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ABSTRACT
!is paper introduces a new method for synthesizing guidance laws for anti-tank guided missiles (ATGM) to intercept 

maneuvering tank targets. It utilizes a nonlinear relative model in the two-dimensional horizontal plane and optimal error 
dynamics (OED) theory. !e nonlinear relative model simpli"es the problem of targeting a moving target into attacking a stationary 
target, making the guidance law synthesis task easier. !e selection of OED allows for the design of a guidance command that 
ensures the zero e#ort miss (ZEM) error decreases to zero within a "nite time, ensuring successful target interception. !e paper 
also introduces an exponential decay weighting function of remaining time-to-go to optimize the distribution of command 
accelerations throughout the guidance process, thereby reducing initial command requirements and converging acceleration 
commands towards zero at the end time. !e synthesized guidance laws are derived based on the nonlinear relative model and 
OED without making any small-angle linearization assumptions, allowing them to address various nonlinear scenarios. Numerical 
simulations illustrate the proposed guidance law’s performance.

Keywords: Anti-tank guided missile; Guidance law; Optimal error dynamics; Nonlinear relative model.
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INTRODUCTION

!e design of missile guidance laws is a "nite-time tracking issue aimed at achieving speci"c performance criteria. !e focus is 
o$en on ensuring successful target interception, wherein the tracking error can be de"ned by two primary metrics: the zero e#ort 
miss (ZEM) (Dwivedi et al. 2016; He and Lee 2017) or the line-of-sight (LOS) rate (Zhou et al. 2009). By e#ectively nullifying the 
ZEM or LOS rate, a missile can achieve perfect interception capabilities. Among the strategies for missile guidance, proportional 
navigation guidance (PNG) stands out as a pioneering and widely applied technique. For decades, its variations have been vital 
in guiding missiles (Becker 1990; Zarchan 2012). !e core principle of PNG involves generating lateral acceleration to nullify any 
changes in the LOS rate, ensuring that the missile maintains a collision course to intercept its target. However, PNG o$en requires 
large acceleration commands to intercept maneuvering targets, especially in the "nal phase.

To address this issue, augmented PNG (APNG) was developed using information about the target’s acceleration to improve 
interception performance against moving targets. To study the synthesis of PNG and APNG laws using linear optimal control 
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theory, we must simplify these kinematic equations appropriately. !is can be achieved using small-angle assumptions (such as a 
slight heading error [HE] angle) to linearize these kinematic equations (Zarchan 2012). !ese limitations reduce their e#ectiveness 
in practical applications, especially when large initial heading angle deviations result in limited coverage of nonlinear engagement 
scenarios. !e development of new guidance laws must consider nonlinear factors to enhance e#ectiveness and accuracy in all 
engagement situations, ensuring optimal interception capability in practice.

In developing advanced guidance laws, numerous optimal guidance laws have been introduced with the core goal of successful 
target interception and meeting additional requirements such as speci"c impact time or impact angle (Bin et al. 2023; He 
et al. 2017; Lee and Kim 2021; Lee et al. 2013; Ratnoo and Ghose 2010; Tran Van et al. 2023). For impact angle requirements, 
the intercept angle error is treated as the tracking error in the guidance law design (Van et al. 2023). However, most of these 
studies focus on "xed or nonmaneuvering targets, leaving a gap in research on maneuvering targets in nonlinear environments. 
!e exploration and development of e#ective guidance laws for maneuvering targets in nonlinear contexts remain an area 
requiring deeper investigation.

After identifying the tracking error for a particular missile guidance problem, nonlinear control theories can be 
applied to reduce this error to zero within a specified timeframe. This process begins by selecting the desired error 
dynamics and constructing the control inputs to ensure that the system’s trajectory converges to these selected error 
dynamics. This is a standard procedure for establishing new missile guidance laws using nonlinear control methods. 
However, most previous studies have focused on converging the tracking error to zero without considering the optimal 
error dynamics (OED) of a meaningful performance index (He et al. 2020). The PNG guidance law proves to be effective 
when utilized with a navigation constant ranging from 3 to 5, thereby improving overall robustness. However, maintaining 
this constant throughout the guidance process can require large normal accelerations when there is a significant initial 
HE. This phenomenon can overload the autopilot system and disturb the missile seeker. Therefore, a guidance law should 
reduce sensitivity to initial errors in fully homing guidance, facilitate seamless transitions, and prevent abrupt changes 
in combined guidance systems.

