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ABSTRACT
Gaussian mixture probability hypothesis density (GM-PHD) !ltering o"en assumes a uniform distribution of clutter in the 

observation area. However, in practice, clutter is o"en unknown and non-uniform, necessitating accurate estimation of its spatial 
distribution, non-uniformity, and temporal variations. To address this problem, we proposed a modi!ed GM-PHD !ltering method 
with clutter density estimation for multiple target tracking. In the proposed method, !rst, potential target measurements within 
the tracking gate are eliminated to obtain the clutter measurement set. Next, the clutter density around each target is estimated. 
Finally, the estimated clutter density is incorporated into GM-PHD !ltering, to estimate the target state and clutter density in 
complex clutter environments. Simulation results demonstrated that the proposed !ltering method improves the performance of 
the GM-PHD !lter in multi-target tracking scenarios with unknown clutter density.

Keywords: Gaussian mixture probability hypothesis density; Complex clutter environments; Clutter density estimation.
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INTRODUCTION

Target tracking involves analyzing various observation data of moving targets detected by active and passive sensors, such as 
radar, infrared, laser, electronic support, and intelligence measures. #rough optimization and comprehensive processing, real-
time capture of targets is achieved, and the number, location, and speed of targets in the monitoring area are estimated to identify 
target attributes, analyze intentions, and assess a situation to facilitate threat assessment (Yang et al. 2023a).

Target tracking technology encompasses single-target tracking and multi-target tracking (MTT). #e origins of single-target 
tracking technology can be traced back to the 1930s. #e Kalman !lter is a typical example of single-target tracking technology 
and exhibits excellent performance in single-sensor single-target tracking. However, with the increasing complexity of battle!eld 
environments, single-target tracking technology struggles to meet tactical requirements. Wax (1955) proposed the concept of 
MTT, which was initially employed in semiautomatic ground air defense systems.
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With the development of sensor networks and information technology, MTT technology has rapidly progressed (Yang 
et al. 2023b). An MTT system continuously tracks and predicts the states of multiple targets by using measurements obtained 
from various sensors. MTT algorithms can be broadly categorized into two types. #e !rst type is data association-based MTT 
algorithms, which operate on the principle of matching sensor-acquired measurements with targets and subsequently updating 
and estimating the status of each target with good correlation. However, traditional MTT algorithms, including the nearest 
neighbor (NN) method (Singer et al. 1972) and the joint probabilistic data association (JPDA) algorithm (Fortmann et al. 1983), 
rely on highly precise correlation technology; otherwise, correlation errors can lead to inaccurate estimations, greatly increasing 
the operational cost of the algorithm. #us, implementing data-association algorithms in complex backgrounds is challenging. 
#e other type includes MTT algorithms based on non-data association and random !nite set (RFS) theory. Mahler (2003) 
proposed the probability hypothesis density (PHD) !lter and provided closed-form solutions for the PHD !lter under both 
linear Gaussian and nonlinear non-Gaussian conditions. #e Gaussian mixture PHD (GM-PHD) !lter (Vo and Ma 2006) and 
the sequential Monte Carlo PHD (SMC-PHD) !lter (Clark and Vo 2007) have been developed. To achieve a more accurate 
estimation of the number of targets, the cardinalized PHD (CPHD) !lter (Mihaylova et al. 2014; Pasha et al. 2009) has been 
proposed. Closed-form solutions for linear Gaussian and nonlinear Gaussian conditions have been obtained, resulting in the 
GM-CPHD !lter (Schikora et al. 2013) and the SMC CPHD !lter (Mahler 2009). #e PHD !lter framework e%ectively avoids 
the need for data association between measurements and targets, involves low computational costs, and accurately estimates 
the number of multiple targets and their motion states in the presence of noise and sensor omission (Beard et al. 2013; Huang 
et al. 2022; Li et al. 2018).

