simple de"nition. Scholars like 

Hamet and Tremblay (2017) and Kaplan and Haenlein (2019) o%er a synthesised generalisation, de"ning AI as a collection of 
algorithms designed to mimic human intelligence to some extent. !ese algorithms can interpret, analyse, and propose actions 
based on provided data without explicit programming. AI encompasses various sub"elds, each with distinct applications. Notably as 
shown in Fig. 1, Machine Learning, Computer Vision, and Natural Language Processing (NLP) stand out as some of the most 
well-known AI applications.

These applications find relevance across various domains, spanning fields like medicine, surveillance, transportation, 
pricing, operations, military applications, and intelligent enterprise planning (Smith and Eckroth 2017). In numerous 
studies, the term “AI” is closely associated with other terms such as “Big Data Technologies (BDT)”, “Machine Learning 
(ML)”, or “Intelligent Analytics” (Kibria et al. 2018). While there may be disagreement among scholars regarding the precise 
terminology of these concepts, a consensus exists that data serves as the common currency connecting them all (Kersting 
and Meyer 2018).
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Problem Solving 
and 

Planning
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Learning
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Machine 
Learning
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Source: Adapted from Antoniou et al. (2011).

Figure 1. A summarised view of the various concepts contained within Arti"cial Intelligence.

!e algorithms used to develop intelligent systems widely vary in terms of complexity, suitability, and area of application. 
Even though most of these algorithms fall under the auspices of Machine Learning, they are still a contributing sub-component 
of AI as a whole (Helm et al. 2020). With the variety of problems encountered today, it is safe to assume that there is no one-size-
"ts-all solution. With that perspective, ML algorithms are usually categorised into 3 main paradigms: supervised, unsupervised, 
and reinforcement learning. !e desired outcome and the type of available data, control the category of the techniques that can 
be employed (Ray 2019). Figure 2 illustrates a glimpse of these various ML techniques.
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Figure 2. Most prominent machine learning algorithms and their subcategories.

As these multiple ML approaches constitute a research area mainly pursued in the "elds of computer science and engineering, 
they will only be brie#y introduced in the following subsections to provide the reader with the notions required to understand 
the practical applications of AI in the air transport industry.

Supervised learning algorithms
Supervised machine learning refers to the case in which an agent (an algorithm) performs an input-output matching of the data, 

based on various patterns observed in the training sets (or examples) of input-outputs (Praveena and Jaiganesh 2017). Supervised learning 
algorithms earned this denomination as a result of always requiring an external intervention, because detecting and arranging such 
patterns necessitates labelling historic data for it to be readily used for the training phase (Mahesh 2020). Support Vector Machines 
(SVM), Bayesian models, and decision trees are some of the most well-known algorithms used in this type of learning. Figure 3 shows 
an abstract example of the general functioning of a supervised machine learning algorithm, trained and used for shape classi"cation.
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Source: Adapted from Oracle (2022).

Figure 3. Process of training and testing a supervised agent to classify shapes.
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Unsupervised learning algorithms
Unsupervised machine learning, also known as “cluster analysis”, “class discovery” or “outlier detection”, is signi"cantly di%erent 

from supervised learning. More speci"cally, this type of algorithm does not require data labelling. In simple terms, this means 
that there is no right answer for the algorithm to "nd, rather it must categorise features and try to "nd motifs on its own, implying 
no external intervention. !is independence from external in#uence has given the epithet of “unsupervised” to these types of 
systems (Gentleman and Carey 2008; Mahesh 2020). Some of the algorithms that fall under this category of learning include for 
example: Principal Component Analysis (PCA) or K-means clustering.

!e use of unsupervised data processing can lead to anomalies or errors in the output clusters, as certain data points may be assigned 
to a cluster that does not correspond to their true nature (Liang and Klein 2008). !is is demonstrated in the example of shape clustering 
shown in Fig. 4, where the agent successfully identi"es three classes of shapes, but incorrectly assigns a pentagon to the cluster of rectangles.

Unlabelled Data Output

Clustering

Source: Adapted from Oracle (2022).

Figure 4. Example of a shape clustering unsupervised algorithm.

Semi-supervised learning algorithms
Semi-supervised learning is an in-between path that allows an escape from the binary categorisation of problems. Many approaches 

in the domain of semi-supervised learning involve the extension of either unsupervised or supervised learning methodologies to 
incorporate supplementary information commonly associated with the alternate learning paradigm (Hady and Schwenker 2013).

In the case of “semi-supervised classi"cation”, the agent is trained from both the labelled and unlabelled data, which is better 
than the supervised classi"er trained on the labelled data alone. While in “constrained clustering”, the goal is to obtain better 
clustering than the clustering from unlabelled data alone (Zhu and Goldberg 2009).

Semi-supervised learning is useful when the access to labelled data is limited or expensive. !is approach however faces many 
challenges in real-world applications, as some empirical studies (Blum and Chawla 2001; Chen and Wang 2010; Nigam et al. 2000) 
show that there are cases in which the use of the unlabelled data may degenerate the performance. Zhu and Goldberg (2009), 
further argue that semi-supervised learning performance depends on the correctness of the assumptions made by the model.