!is paper introduces a method to solve the homing guidance problem for the anti-tank guided missile (ATGM) targeting 
a maneuvering tank using nonlinear kinematics on a horizontal plane. Unlike previous research, we employ a relative 
coordinate system attached to the target, with the origin at the target itself. By applying vector transformations, such as vector 
translation, we align the target’s velocity, lateral acceleration, and axial acceleration vectors with the missile’s velocity and 
acceleration vectors at a common origin attached to the missile. Subsequently, by utilizing vector addition and subtraction 
rules, we transform the initial problem into one where a missile with varying velocity attacks a stationary target. !is method 
avoids relying on linear approximations, making the guidance law applicable to various nonlinear combat scenarios and 
facilitating practical implementation. Additionally, the paper introduces a time-to-go weighted power function to adjust the 
distribution of command acceleration throughout the guidance process. By adjusting the Np guidance gain, this function 
reduces sensitivity to large initial HE angles.

Problem formulation and preliminaries
Engagement kinematics

!e homing guidance method demonstrates the missile control law, represented as an algorithm constructed based on the 
dynamic geometrical correlations between the missile and the target. !e homing guidance law is a mathematical equation 
(or system of equations) that expresses the dynamic geometrical relationship and motion parameters between two objects, 
allowing for the generation of control parameters to ensure the missile accurately approaches the target. !erefore, we "rst 
need to examine the dynamic geometrical correlation between the missile and the target to develop a guidance law for a 
homing missile.

Figure 1 illustrates the engagement geometry dynamics between the missile and the target in a two-dimensional horizontal 
plane model OXIZI.
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Figure 1. !e kinematics of the missile and target in the horizontal plane.

In a 2D plane, the missile M and target T are modeled as point masses. !eir velocity vectors are VM for the missile and VT 
for the target, with respective positions (xM, zM) and (xT, zT) in the inertial coordinate system. !e angles of interest are the LOS 
angle, the missile’s heading angle λ, ΨM, and the target’s heading angle ΨT. Also, r is the range between the target and the missile. 
!e lateral accelerations perpendicular to their trajectories are aM for the missile and aT for the target. !e magnitudes of these 
vectors are VM, VT, aM, and aT, assuming that VM > VT. To simplify the problem, we assume that the axial acceleration component 
vector AT aligns with the direction of the target’s velocity vector. !e lateral acceleration aT characterizes the change in the direction 
of the velocity, while the axial acceleration AT, which aligns with the velocity vector, signi"es the increase in the tank’s speed. 
!e paper concentrates on formulating the guidance law, assuming that the target’s maneuvering information is already known. 
Consequently, the estimation process of the target’s information is beyond the scope of this paper.

!e kinematic equations in the Cartesian inertial frame of the missile are:

 M MM V cx osψ=  (1)

 sinM M Mz V ψ=  (2)

 
M Mσ θ λ= −  (3) 

!e position components, velocity, and velocity orientation of the tank vehicle, modeled as a point mass, are described by 
Eqs. 4–6:

 T TT V cx osψ=  (4)

 sinT TT Vz ψ=  (5)

 TTV A=   (6)

!e set of equations that describe the geometric dynamic relationship between the missile and the target is as follows:

 ( ) ( )T T M Mr V cos V cosψ λ ψ λ= − − −  (7)

 sin( ) sin( )T T M Mr V Vλ ψ λ ψ λ= − − −  (8)
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!e initial conditions are provided as follows: r(0) = r0, λ(0) = λ0, ΨM(0) = ΨM0 , and ΨT(0) = ΨT0, respectively. To streamline 
the tracking model for intercepting a maneuvering target, we introduce a novel inertial coordinate system with its origin "xed 
to the target, as illustrated in Fig. 1. !is makes the initial maneuvering target equivalent to a stationary virtual target (Jeon et al. 
2015). Figure 2 depicts the geometric relationship between vectors VM, VT, aM, aT, and AT in the inertial coordinate system and 
VR, aR the relative virtual coordinate system. Using vector translation, we align the target’s velocity, lateral acceleration, and axial 
acceleration vectors with the missile’s velocity and acceleration vectors at a common origin.
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Figure 2. Geometric relationship between acceleration and velocity vectors of missile and target.