In cluttered environments, uncertainty exists in measurements, which makes it di&cult to distinguish targets from clutter. 
However, most existing MTT algorithms, whether based on data association or RFS, assume a uniform clutter distribution 
across the observation area. In real-world scenarios, clutter is o"en unknown and non-uniform, requiring accurate estimation 
of its spatial distribution, non-uniformity, and time-varying density. To address this problem, various algorithms have been 
proposed. In a previous study (Lian et al. 2010), a comprehensive approach was presented to address the problem of estimating 
unknown clutter in MTT, by using the !nite mixing model and the expectation maximization (EM) algorithm. However, the 
clutter model’s sensitivity to initial values a%ects the estimation accuracy. Moreover, the traditional EM algorithm requires 
substantial computational resources and exhibits slow convergence, making it unsuitable for real-time tracking in complex 
cluttered backgrounds. Yan and Han (2012) proposed an algorithm based on entropy distribution to estimate unknown clutter 
by considering entropy distribution as the prior for mixed weights in the clutter density model, thereby enhancing the tracking 
performance of PHD !lters in cluttered environments. However, this approach fails to meet real-time performance requirements 
for practical tracking. In a previous study (Chen et al. 2015), an MTT algorithm based on kernel density estimation was proposed 
for the case when the clutter density is unknown. #is algorithm employs a kernel density estimator to estimate the probability 
density function (PDF) of clutter spatial distribution.

#e main contributions of this paper are as follows:
• Unlike the existed clutter density estimation, the predicted target state information is fully utilized by our approach, which 

helps to identify and estimate clutters in the region surrounding each target for improving the tracking performance.
• By incorporating clutter density estimation into the update equation for MTT, the clutter interference can be reduced and the 

trajectory of the target can be accurately estimated.
• Due to update the prediction component with latent target measurements, much less Gaussian components are needed to be 

pruned and merged compared with existed approaches, which reduces the time complexity of the algorithm.
The rest of this paper is organized as follows: in the problem formulation, the multi-target RFS modeling and 

the GM-PHD recursion are presented, and the GM-PHD !ltering approach with clutter density estimation is proposed in the 
modi!ed GM-PHD with clutter density estimation; in the simulation results and discussions, simulation results are provided. 
Finally, conclusions are presented.
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PROBLEM FORMULATION

Multi-target RFS modeling and the PHD !lter
#e MTT method based on RFS theory de!nes the states and measurements of multiple targets as RFS variables:

 }{ ,1 ,2 ,, ,...,
kk k k k NX x x x=  (1)

 }{ ,1 ,2 ,, ,...,
kk k k k MZ z z z=  (2)

where Xk is a random set representing the states of multiple targets at time k, Zk is the measured random set at time k, Nk is the 
number of targets at time k, Mk is the number of measured values at time k, ( ), 1, 2,...,k i kx i N=  is the state of the i th goal at 
time k, and ( ), 1, 2,...,k j kz j M=  is the j th measurement at time k.

Let the multi-target state set at time k-1 be represented by xk-1, then the multi-target state set at time k can be expressed as follows:

 ( )}{ ( )}{
1 1 1 1

1 11 1
k k k k

k k k kk k k kx X x X
X B x S x

− − − −
− −− −∈ ∈

= ∪ ∪ ∪ ∪Γ   (3)

where ( )11 kk kB x −−  and ( )11 kk kS x −−
 respectively represent the RFS of states of the xk-1-derived target and the survival target 

at time k, and Γk represents the random set of new target states at time k.
At time k, each state k kx X∈  produces an RFS ( )k xΘ , where ( )k xΘ  is { }kz  when the target is detected and ( )k xΘ  

is an empty set when the target is not detected. In the actual environment, in addition to measurements from actual targets, the 
sensor may receive false alarms or clutter sets Kk due to the interference of clutter.

Accordingly, the observation of multiple targets can be expressed using RFS modeling as follows:

 ( )
k

k k kx X
Z K x

∈

 
= Θ« »

 
U U   (4)

#e PHD !lter is an approximation of the multi-target Bayes !lter, which makes the recursion computationally tractable. 
From the PHD function of the multi-target state RFS, the local maxima can be used to generate the state estimates of targets.

#e PHD recursion is as follows:

 | 1 , | 1 1 | 1 1( ) ( ) ( | ) ( ) ( | ) ( ) ( )k k S k k k k k k k kv x p f x v d x v d xζ ζ ζ ζ β ζ ζ ζ γ− − − − −= + +∫ ∫   (5)
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v x p x v x

k z p g z v dξ ξ ξ ζ
−

−
∈ −

= − +
+

∑
∫

  (6)

where ( )k xγ  denotes the intensity of spontaneous target birth, | 1(. | .)k kf −  is the probability density of the Markov transition 
between target states, | 1(. | .)k kβ −  denotes the intensity of a spawned target, (. | .)kg  is the likelihood function of measurement 
to state, PS,k is the survival probability of targets and PD,k is the detection probability.