Reinforcement learning algorithms
All the previously discussed algorithms share a common goal: "nding correlations and patterns in large data sets. Reinforcement 

learning algorithms are di%erent, as they are "rmly oriented towards maximising cumulative rewards (Mahesh 2020; Oh et al. 2020).
Under this paradigm, the primary objective of the agent is to e%ectively maximise the received reward signal within the given 

environment. However, at the start of its interaction with the environment, the agent is initialised devoid of any prior knowledge or 
experience. Consequently, the agent must embark on an exploratory phase to navigate through the state space and determine the 
most favourable actions (Sutton and Barto 2018).

!e agent faces the intricate task of navigating the trade-o% between exploration and exploitation to maximise rewards in a 
dynamic and uncertain environment. !is delicate balance is further in#uenced by factors such as stochasticity, delayed rewards, and 
non-stationarity, making exploration a vital component for the agent’s ongoing optimal decision-making process (Nian et al. 2020).

Despite being one of the 3 main machine learning paradigms, reinforcement learning remains di$cult to implement, for the 
simple reason that the notion of “reward” can be di$cult to determine and may vary from one application to another (Oh et al. 2020).



J. Aerosp. Technol. Manag., v15, e2223, 2023

Applications of Arti!cial Intelligence in the Air Transport Industry: A Bibliometric and Systematic Literature Review 5

Special case of Arti"cial Neural Networks
In an e%ort to mimic the neurons and neural networks in the human brain, Arti"cial Neural Networks (ANN) have been and 

continue to be developed for e%ective problem resolution using complex data sets (Silva et al. 2017). ANNs have been set as a 
special case because they can be used to solve problems from any category (supervised, unsupervised, and reinforcement). !e usual 
structure of an ANN consists of an input layer, a hidden layer, and an output layer. A neural network is referred to as ‘shallow’ 
when the hidden layer consists of a single array of neurons, while a network with multiple layers is called ‘deep’ (Bianchini and 
Scarselli 2014; Lopez-Martin et al. 2019). Generally, the hidden layer(s) process(es) the input data through weighted calculations, 
and the results are then conveyed through the output layer (Mahesh 2020).

AI and Air Transport
!e application of arti"cial intelligence in the air transport industry has become increasingly prevalent, o%ering improvements in 

safety, e$ciency, and customer service. Across various aspects of air transport, a multitude of analytical methods are employed to support 
the industry in various ways. !ese methods enable the industry to better predict #ight demand, optimise schedules and pricing, analyse 
aircra' data to predict maintenance needs, optimise slot distribution for landing aircra', facilitate air tra$c management, plan fuel-
e$cient routes, and enhance the passenger experience through AI-powered chatbots and virtual assistants. By incorporating AI into 
these areas, signi"cant advancements in e$ciency and quality can be achieved, leading to better outcomes for the industry as a whole.

When examining the applications of AI in various industries, it is common to "nd reviews that group together the sub"elds of 
a particular industry and discuss them collectively. However, in the case of air transport, it is justi"ed to speci"cally research the 
applications of AI in this domain. Unlike other transport sub"elds, air transport is a vast and distinct "eld that warrants individual 
attention. Moreover, the abundance of AI applications in air transport shows great promise and is supported by high-quality studies. 
For example, Nikitas et al. (2020) explore the intersection of AI, transport, and smart cities, focusing on autonomous vehicles and 
Unmanned Aerial Vehicles (UAVs). Another comprehensive review by Abduljabbar et al. (2019) delves into various AI algorithms 
used to enhance di%erent aspects of the aviation industry, including congestion relief, landing safety, and in-#ight monitoring 
systems, among others. !ese reviews suggest that while algorithmic and optimisation interventions receive signi"cant research 
attention, other applications like UAVs are still in their early stages and require further development over time.

!e background section of this work o%ers de"nitions and explanations to enhance understanding of the topic. It is followed by 
a methodology section that outlines the step-by-step process undertaken to obtain the results presented in this study. Subsequently, 
the bibliometric and network analyses of these results are presented in separate sections, followed by a discussion of the "ndings. Finally, the 
concluding section provides recommendations for future research in this "eld and addresses the limitations encountered during the study.

METHODOLOGY

!e methodology of a literature review becomes particularly relevant when the objective of the research is to explore existing studies 
and identify potential avenues for investigation. A literature review serves to consolidate previous research conducted in related "elds, 
providing a comprehensive overview of prior thoughts and actions regarding the addressed problem (Boell and Cecez-Kecmanovic 2014). 
Within the realm of literature analysis, a systematic literature review (SLR) goes a step further in terms of depth and rigor compared to 
narrative reviews. SLRs follow a rigorous and auditable process, distinguishing them from descriptive narrative reviews that o'en focus 
on a subset of selected studies within a speci"c area (Bhandal et al. 2022). Systematic reviews o%er a reliable and replicable approach, 
allowing the synthesis of a robust knowledge base from a wide range of literature sources. !is method aims to minimise bias by analysing 
all relevant studies on the topic, regardless of the authors or their primary "eld of expertise (Uman 2011). Given the nature and objective 
of our research, we have adopted a systematic literature review approach, supplemented by elements of bibliometric analysis.