!en, by applying vector addition and subtraction rules, we obtain the following calculations: VR Δ= VM - VT represents the 
relative velocity and aR Δ= aM - aTΣ signi"es the relative lateral acceleration command perpendicular to VR, in which aTΣ Δ= aT + AT 
is the sum of the target’s lateral acceleration and axial acceleration vectors. !e magnitudes of the vectors VR and aR are denoted 
as VR and aR, respectively. !e geometric dynamic relationship between the missile and the target in the relative virtual coordinate 
system is precisely illustrated with rotation angles in Fig. 3.
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Figure 3. Geometric relationship in the relative virtual coordinate systems.

In the nonlinear virtual relative coordinate system, ΨR denotes the relative heading angle, and σR = ΨR-λ de"nes a virtual look 
angle, the angle formed between the relative velocity VR and the LOS.

Based on the dynamic geometric relationships illustrated in Figs. 1–3, we can determine the values for the relative velocity 
and heading angle in the relative virtual coordinate system as follows (Bin et al. 2023):
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 2 2 2 cos( )R M T M T M TV V V V V ψ ψ= + − −  (11)

 1 sin sintan
cos cos

M T
R

M T

ψ η ψ
ψ

ψ η ψ
− −

=
−

 (12)

Let the velocity ratio be de"ned as T MV Vη = , where η < 1. Note that the relationship between the 'ight angles ΨM and ΨT 
in the original coordinate system and the relative heading angle ΨR in the new virtual coordinate system is provided by (Jeon 
et al. 2015):

 
2 2 2

1̀ 1 ( )cos ( )
2

R M
M R

R M

V V
V V

η
ψ ψ − − +

= +  (13)

 
2 2 2

1̀ 1 ( )cos ( )
2

R M
T M

R M

V V
V V

η
ψ ψ − − +

= −  (14)

Based on the geometric relationship of relative motions, the missile’s normal acceleration in the relative coordinate system 
is calculated based on the missile’s lateral acceleration, the target’s lateral acceleration, and the target’s axial acceleration, as 
de"ned below:

 cos( ) cos( ) sin( )R M R M T R T T R Ta a a Aψ ψ ψ ψ ψ ψ= − − − + −  (15)

The kinematic and geometrical dynamic equations in the relative virtual reference frame shown in Fig. 3 are derived 
as follows:

 R Rr V cosσ= −  (16)

 sinR RV
r
σ

λ
−

=  (17)

 
R

R
R V

a
ψ =  (18)

 R Rσ ψ λ= −   (19) 

To successfully intercept the target, the range r must decrease to 0 within a "nite time tf. Furthermore, from Eq. 17, it is observed 
that the virtual lead angle ( )R tσ  in the relative coordinate system must also be 0 to avoid situations where the rate of change of 
the LOS angle becomes in"nite as r approaches 0. From Eq. 16, for r(t) to strictly decrease over time, 2 ( ) 2R tπ σ π− < <  for t ∈ 
[0, tf]. However, this is only a necessary condition. !erefore, it needs to be proved to satisfy the su(cient condition. !is proof 
will be addressed a$er synthesizing the guidance law.

From Eq. 11, substituting the velocity ratio η, we get the following equation:

 21 2 cos( )R M M TV V η η ψ ψ= + − −  (20)

Based on the expression Eq. 20, it can be seen that VR changes over time, s positive and the value of VR is in the following range:
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 ( ) (1 )
0 (1 ) ( )

R M

M R

V t V
V V t

η
η
≤ +

 < − ≤
 (21)

Accordingly, the initial kinematic model of a missile with constant speed attacking a maneuvering target can be transformed into an 
alternative model, where the missile has variable speed while the target remains stationary. !e main advantage of this transformation 
is that it allows the construction and solution of guidance laws without the need for linearization. In other words, this method 
simpli"es the guidance system’s analysis and design process while enhancing the accuracy and e(ciency of guidance algorithms.