The GM-PHD recursion
For the linear Gaussian multi-target model, Vo and Ma (2006) provides a closed-form solution to the PHD recursion (Eqs. 5 

and 6). More concisely, these propositions show how the Gaussian components of the posterior intensity are analytically propagated 
to the next time.

Step 1: Prediction
At time k, assume that the GM-PHD of the posterior strength for multiple targets is as follows:
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where Jk-1 is the number of Gaussian components at time k-1, X is the value in the target state space and ( )
1
i
kw − , ( )

1
i
km − , and ( )

1
i
kP −  

are the weight, mean, and variance of the i-th Gaussian component at time k-1, respectively.
#e PHD of the target that survived from k-1 to k can be expressed as follows:
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where PS is the survival probability of the Gaussian component, ( )
1

i
k km −  and ( )

1
i
k kP −  are respectively the mean and covariance of 

the i-th Gaussian survival component at the time k.
#e new component at time k can be expressed as follows:

 ( ) ( ) ( ) ( )( )
,

, , ,
1
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B kJ

i i i
k B k B k B k

i
B x w N x m P
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where ( )
,
i
B kw , ( )

,
i
B km , and ( )

,
i
B kP  are respectively the weight, mean, and covariance of the i-th newborn component at time k, and 

,B kJ  is the number of newborn Gaussian components at time k.
#e GM of the predicted strength at time k is the sum of the surviving Gaussian component ( )1,k k sv x−  at time k and the 

newborn Gaussian component ( )kB x  at time k:

 ( ) ( ) ( )1 1, kk k k k Sv x v x B x− −= +  (12)

Step 2: Updating
By using the estimated clutter density, the predicted Gaussian component can be updated with the potential target measurement 

^ t
kZ  by using the GM-PHD !lter. #is reduces the clutter component in the Gaussian component and provides posterior intensity 

for multiple targets:

 ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
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where Pd is the detection probability, ( )1k kv x−  is the prediction intensity, ( )kg ⋅  is the likelihood function, and ( )kc z  is the 
clutter density.

Step 3: Gaussian component trimming and merging
As time progresses, the number of Gaussian terms in the posterior PHD increases, leading to higher computational complexity.
If there are 1 1k kJ − −  GM at time k-1, then the number of GM items at time k can be obtained as follows:

 ( )( )( ), ,1 1 1 1k b k kk k k kJ J J J Zβ− −= + + +  (14)
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where Jβ,k, Jb,k, and |Zk| are respectively the number of GM terms of the derived target state set, the new target state set, and the 
number of measurements.

To prevent an excessive increase in the number of Gaussian terms, it is necessary to discard Gaussian components with 
low weights. #is process is known as Gaussian component clipping and involves trimming the Gaussian components ( )i

km  
in the posterior intensity function (Eq. 13) and retaining only those Gaussian components whose weights are greater than the 
clipping threshold Tp.

 ( ) , 1, 2,...,i
k p kw T i J> =  (15)

Furthermore, to reduce the total number of Gaussian terms, multiple Gaussian components that exhibit similar distributions 
and meet the merging threshold Tm can be combined into a single Gaussian term.

Accordingly, Gaussian components ( )i
km  and ( )j

km  that satisfy the following condition are combined:

 ( ) ( )( ) ( )( )( ) ( ) ( )( )1

m

Ti j i i j
k k k k km m P m m T

−
− − ≤   (16)

Finally, the GM term 
( ) ( ) ( )
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~ ~ ~
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, ,
kJi i i

k kk k k
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w m P
=
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 
  

 at time k is obtained.

Step 4: Extraction of multiple target states
Because the mean of each Gaussian term corresponds to a local extremum point of the posterior strength, the weights of the 

GM term can be used to obtain the states of multiple targets. #e GM term ( ) ( ) ( )
~
k

~ ~ ~

1

, ,
kJi i i

k kk k k

i

w m P
=

  
 
  

 of time k posterior strength 
obtained in step 5 is used for extracting the multi-target states.