Keywords de!nition
!e "rst step in the adopted methodology consists of selecting the appropriate keywords that will be used to browse the 

Scopus database. Keyword choice was already clear as our research focuses on the applications of AI in the air transport industry. 
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Although the terms AI, ML, and Big Data are usually based on a recurring set of tools, they are not equivalent to one another. 
Additionally, two separate contexts were set to classify chosen keywords for higher clarity, an “industry” context and a “tools” 
context. !e Boolean operator “OR” is used to link keywords, while the “AND” operator is used to link contexts.

Industry context keywords include: “air transport”,  “aviation”, “airline”, “airport”, “air tra$c management”.
While tools context keywords are as follows: “arti"cial intelligence”, “machine learning”, “big data”.
!e next step involves entering the chosen search terms into the search engine of a selected database and retrieving the results. 

Scopus has been selected as the preferred database due to its encompassing features, which make it comparable to other similar systems 
like PubMed and Web of Science. In terms of article availability and the range of search parameters it o%ers, Scopus is considered 
comprehensive and robust (Falagas et al. 2008). It provides both basic and advanced search options, allowing for the application of various 
"lters to re"ne the search results, including publication type, publication date, Scopus addition date, subject area, and author name.

Search results
!e initial search was conducted on July 20, 2022, using the speci"ed query in the Scopus database search engine. !is search 

yielded a total of 4,220 documents. Subsequent "ltering steps were applied, as outlined in Table 1, to re"ne the results. !e "lters 
included selecting English-only publications, peer-reviewed articles, and limiting the publication date to the last "ve years, resulting in 
1,067 articles. Additionally, the option to display only open-access articles was enabled to ensure unrestricted access to the full texts.

Table 1. Summary of articles collection, "ltering, and screening strategy.

Step Action Output quantity

1. Input selected 
search terms

Tools context: (“arti!cial intelligence” OR “machine learning” OR “big data “)
AND

Industry context: (“air transport” OR “aviation” OR “airline” OR “air 
navigation” OR “airport” OR “air traf!c management”)

4220 documents

2. Filtering
Limit query to English only documents

Limit document type to articles
Limit publication year to last 5 years (2017-2022)

1067 articles

3. Screening Full access only
Screen the abstracts and keywords for relevance 216 articles

4. Final selection Check for doubles 216 articles

Source: Elaborated by the authors.

During the screening phase, abstracts and keywords were carefully examined for relevance to this study. Some studies that 
were unrelated, primarily those focused on medical research but included keywords such as “aviation” or “airline” for illustrative 
purposes, were identi"ed and excluded. Furthermore, studies that solely aimed to solve mathematical problems and used “airports” 
or “airlines” as examples were also discarded based on their end purpose.

!e "nal sample of 216 articles underwent a thorough review to identify any duplicates, and none were found.

BIBLIOMETRIC ANALYSIS

!e bibliometric analysis conducted in this section plays a crucial role in comprehending the di%erent trends that shape the 
literature on AI and air transport. To begin with, the analysis includes in#uence statistics that identify and rank the most impactful 
researchers and institutions from various geographical regions. !e visualisations of bibliometric data presented in this study were 
generated using VOSviewer, a so'ware tool designed for constructing and visualising bibliometric networks based on citation, 
co-citation, coupling, or co-authorship relationships. While VOSviewer o%ers a range of valuable features and is freely available 
for use, its source code is not accessible for sharing or redistributing. However, it is worth noting that a new web-based version of 
the so'ware is currently being developed and is expected to be open-source (Van Eck and Waltman 2010).

!e developers of this so'ware have introduced a novel algorithm that e%ectively clusters the literature by grouping related 
nodes into distinct clusters. !e number of clusters generated depends on the optimal solution of the optimisation problem 
presented in Eq. 1 (VOSviewer clustering optimisation problem) (Waltman and Van Eck 2013).
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  (1)

Where: ci denotes the cluster to which node i is assigned; δ(ci, cj) is a function that equals 1 if ci = cj and 0 otherwise; Sij represents 
the similarity factor between nodes i and j; γ denotes a clustering resolution parameter. !e higher the value of γ, the larger the 
number of clusters that will be obtained.

!e algorithm used by VOSviewer and the ones used by other famous bibliometric visualisation tools are surprisingly similar. 
Gephi for example, uses the Louvain algorithm as a literature clustering approach, which is a model that aims to determine the 
optimal number of partitions that maximise the modularity index through multiple iterations (Blondel et al. 2008). VOSviewer, on 
the other hand, uses the smart local moving algorithm, which employs a recursive method to identify the structure of the 
bibliographic network and its elements (Waltman and Van Eck 2013).

Using the Scopus export option, a comma-separated-values format (CSV) "le was generated containing the "ltered search 
results. !is "le was edited to remove any non-selected studies, and was then used as an input to VOSviewer.

Author in"uence
By employing VOSviewer’s co-authorship analysis method, we conducted an analysis on 216 selected studies to identify the 

frequency of recurring authors and the strength of their collaborations. !e results were visualised in Fig. 5, revealing the presence 
of 16 visible clusters of authors out of a total of 23 clusters. !e largest cluster comprises the most in#uential authors who have 
established numerous strong connections. Although the number of collaborations may be limited, this indicates a genuine endeavour 
among researchers to advance the "eld of AI applications in air transport and expand the boundaries of knowledge in this area.

Mavris D N, Puranik, T G and Li J emerge as the most productive authors in this research "eld, each having contributed in 5 
articles. It is worth mentioning that although Mavris is a proli"c author, their in#uence cluster appears to be limited, suggesting 
a relatively lower level of collaboration compared to other authors.