Problem formulation
Before getting into the problem formulation, let us "rst explain two concepts used in synthesizing guidance law: ZEM is 

understood as the measured distance between the target’s center of mass and its projection along the relative velocity direction, 
assuming that both the target and missile begin moving uniformly from that point in time (Tang et al. 2023). In the relative virtual 
frame in Fig. 3, the ZEM, represented by ZEM(t), can be expressed as:

 ( ) sin RZEM t r σ=  (22)

To achieve a perfect intercept of the target, it is necessary to reduce the ZEM to zero at the "nal time ft . !erefore, the 
condition for a successful target intercept is determined as:

 ( ) 0fZEM t =  (23)

In which the symbol tf represents the interception time.

The preliminary concept of OED
!is section provides an overview of "nite-time convergence error dynamics. !e concept introduced here enables us to achieve 

convergence of guidance errors within a speci"ed time frame and shape the error pattern as needed. Designing guidance laws tackles 
a control problem aimed at monitoring and adjusting errors within a "nite period. De"ning the relevant guidance error, denoted as 
e(t), is crucial for achieving the intercept condition. !is error may take various forms in various forms, such as ZEM, LOS rate, HE, 
impact time error, or impact angle error, depending on the speci"c nature of the guidance problem (He and Lee 2018; Jeong et al. 2024).

In order to establish the system equations describing the dynamics of the selected guidance error, we derive the guidance 
error’s derivative over time. !is derived equation illustrates the progression of the guidance error over time and provides insights 
into its behavior and attributes. !e general form of the system equation is as follows:

 ( ) ( ) ( )e t g t u t=  (24)

while g(t) is considered a known function that changes over time and u(t) is the input control signal of the system.
Recent studies in He and Lee (2018) and Li et al. (2018) have explored OED to achieve optimal convergence patterns of guidance 

errors within a "nite time frame. Based on the results in these works, the OED can be expressed as follows.

 
( )( ) ( ) 0
go

te t e t
t
Γ

+ =  (25)

where go ft t t−� = go ft t t−�  denotes the time-to-go, indicating the missile’s remaining 'ight time until the target is intercepted. Equation 25 
is a simple form of Cauchy-Euler type di#erential equation. !e analytical solution of the Eq. 25 takes the following form:
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 0( ) ( ) go

f

t
e t e t

t

Γ
 

=   
 

 (26)

From Eq. 26, it can be seen that if e(t0) is initially non-zero, the error e(t) will approach zero as tgo gradually approaches zero. 
Where Γ > 0 is the gain that changes over time, characterizing the rate at which the error e(t) converges to zero and is determined 
as follows:

 
1 2

1 2

( ) ( )
( )

( ) ( )
f

go
t

t

t W t g t
t

W g dτ τ τ

−

−

Γ =

∫
 (27) 

with W( ) 0t >  is called the weighting function, having arbitrary forms but always being positive.
!e control input resulting from the OED described above minimizes the cost function speci"ed below. !e full proof, utilizing 

the Schwarz inequality theorem, has been detailed in (He et al. 2020):

 21 ( ) ( )
2

ft

t

J W u dτ τ τ= ∫  (28)

Guidance law design
Derivation of guidance law with constant guidance gain (RPNG with constant Np)

!e guidance law, formulated with a meaningful cost function, is designed using OED. !e control objective aims to devise 
feedback guidance commands that enable the missile to intercept the target successfully at the designated "nal time. !e guidance 
error is de"ned as follows:

 ( ) 0 ( )ze t ZEM t= −  (29) 

We de"ne the OED for e(t) as follows:

 ( ) ( ) 0p
z z

go

N
e t e t

t
+ =  (30) 

where N is a positive constant. Substituting Eq. 22 into 29 and then taking the time derivative of the guidance error, we get:

 ( ) ( sin cos )z R R Re t r rσ σ σ= − +    (31) 

By substituting Eqs. 16–19 into Eq. 31 and performing some simple transformations and rearrangements, we obtain the 
following result:

 
cos( ) R R

z
R

a re t
V

σ
= −  (32)