MODIFIED GM-PHD WITH CLUTTER DENSITY ESTIMATION

In the original GM-PHD !lter, it is assumed that the number of clutter occurrences follows the Poisson distribution and 
that the distribution is uniform over the entire range. Although this assumption works well in situations with low clutter 
and minimal changes, it becomes problematic in real-world scenarios where clutter distribution is unknown and varies over 
time. In such cases, this assumption leads to di&culties in accurately tracking targets, resulting in false alarms and decreased 
tracking accuracy and robustness.

Partial clutter density estimation
In this study, we aimed to address the challenge of estimating clutter density accurately in the presence of unknown and time-

varying clutter distribution. We aimed to utilize measurement data received from sensors to identify and estimate clutter in the 
region surrounding each target. By incorporating this clutter density estimation into the update equation of the MTT, the number 
of targets and their states can be accurately determined.

To estimate clutter density, target measurements are separated from clutter measurements in the observed values by 
applying an elliptical wave gate, centered on the predicted position of the tracked target. #e wave gate determines the range 
of the current observed value of the target; its size is determined based on the probability of correctly receiving echoes. 
#e objective is to ensure that real measurements fall into the wave gate with a high probability while minimizing the inclusion 
of irrelevant values.

#e i-th Gaussian component ( )
1
i
km −  at time k-1 is predicted, and the tracking gate for the i-th predicted Gaussian component 

( )
1
i
km −  is calculated as follows:
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where g is the tracking gate parameter.
From the measurement set Zk at time k, the NN measurement 

^ t
kZ  falling into the tracking gate is selected, and 

^ t
kZ  is recorded as 

the potential target measurement. Next, the current clutter measurement set 
^ t
kZ  is obtained by removing 

^ t
kZ  from the measurement 

set Zk at time k.
#e position of the j-th clutter is ( )( )( ) ( )

, ,, 1, 2,...,j j
x k y kz z j C= .

#e mean of the i-th prediction Gaussian component ( )
1

i
k km −

 at time k is ( ) ( )
( 1) ,1 1( , )( 1, 2,..., )i i
k B kk k k kx y i J J+− − = + .

#e distance between each clutter and each Gaussian component of the predicted mean is calculated as follows:

 ( ) ( )( )
2

( )
,

2
( ) ( )
1 1 ,
i i

ij k k k
j

x k y kk
jd z y zx − −= +− −   (19)

Next, the distance is sorted in ascending order.
Generally, clutter points with shorter distances have a greater in'uence on the surrounding density value of the target, whereas 

clutter points with longer distances have a smaller in'uence on the estimated density value. #erefore, to calculate the clutter 
density around each target, it is su&cient to consider the situation of the NN clutter. By incorporating the information of the NN 
clutter into the PDF, the clutter density value around the target can be determined.

By taking the average distance between the i-th target and each clutter as the distance threshold β, we obtain:

 1=

C

ij
j
d

C
β =
∑

 (20)

Let the number of distance sets be less than the distance threshold of β be η, and the distance be ( )max ijd β≤ .
Accordingly, the clutter density near the i-th predicted Gaussian component can be expressed as follows:

 ( )
( )( )2max

i
k

ij

c z
d

η

π β
=

≤
  (21)

Clutter estimation GM-PHD (CE-GM-PHD)
We present a modi!ed approach that combines GM-PHD !ltering with clutter density estimation. By utilizing the 

predicted and measured values of the GM intensity for multiple targets, we estimated the clutter set. Next, we integrated 
the clutter density around each target with the GM-PHD !lter, to estimate the state of multiple targets. #e algorithm’s 'ow 
table is illustrated in Table 1.
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Table 1. #e 'owchart of the proposed !ltering method.

Step Title Description

1 Initialize Suppose that the function of the target set of states is a Gaussian mixture.

2 Prediction
The survival target is predicted according to the posterior strength of 

multiple targets at k-1 time.
Predict new birth and derived targets.

3 Estimation of clutter 
density

Use the predicted Gaussian posterior strength to !nd the clutter value in 
the measured data.

Estimate the amount of clutter around each target.
Find the clutter density around each target.

4 Update
The estimated clutter density (Eq. 21) is brought into the updated equation 
(Eq. 13), and the predicted Gaussian posterior intensity is updated with the 

measured value.

5 Trimming and merging
Trim the Gaussian component ( )i

km  and retain the Gaussian component 
whose weight is greater than the clipping threshold Tp.
Merge Gauss items that meet the merge threshold Tp.