Alligier R.
Reklitis D.P.

Basora L.

Mavris D.N. Duong

Chen J. Tian Y.

Swinney C.J.

Jennions I.K.

Delahaye D.

Reitmann S.

Yang J. Liu Y.

Feng Y.

Chen H.

Gardi A.

Ban H.J.

Causse M.

VOSviewer

Kim J.
Casanova-Mateo C. Jr.

Delaurentis D.

Piera M.A.
Mitici M.

Source: Elaborated by the authors.

Figure 5. Author co-authorship map with article production bar graph for top authors.

Geographical in"uence (institutions or cities)
!e a$liations "eld, an essential component when exporting search results from the Scopus database, provides valuable 

information about the primary institutions associated with each study, including their city and country. !is "eld proves to be 
particularly valuable for analysing the geographical impact within the "eld of AI and air transport. By exporting this data, we can 
identify and quantify the top contributing institutions based on the number of published papers they have produced.

In terms of geographical distribution, the publication of studies on AI applications in air transport showcases the global interest 
and engagement of various institutions. Figure 6 highlights the top 11 territories based on study production, revealing that China 
and the United States of America are the primary contributors, surpassing other territories in terms of the quantity of studies. 
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Furthermore, there is a strong collaboration link between these two countries. However, the United Kingdom stands out with the 
highest total link strength, indicating a robust network of collaborations extending to numerous territories.

Italy

United Kingdom

Spain

Australia

Germany

Netherlands

France

Canada

China

United States

South Korea

VOSviewer

Source: Elaborated by the authors.

Figure 6. Article production and link map by territory with publications bar graph.

Furthermore, we conducted an examination of the global research trend by visualising the a$liations "elds using the free 
Google MyMaps tool. !e resulting map, depicted in Fig. 7, provides insights into the distribution of contributing institutions. 
Consistent with our previous analysis, the density of institutions appears to be higher in the European continent, particularly in 
regions such as the UK, Germany, and the Netherlands. Additionally, two other notable clusters can be observed in the Chinese 
region of Asia and in the United States in North America. In contrast, Canada, Russia, Australia and countries in South America 
and Africa show comparatively lower research output in this "eld.
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Source: Elaborated by the authors.

Figure 7. World-map with geographical location of contributing institutions.
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Additionally, the analysis of institutional contributions, depicted in Fig. 8, reveals that China and the UK are the leading 
countries with the highest number of institutions actively involved in research on AI applications in aviation. !is "nding 
reinforces the previous observation that there is a signi"cant interest and investment in this "eld of study across multiple 
regions, particularly in the Eurasian region of the world.

Nanjing University of Aeronautics and Astronautics

Georgia Institute of Technology

Air Space and Warfare Centre

University of Essex

China Academy of Civil Aviation Science and...

Agricultural University of Athens

Islamic Azad University

Shangai Central Meteorological Observatory

5

4

2
2
2
2
2
2

Source: Elaborated by the authors.

Figure 8. Article production by top institutions bar graph.

NETWORK ANALYSIS

VOSviewer, a powerful software tool, facilitates network analysis by allowing the visualisation of large networks through 
multidimensional scaling. This capability proves invaluable during the process of exploring literature (Van Eck and Waltman 
2010; VOSviewer 2022). Moreover, this software provides valuable insights into the overall structure of the AI applications 
in the field of air transport, thanks to features such as modularity-based clustering analysis (Huang et al. 2022; Newman and 
Girvan 2004). Our network analysis comprises two main components: citation analysis and keywords co-occurrence analysis.

Citation analysis
Citation analysis is a bibliometric technique employed to assess the impact and prominence of a publication. !is method 

examines the frequency with which a publication is cited in other works to gauge its reputation and in#uence (Ding and 
Cronin 2011). By tracking the references cited in di%erent articles, citation analysis provides valuable insights into the scholarly 
communication patterns within a speci"c "eld (Ho%mann and Doucette 2012).

Conducting a citation analysis with VOSviewer is a simple process that involves utilising the generated CSV "le from our sample 
of 216 selected studies. In Fig. 9, the top 36 articles are represented in a constellation, where the size of each node corresponds 
to the number of citations received by the respective study. !e most frequently cited article, authored by Koch et al. (2019) and 
focusing on Reinforcement learning for UAV attitude control, stands out with 127 citations.

VOSviewer

Koch W. (2019)

Barratt S.T. (2019)

Kistan .T. (2018)
Martin C. (2018)

Castagno J. (2018)
Huang H. (2020)

Palossi D. (2019)

Kuru K. (2019)

Rustam F. (2019)

Balasingam M. (2017)

Gui G. (2020)

Source: Elaborated by the authors.

Figure 9. Most cited articles map with top cited authors bar graph.
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Keywords co-occurrence analysis
Keywords play a crucial role in providing a concise yet informative description of research content (Rajagopal et al. 

2017). By analysing the co-occurrence of keywords, researchers can identify clusters, uncover underlying patterns, and 
determine thematic relationships. This approach is based on the assumption that the connections between keywords reflect 
the knowledge structure of the scientific or technical field under investigation (Radhakrishnan et al. 2017; Stegmann and 
Grohmann 2003).