6 Target state extraction 
and number estimation

The number of targets is estimated as 
( )^

1

kJ
i

k k
i

N round ω
=

 
=  

 
∑

The target state is estimated as the mean corresponding to the Gaussian 
component with the greatest weight

Source: Elaborated by the authors.

Complexity analysis
#e algorithm complexity is a concept that measures the e%ectiveness of an algorithm, representing the basic number of 

operations required during the execution process as time complexity. #e computational complexity of the GM-PHD algorithm is 
mainly concentrated in the recursive process. #e GM term of the conventional GM-PHD algorithm increases continuously over 
time. If there are m GM terms at time k-1, n new GM terms at time k, and the measurement set contains p e%ective measurement 
sets and q clutter, the time complexity of the GM-PHD algorithm is 0((m + n)(1 + (p + q)), while the time complexity of the 
CE-GM-PHD algorithm is 0 ((m + n)(1+(p))). #e above will be analyzed and veri!ed by the following experimental simulations 
in the simulation results and discussions.

SIMULATION RESULTS AND DISCUSSIONS

To verify the e%ectiveness of the proposed clutter estimation algorithm, we compared it with the GM-PHD !lter in 
di%erent scenarios.

Uneven clutter distribution with !xed clutter count
In scenario A, MTT in a simple clutter background was investigated. We assumed that the spatial distribution of the clutter 

measurement is non-uniform and remains constant over time. #e true clutter count per moment was set as 50, and complex 
spatially distributed non-uniform clutter measurements were obtained using various uniform distribution PDFs and Gaussian 
PDFs. #e clutter measurements follow the following PDF in space:

 ( ) ( ) ( )
3

1

2
= , ,i i i

k c c c c
i

c z U N m Pω ω
=

⋅ + ⋅∑   (22)

where the weights are ω1
c = 0.2, ωc

2 = 0.3 and ωc
3 = 0.5, U(·) = 1/S, where S represents the area of the monitoring area on the two-

dimensional measurement space i
cm  and i

cP  are the mean and covariance matrices of Gaussian distributions, respectively.
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#e detection area was [ ] [ ] 21000,1000 1000,1000 m− × − . #ere were three targets in the scene, and each target moved in a straight 
line at a nearly uniform speed. #e initial states of the targets are presented in Table 2.

Table 2. #e setting of target tracking scenario A.

Target number Initial position/m Initial velocity/(m/s)

1 (250,250) (2.5, -11.5)

2 (-250,250) (11.5, -2.5)

Source: Elaborated by the authors

#e parameters of the new component are presented in Table 3.
Table 3. New component parameter settings.

Component numbering Weight Mean/m Variance /m2

1 0.1 [250,0,250,0]T diag (100,100,25,25)

2 0.1 [-250,0,250,0]T diag (100,100,25,25)

3 0.1 [-250,0,-750,0]T diag (100,100,400,400)

Source: Elaborated by the authors.

#e simulation results are shown in Figs. 1–4.
As can be seen in Fig. 1, which depicts the MTT e%ect, there are three targets in the monitoring area, and target 1 and target 2 

emerged simultaneously but occupied di%erent positions and moved uniformly in a linear manner. Prior to and a"er 53 s, target 1 
and target 2 !rst approached each other and then moved apart. At 66 s, target 3 emerged from target 1. By utilizing modi!ed 
GM-PHD !ltering with clutter density estimation, multiple targets can be continuously tracked throughout the simulation cycle. 
In contrast, the GM-PHD algorithm with !xed clutter density exhibits estimation deviations and losses of targets due to the in'uence 
of clutter distribution transformation. Experiments simulated by 100 Monte Carlo runs demonstrated that our algorithm may 
experience tracking bias during certain periods with simple clutter distribution. However, with continuous tracking !ltering, the 
tracking bias returns to a smaller value, eliminating any target losses. In other words, the CE-GM-PHD algorithm demonstrates 
superior tracking robustness compared to the GM-PHD algorithm with !xed clutter density. A comparison between the number 
of clutters estimated by the CE-GM-PHD algorithm and the actual number of clutters is shown in Fig. 2.

200

0

-200

-400

-600

-800

-1000

Y 
po

si
tio

n

X position

Target1 Real trajectory
Target2 Real trajectory
Target3 Real trajectory
GM-PHD
CE-GM-PHD

-200 0 200 400 600 800

Source: Elaborated by the authors.

Figure 1. Multi-target tracking trajectories of two approaches.
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Figure 2. Clutter number comparison.