In our sample of 216 papers, we identi"ed a total of 2,145 keywords. By applying a minimum threshold of 10 occurrences for 
each keyword, we obtained a re"ned list of 29 keywords (refer to Table 2). It is not surprising that “machine learning” emerged 
as the top-ranking term, with a frequency of 105 and a link strength of 355. From a search perspective, this indicates that 
“machine learning” is the most prominent keyword used to explore literature in this particular "eld of study. Other frequently 
occurring keywords include “air transportation” (frequency = 41, link strength = 199), “learning systems” (frequency = 39, 
link strength = 204), and “arti"cial intelligence” (frequency = 39, link strength = 118), which align with the subject matter 
being investigated.

Table 2. List of top 29 most frequent keywords.

Keyword Freq. Keyword Freq. Keyword Freq.

Air Navigation 38 Arti!cial Intelligence 39 Learning Systems 39

Air Traf!c Control 34 Aviation 28 Machine Learning 105

Air Traf!c Management 16 Big Data 13 Machine Learning Methods 10

Air Transportation 41 Data Mining 11 Neural Networks 16

Aircraft 38 Decision Making 16 Prediction 17

Aircraft Accidents 11 Decision Support Systems 11 Predictive Analytics 13

Aircraft Detection 15 Decision Trees 14 Reinforcement Learning 10

Airports 20 Deep Learning 26 Trajectories 13

Algorithm 15 Forecasting 33
Unmanned Aerial Vehicles 

(UAV) 13
Antennas 15 Learning Algorithms 21

Source: Elaborated by the authors.

We used VOSviewer to generate a keyword occurrence map, as shown in Fig. 10, which revealed the presence of 
four distinct literature clusters, each representing different themes within our sample. The primary cluster (depicted 
in orange) encompasses ten keywords, including “air navigation,” “deep learning,” and “UAV.” Conversely, the least 
populated cluster (depicted in yellow) consists of only three keywords: “airports,” “big data,” and “data mining.” For a 
comprehensive overview of the keywords and their associated cluster themes, please refer to Table 3. In VOSviewer, the 
significance of a keyword is determined based on either its occurrence count or the total link strength (TLS). The TLS 
indicates the cumulative strength of the co-occurrence links between a specific keyword and other keywords (Van Eck 
and Waltman 2020).

!e map displayed in Figs. 10 and 11 illustrates the relationship between keywords, with the size of each node indicating its 
weight based on the number of occurrences (larger nodes represent higher occurrences). !e links between keywords indicate 
the network connections that a particular keyword can establish, with thicker links indicating a higher Term Frequency-Inverse 
Document Frequency (TF-IDF) score. One surprising "nding from this keyword co-occurrence analysis is that the keyword “airlines” 
does not appear among the top 29 selected keywords. However, by lowering the minimum threshold for keyword occurrence to 
7, the keyword “airlines” and many other keywords (81 in total) reappear, expanding the number of clusters to 7 (refer to Fig. 11).
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VOSviewerVOSviewer

Decision Support SystemsDecision Support Systems

Arti!cial IntelligenceArti!cial Intelligence

Big DataBig Data
Data MiningData Mining AirportAirport

Air TransportationAir Transportation

AircraftAircraft
TrajectoriesTrajectories

Machine LearningMachine Learning

Machine Learning MethodsMachine Learning Methods

PredictionPrediction

Predictive AnalyticsPredictive AnalyticsAlgorithmAlgorithmLearning SystemsLearning Systems

Learning AlgorithmsLearning Algorithms

Reinforcement Reinforcement 
LearningLearning

Air NavigationAir Navigation

Unmanned Aerial Unmanned Aerial 
Vehicles (UAV)Vehicles (UAV)

AntennasAntennas

Aircraft AccidentsAircraft Accidents

Aircraft DetectionAircraft Detection

Descision TreesDescision Trees

AviationAviation Air Traf!c ControlAir Traf!c Control

Source: Elaborated by the authors.

Figure 10. Keyword co-occurrence map for minimum occurrence threshold = 10.

Table 3. Keywords in each literature cluster with a general theme.

Cluster – Colour Keyword General Theme

Cluster 1 – Orange

Air Navigation

Machine learning algorithms applied 
to air navigation

Aircraft Accidents

Aircraft Detection

Antennas

Deep Learning

Learning Algorithms

Learning Systems

Neural Networks

Reinforcement Learning

Unmanned Aerial Vehicles (UAV)

Cluster 2 – Green

Air Transportation

Predictive analytics and ML applied 
to trajectory planning

Algorithm

Decision Trees

Forecasting

Machine Learning

Machine Learning Methods

Prediction

Predictive Analytics

Trajectories

Continuation...
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Cluster – Colour Keyword General Theme

Cluster 3 – Blue

Air Traf!c Control

AI supporting decision making in Air 
Traf!c Control (ATC) and Air Traf!c 

Management (ATM)

Air Traf!c Management

Aircraft

Arti!cial Intelligence

Aviation

Decision Making

Decision Support Systems

Cluster 4 – Yellow

Airport

Big data technologies applied to 
airports

Airports

Big Data

Data Mining

Source: Elaborated by the authors.

Predictive MaintenancePredictive Maintenance

Aviation IndustryAviation Industry

Convolutional Neural NetworkConvolutional Neural NetworkMachine Learning MethodsMachine Learning Methods

Cluster AnalysisCluster Analysis

AlgorithmAlgorithm
Weather ForecastingWeather Forecasting

PredictionPrediction
Decision TreesDecision Trees

Neural-NetworksNeural-Networks

Machine LearningMachine Learning
ChinaChina

AirportAirport
AircraftAircraft

AutomationAutomation

Aircraft DetectionAircraft Detection
NaviagationNaviagation

AntennasAntennas
Arti!cial IntelligenceArti!cial Intelligence

AviationAviation

AirportsAirports

Numerical ModelNumerical Model

Traf!c ManagementTraf!c Management

Data MiningData Mining Graphic MethodsGraphic Methods

Big DataBig Data

Air Traf!csAir Traf!cs
Decision MakingDecision Making

Reinforcement LearningReinforcement Learning

Decision Support SystemDecision Support System

SchedulingScheduling

AirlinesAirlines

Classi!cation of InformationClassi!cation of Information

Deep Neural NetworksDeep Neural Networks

Feature ExtractionFeature Extraction

Machine LearningMachine Learning ApproachesApproaches

VOSviewerVOSviewer

Source: Elaborated by the authors.

Figure 11. Keyword co-occurrence map for minimum occurrence threshold = 7.

FINDINGS AND DISCUSSION

By analysing the selected sample of studies, we have expanded the previously de"ned clusters and identi"ed "ve overarching 
clusters that encompass the literature in this "eld. !e "rst cluster, labelled “predictions and optimisations,” includes articles that 

Table 3. Continuation.
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o%er predictive approaches to aviation problems or provide support for resolving optimisation problems using various intelligent 
algorithms. While it can be argued that these two categories of problems are not inherently integrated within air transport and are 
more focused on mathematical resolutions, it is important to note that the studies in our "nal sample speci"cally address problems 
relevant to the aviation industry. !erefore, these articles cover solutions that are fundamentally related to the challenges faced 
by the aviation industry, making them highly relevant to the "eld.

!e second cluster revolves around the human experience, focusing on understanding best practices, techniques, and algorithms that 
can enhance the overall experience of individuals interacting with various services related to air transport. !e ecological cluster, on the 
other hand, sheds light on the ongoing research direction aimed at developing eco-friendly solutions and assessing the environmental 
impact of new techniques in the "eld. Another cluster explores inter-industry collaborations, where studies may not have been directly 
targeted at aviation but o%er techniques that can be applied to the aviation context. !e selection criteria for these studies involved 
checking the inclusion of air transport-related keywords and conducting a thorough reading of the articles. !e "nal cluster encompasses 
discussions on ethics, sustainability, responsibility, safety, and risk factors associated with AI applications in aviation. Figure 12 provides 
a visual representation of the percentage distribution of each cluster based on the total number of studies covering its respective theme.

Predictions and Optimisations

Inter-industry Collaboration

Human Experience

Safety, Risks, and Ethical Considerations

Ecology

6%

9%

17%

65%

3%

Source: Elaborated by the authors.

Figure 12. Distribution of studies per cluster.

Cluster 1: predictions and optimisations
!is cluster contains the largest number of studies, comprising 65% of the total. Several of these studies address the topic of 

delay prediction (Etani 2019; Schultz and Reitmann 2018; Wang et al. 2018), employing algorithms from various types, including 
supervised, unsupervised, arti"cial neural networks (ANN), and reinforcement learning. However, a critical argument can be 
made: the results of these studies primarily focus on optimising algorithm parameters for improved future predictions, without 
su$cient consideration for real-life applicability, as con"rmed by our "ndings. Nevertheless, we also encountered studies that 
o%ered actionable insights and collaborated with airports and airline companies to e%ectively tackle the issue of delays.

Within this cluster, another topic explored is the prediction of the impact of natural phenomena such as wind shear, fog, or icing 
on aircra' operations (Huang et al. 2019; Larraondo et al. 2018; Li et al. 2020). !e solutions proposed in these studies predominantly 
involve supervised learning and regression algorithms. Despite the frequent occurrence of these natural phenomena and our extensive 
knowledge of their e%ects on aircra', the proposed solutions only o%er marginal improvements (Li et al. 2020; Sim et al. 2018).

In addition, literature within this cluster covers a closely related area focused on optimising aircra' functions. !is includes 
upgrading navigation systems for trajectory tuning (Álvarez de Toledo et al. 2017; Celis et al. 2020; Gallego et al. 2019), regulating 
fuel consumption (Malatesta et al. 2021; Matuszczak et al. 2021; Zhu and Li 2021), and suggesting intelligent diagnostic tools for 
monitoring the health status of aircra' (Basora et al. 2021; Huang et al. 2022; Meister et al. 2021). !e results of these studies show 
promise, but their successful implementation would require the support and collaboration of aircra' manufacturers.

!e subsets of air transport, namely airports, airlines, and air tra$c management (ATM), have all been the focus of numerous 
studies exploring operations optimisation through intelligent decision-support systems based on machine learning algorithms 
(Midt(ord et al. 2022; Reitmann and Schultz 2022; Xiong et al. 2022). Within the domain of airports, research primarily revolves 
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around estimating and improving the e$ciency of various units (Szaruga and Załoga 2022) and employing intelligent scheduling 
methods for both aircra' and passengers (Bruno et al. 2019). For airlines, the majority of studies are dedicated to developing 
decision-support systems that utilize intelligent scheduling (Evler et al. 2021) and to optimising seat pricing (Alauddin and Ting 
2020; Wozny 2022).