To ensure an accurate comparison of the tracking performance between the two approaches, we employed the optimal 
subpattern assignment (OSPA) distance [Schuhmacher et al. 2008) as a metric to measure their tracking errors, as depicted in 
Fig. 3. Table 4 shows single run time of two approaches.
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Figure 3. Tracking errors of the two approaches.

Table 4. Averaged computation time (seconds) for one run (100 steps) of two approaches in scenario A.

GM-PHD CE-GM-PHD

67.5694 46.6473

Source: Elaborated by the authors.

As can be seen in Fig. 3, the modi!ed GM-PHD !ltering algorithm with clutter density estimation outperformed the standard 
GM-PHD algorithm when the targets moved uniformly in a straight line without mutual interference, exhibiting superior tracking 
with smaller errors. However, large errors occurred when targets intersected or separated due to the in'uence of neighboring targets, 
resulting in an increased intensity of target measurements. #is demonstrates the CE-GM-PHD algorithm’s ability to handle the 
complex relationship between clutter density and target distribution in complex environments and its ability to accurately estimate 
the clutter density surrounding each target. Furthermore, the CE-GM-PHD algorithm provided a more precise approximation of 
the actual clutter distribution, thus demonstrating its adaptability, stability, and robustness in tracking. By accurately estimating 
clutter intensity, it e%ectively reduces the computational load and enhances real-time tracking performance by eliminating the 
need to address inaccurate clutter Gaussian components during pruning and merging processes.
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Uneven clutter distribution and variable clutter count
In scenario B, MTT under complex clutter backgrounds was investigated. A computer simulation was performed to randomly 

generate clutter instances, surpassing the number of clutter instances in scenario A. #e clutter distribution in this environment 
was unknown. #ree targets within the region exhibited uniform straight-line motion, and the same motion model parameters 
and initialization parameters were employed as in scenario A. #e experimental results are shown in Figs. 4–6.

As can be seen from Fig. 4, under complex backgrounds, the GM-PHD algorithm with !xed clutter density was a%ected 
by clutter 'uctuations, leading to deviations in target state estimation in the majority of cases. For instance, the third derived 
target remained untracked for a certain duration, resulting in its loss. In contrast, the CE-GM-PHD algorithm exhibited minor 
deviations at speci!c points, such as target encounters and spawns. #ese !ndings highlight the superiority of the CE-GM-PHD 
algorithm in handling complex clutter scenarios because it maintains accurate tracking with minimal errors and avoids target loss. 
#e CE-GM-PHD algorithm’s capability to accurately estimate the number of clutter instances at each moment is shown in Fig. 5.
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Figure 4. Multi-target tracking trajectories of two approaches.
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Figure 5. Clutter number comparison.

#e tracking errors of both approaches are shown in Fig. 6. Table 5 shows single run time of two approaches.
As can be seen from Fig. 6, the CE-GM-PHD algorithm consistently and accurately tracked the upper target with minimal 

error compared to the GM-PHD algorithm with !xed clutter density, thus demonstrating that the CE-GM-PHD algorithm can 
e%ectively handle the complex relationship between clutter and targets in complex environments and the algorithm’s ability to 
estimate the clutter distribution more closely to the actual distribution with strong adaptability. Moreover, the CE-GM-PHD 
algorithm ensures tracking stability and robustness.
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Figure 6. Tracking errors of the two approaches.

Table 5. Averaged computation time (seconds) for one run (100 steps) of two approaches in scenario B.

GM-PHD CE-GM-PHD

81.5346 67.7185

Source: Elaborated by the authors.

Tracking of multiple maneuvering targets
In scenario C, the tracking of multiple maneuvering targets against complex backgrounds was investigated. Clutter environments 

in real scenarios were simulated, and a random distribution of clutter instances was generated. #e scene comprised three targets, 

each performing a turning movement. #e initial states of the targets are outlined in Table 6.

Table 6. #e setting of target tracking scenario C.

Target number Initial position/m Initial velocity/(m/s)

1 (-750,0) (32, 3)

2 (750,750) (-32, -15)

3 (436.9.586.2) (-30, 10)

Source: Elaborated by the authors.

#e remaining unmentioned parameters were consistent with simulation 1. #e simulation e%ect is shown in Figs. 7 and 8. 

Table 7 shows single run time of two approaches.