In the realm of Air Tra$c Management (ATM), there are varying opinions regarding the integration of AI into ATM operations. 
For instance, Jenab and Pineau (2018) propose a neural network approach to automate ATM processes and handle increased air 
tra$c, although their proposition is yet to be implemented. On the other hand, some researchers perceive extensive AI involvement 
as a risk to air operations and suggest the introduction of certi"cation criteria to approve the use of intelligent agents in such 
critical positions (Kistan et al. 2018).

One notable aspect across these studies related to airports, airlines, and ATM is the empirical support they have received, with 
some of the suggested techniques already being implemented in practice.

Cluster 2: human experience
!e human experience cluster comprises 9% of the selected sample, with the majority of studies focused on analysing airline 

customer satisfaction. !ese studies utilise machine learning algorithms and extract data from various sources, including customer 
surveys (Park et al. 2022), airline website reviews (Kwon et al. 2021; Ullah et al. 2021; Verma and Davis 2021), and sentiment 
analysis of customer tweets and social media activity (Kumar and Zymbler 2019; Rustam et al. 2020; Samah et al. 2022). While these 
studies employ di%erent technical methods, they share a common theme of leveraging machine learning algorithms to tap into 
customers’ big data.

!e remaining studies within this cluster cover a range of topics. For example, Chen et al. (2022) examine purchase willingness, 
while Miskolczi et al. (2021) explore the attractiveness levels of airports that adopt modern technologies. Azzolina et al. (2021) 
delve into the issue of price discrimination, studying how airline companies utilise customer data for discriminatory pricing and 
assessing the impact of such practices on social welfare.

Cluster 3: ecology and sustainable development
In our analysis of the sample, the theme of ecology and sustainable development appears to be the least explored, with a total 

of eight studies found in this cluster, accounting for only 3%. Within this cluster, two articles (Tian et al., 2019; Wan et al., 2022) 
delve into the topic of aircra' gas emissions. !ese studies propose the utilisation of supervised machine learning algorithms to 
enhance situational awareness and operational e$ciency by accurately estimating #ight emissions and airport air quality. While it 
can be argued that these studies do not directly contribute to improving the global ecological state, as they focus on estimation 
rather than mitigation, their signi"cance lies in initiating a dialogue on this topic, considering the limited quantity of research 
available. In contrast, one study (Kosir et al. 2020) directly addresses the issue by introducing an arti"cial neural network (ANN) 
to optimise volume swell in aviation fuel, aiming to minimise greenhouse gas emissions. Although the results of this study show 
promise, further replication is necessary to solidify the feasibility of its approach.

!ree studies (Altringer et al. 2021; Dziak et al. 2022; Zhou et al. 2021) have addressed the issue of wildlife preservation within 
this cluster. !ese studies primarily aim to mitigate aviation accidents caused by animal interference, also known as wildlife strikes. 
Additionally, they explore the use of unmanned aerial vehicles (UAVs) to monitor various animal species in their natural habitats, 
utilising advanced classi"cation algorithms to e%ectively identify them. Another article in this cluster focuses on beach litter 
monitoring, employing the same classi"cation methods mentioned earlier. !is study demonstrates improved results compared 
to traditional visual-census approaches (Martin et al. 2018).

Cluster 4: inter-industry collaborations
The cluster that ranks as the second largest, accounting for 17% of the studies, exhibits a significant degree of 

diversity. Within this cluster, numerous studies emerge from collaborations involving robotics, satellite imaging, and 
image processing, offering innovative techniques for intelligent navigation that can be applied to UAV control (Arrouch 
et al. 2022; Cai et al. 2021; Castagno and Atkins 2018). Another study, originating from the joint efforts of researchers 
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from agricultural backgrounds and technologists, expands on the navigation theme. It introduces the implementation of 
a novel 3D filter for autonomous UAV navigation in agricultural settings, which would aid in gathering data about crop 
morphology (Donati et al. 2022).

A separate set of studies primarily focused on airport security, encompassing both physical and cyber aspects, such as the 
detection of suspicious behaviour, dangerous luggage, and airport x-ray scanners. In some of these studies, arti"cial neural 
networks were employed for identifying suspicious behaviour (Kim et al. 2020), while others utilised support vector machine-
based classi"ers for luggage classi"cation (Wang et al. 2020). Additionally, certain works took a broader perspective, serving as 
meta-studies that discussed various facets of AI-based airport security (Jupe and Keatley 2020) or examined the cybersecurity 
threats posed by the proliferation of new intelligent systems (Koroniotis et al. 2020).

Furthermore, two studies based on review articles have explored the intersection of 6G, Aviation 4.0, and the Internet of 
Everything (IoE), providing insights into the challenges that researchers will encounter when implementing such solutions, 
particularly in the "eld of wireless communication (Janbi et al. 2020; Sekera and Novák 2021). In contrast, only one study emerged 
from the collaboration between healthcare and aviation, examining the use of drones to support medical applications such as tele-
diagnostics and vaccine delivery. Although this article presents opportunities for discussion, it falls short in adequately addressing 
the limitations associated with such a collaboration.

Cluster 5: safety, risks, and ethical considerations
Among the research clusters we examined, this particular group has the second lowest population, accounting for just 6% of 

the articles in our sample. Several studies within this cluster focus on the impact of external interference on the functioning 
of machine learning algorithms, raising concerns about safety and the potential for severe consequences (Shaikh et al. 2019; 
Swinney and Woods 2021).

Our "ndings indicate that only a small portion of articles examine the ethical aspects of integrating AI in the aviation industry. 
For example, Igonin et al. (2021) delve into the concept of situational awareness regarding UAV behaviour control. Although their 
research primarily focuses on the technical aspects of the issue, there is still a discussion about the ethical considerations involved. 
Another instance is the study by Chen et al. (2021), which proposes the implementation of 5G-IoT monitoring devices, processed 
with machine learning algorithms, to establish the integrity of airport passengers by detecting potential dangerous traits or 
behaviours. While this study shows promise in terms of enhancing safety and minimising risks, it neglects to address any ethical 
dilemmas associated with monitoring human activities. Additionally, Baomar and Bentley (2021) present an impressive concept 
of an intelligent autopilot system based on ANN that can replicate even the most complex manoeuvres. However, their work 
overlooks any safety or ethical implications that may arise from such a system.

DISCUSSION

!e application of AI in the air transport industry holds immense potential for enhancing e$ciency, safety, and the overall 
customer experience. Nevertheless, it is crucial to acknowledge that the integration of AI into this industry is currently at a nascent 
stage, necessitating further research to comprehensively grasp its potential impact.

Despite delving into a wide range of topics and reviewing numerous high-quality papers, a noticeable bias towards predictive 
analysis and optimisation-focused research is evident concerning AI applications in the air transport industry. It is crucial to 
recognise that AI is a disruptive technology, and merely praising its technological marvels without addressing potential risks 
to human life, dignity, and ethical considerations would be naïve. One crucial aspect that demands further exploration is the ethical 
and legal implications of AI in the air transport sector. As the use of AI continues to grow in this industry, concerns regarding 
privacy and data protection have also become pertinent.

Further research is needed to explore the integration of AI into the current air transport infrastructure. !is calls for increased 
collaboration between AI experts and stakeholders in the air transport industry, along with meticulous planning and seamless 
integration processes. An additional aspect that warrants deeper investigation is the in#uence of AI on employment within the air 
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transport industry. !e potential automation of numerous tasks currently undertaken by human workers due to AI advancements 
can result in job losses and necessitate changes in the skillsets demanded by air transport occupations. Understanding the 
rami"cations of AI on employment in the air transport sector is crucial, and it is essential to formulate strategies that provide 
support to workers as the industry undergoes transformation.

Given the current state of global warming, which has signi"cant impacts on global fauna and #ora (Dai 2011), it becomes 
imperative to leverage advanced technological tools to promote environmental conservation and enhance resource e$ciency 
within processes. Surprisingly, the analysis conducted in this study highlights a notable dearth of research in this speci"c domain. 
Rather than viewing air transport as a mere lock and AI as its key, our work recognises that AI serves as a transformative enabler, 
necessitating an interdisciplinary approach. !us, there is still an opportunity to address this research gap through the emergence 
of interdisciplinary studies that aim to harness the power of AI in addressing complex problems while remaining mindful of other 
interconnected aspects.

CONCLUSION

!e potential bene"ts of arti"cial intelligence, such as enhanced e$ciency, streamlined operations, and optimised actions, 
are already evident across various sub-industries within air transport. Leveraging the advancements in AI, big data technologies, 
and machine learning algorithms as enabling technologies, this study relied on existing literature to explore the application of 
these technological tools in di%erent aspects of air transport. !rough a comprehensive analysis of the literature using systematic 
and bibliometric approaches, we gained insights into the academic discourse and evaluated the extent to which the value of AI 
applications has been recognised.

!e "ndings of this study indicate that the discussions surrounding the applications of AI in the air transport industry are 
primarily focused on solving predictive and optimisation problems, while other areas, such as ecology and sustainability, are still 
in the early stages of exploration. Moreover, the research on safety, risks, and ethical considerations forms a small but gradually 
expanding cluster of studies that is yet to reach maturity. Conversely, there is a notable emergence of research endeavours aiming 
to bridge the gap between di%erent industries by proposing adaptable solutions that can be applied to air transport, encompassing 
collaborations ranging from medicine to agriculture. !ese "ndings serve as a starting point for future research, providing valuable 
insights into the gaps present in the current literature concerning the intersection of AI and air transport.

Despite our diligent e%orts to incorporate a wide range of robust studies, the focus on exclusively peer-reviewed and open-
access articles introduces certain limitations. To overcome these limitations, future research could consider expanding the scope to 
include non-academic publications and paid publications, thus broadening the range of information sources. Additionally, further 
support for the explored research areas can be obtained through empirical studies, which would provide precise insights into 
the application of AI in various subsets of the aviation industry. Lastly, relying solely on the Scopus database as the source of 
documents may pose another limitation, as it is possible that some relevant works may have been overlooked in our review, even 
though Scopus is considered a comprehensive scholarly repository.
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