#e multi-target trajectory results of a single simulation are shown in Fig. 7. When the target crossed and derivatives occurred, 

GM-PHD exhibited multiple target losses. However, the target estimation of CE-GM-PHD covered the real trajectory at every 

moment, thus indicating that the proposed algorithm can track multiple maneuvering targets in an unknown clutter background. 

Furthermore, it outperformed GM-PHD with !xed clutter density. In this simulation, both algorithms exhibited target deviation; 

however, the improved algorithm exhibited considerably higher tracking accuracy than GM-PHD. GM-PHD lost the target’s 

actual location; in contrast, CE-GM-PHD excelled in tracking the target. #e improved algorithm’s superior performance can be 

attributed to the online estimation algorithm for clutter intensity.
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Figure 7. Multi-target tracking trajectories of two approaches.

Table 7. Averaged computation time (seconds) for one run (100 steps) of two approaches in scenario C.

GM-PHD CE-GM-PHD

45.3684 35.2786

Source: Elaborated by the authors.

#e distribution distance of the optimized sub mode representing the tracking error of multiple targets is shown in Fig. 8. 
CE-GM-PHD exhibited higher accuracy in tracking multiple maneuvering targets compared to GM-PHD and e%ectively handled the 
relationship between clutter and targets, resulting in clutter estimation that closely matched the real distribution. Moreover, CE-GM-
PHD exhibited better stability and robustness. #ese !ndings further validate the e%ectiveness of the improved algorithm.
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Figure 8. Tracking errors of the two approaches.

Clutter with non-Gaussian distribution
To verify the e%ectiveness of our method, we have added an MTT scenario D in which the clutter spatial distribution is a 

non-Gaussian distribution. We considered using the weighted mixture of di%erent distributions (several Gaussian distributions 
and uniform distributions with di%erent density) to approach practical clutter environments as possible. #e comparison results 
between CE-GM-PHD and GM-PHD are evaluated by OSPA and shown in Fig. 9. Table 8 shows single run time of two approaches.
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Figure 9. Tracking errors of the two algorithms.

Table 8. Averaged computation time (seconds) for one run (100 steps) of two approaches.

Gaussian mixture CE-GM-PHD

68.4218 45.6474

Source: Elaborated by the authors.

According to above experimental results, it can be seen that when the clutter space is non-Gaussian distribution, our approach 
has better performance and seems more suitable for practical tracking scenarios with complex clutters. In addition, our approach has 
other bene!ts:
• #ere is no need to set the initial value and !t the data. #e calculation is simple, which facilitates the practical tracking scenarios.
• It can estimate the clutter distribution accurately and rapidly to handle cases of time-varying and complex clutters.
• #e range of the target area is adjusted adaptively, which avoids falling into the local optimal solution and improves the 

tracking performance.
In summary, the proposed CE-GM-PHD algorithm greatly enhances MTT performance. #e simulation results demonstrated 

that the regional clutter estimation-based method improves the algorithm’s performance without requiring clutter estimation or 
!nding suitable initial values. In addition, it addresses the challenges posed by rapidly changing clutter scenes and accurately 
estimates clutter distribution in the adjacent regions of each target. #e Gaussian component pruning merging method eliminates 
the need to handle inaccurate clutter components, resulting in simpler calculations. Consequently, the improved algorithm enables 
continuous real-time tracking of multiple targets in complex clutter scenarios.

CONCLUSIONS

To solve the problem that !xed clutter density a%ects the estimation performance of GM-PHD !ltering, in this paper, we 
proposed the CE-GM-PHD !ltering method. #e proposed method performs clutter density estimation to improve !ltering 
accuracy. #e CE-GM-PHD !ltering method performs potential target measurements and clutter measurements through 
a combination of multi-target GM intensity predictions and measurements. Furthermore, it estimates the clutter density 
surrounding each target and incorporates it into the GM-PHD !lter. #e proposed !ltering method achieves continuous and 
e%ective tracking by updating the predicted Gaussian component with potential target measurements and jointly estimating 
the state of multiple targets.
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CE-GM-PHD does not rely on the prior clutter distribution and can e%ectively estimate the clutter distribution, thus making 
it highly suitable for complex scenes. #e proposed !ltering method not only enhances real-time tracking performance, but also 
improves the accuracy of target tracking. In future research, we will explore the application of CE-GM-PHD in extended MTT.
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