From Fig. 3, we can roughly estimate the time-to-go as follows: 
cosˆ R

go
R

rt
V
σ

≈ ; then Eq. 32 takes the following form:

 ( )z R goe t a t= −  (33)
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In this case, derived from Eq. 24, we obtain the control input u(t) and the function g(t) as:

 
( )
( )

go

R

g t t
u t a

= −


=
 (34)

In this case, Γ(t)=Np, from Eqs. 27 and 28, we derive the related cost function as:

 
2

3

1 ( )
2

f

p

t

N
t go

uJ d
t

τ τ−= ∫  (35)

By replacing Eq. 30 into Eq. 33, we derive the expression for the guidance law in the case of constant Np guidance gain as follows:

 2

( )
R p p R

go

ZEM ta N N V
t

λ= ≈   (36)

!e guidance law (Eq. 36), formulated within the virtual relative coordinate system, has the similar form as the ideal PNG. 
However, instead of the variable VM, it is replaced by the variable VR in the above expression. From Eq. 35, we see that the 
performance index represents energy optimization weighted by 31 pN

got
− . Choosing 3pN =  ensures OED for energy optimization. 

Moreover, 3pN >  in the guidance law (Eq. 36) results in zero terminal command acceleration as the weighting function approaches 
in"nity as tgo approaches zero. !is ensures the missile has su(cient operational margins to handle undesired disturbances as it 
approaches the target.

Finally, it is important to note that the previous result assumes a decrease in r(t) over time. !e proposition below o#ers a 
su(cient condition to meet this assumption, guaranteeing interception within a "nite time.

Proposition
When the guidance law speci"ed in Eq. 36 is applied, the range r will monotonically decrease to 0 within a "nite time, and 

thus the relative lead angle will reach 0 within a "nite time, if η < 1 and 2 (0) 2Rπ σ π− < < .
Proof: substituting Eq. 17 into Eq. 36, we have:

 
2 sinR R

R p
Va N

r
σ

= −  (37)

Substituting Eq.37 into Eq.19, we get:

 
sin( 1) R R

R p
VN

r
σ

σ = − −  (38)

Divide Eq. 16 by Eq. 38, then rearrange to separate the variables r and Rσ  on di#erent sides:

 
cos1

( 1) sin
R R

R

r
r N

σ σ
σ

=
−


 (39)
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Integrating both sides of Eq. 39, we get the following result:

 
1

0
0

( )sin ( ) sin
N

R R
r tt
r

σ σ
−

 
=  

 
 (40)

From Eq. 40, given the initial conditions N >1 and 0 0Rσ ≠ , we have sin ( ) 0R tσ =  if and only if ( ) 0r t = . Given that r(t) is 
continuous, there must be a "nite time tf where r(tf) = 0. !is implies that r(t) decreases monotonically to zero within a "nite 
period. Consequently, ( )R tσ  also approaches zero within this "nite time frame. Q.E.D.

To analyze the physical signi"cance of the guidance command in Eq. 36, we can transform it using Eqs. 22 and 19, using the 
approximation sinσR≈σR. Substituting this expression into Eq. 36 will yield:

 
p R h

R
go

N V e
a

t
=  (41)

where eh = λ - ΨR = -σR can be described as the angular deviation from the heading towards a virtual stationary target (heading 
angle error) in the virtual reference coordinate system. Hence, this guidance law can be interpreted as a feedback control command 
for the heading angle error, employing a time-varying proportional gain. Its purpose is to ensure that ΨR aligns with λ.

From the expression of the guidance law (Eq. 41), we can see that when the missile attacks the target with a large initial lead 
angle 0he  (the angle between the missile’s velocity vector and the LOS to the target), with a constant N coe(cient, the initial 
command acceleration will have to be very large. !is phenomenon can lead to exceeding the missile’s allowable overload limits. 
!erefore, measures are needed to reduce sensitivity to the initial lead angle error to ensure safety and e#ectiveness in cases with 
a large initial lead angle.

To address this drawback, this paper proposes a suitable weighting function W(t) to optimize the distribution of command 
acceleration aR during the guidance phase by adjusting the value of the coe(cient N.

Derivation guidance law with a variable guidance gain (RPNG with variable Np)
In Eq. 28, the theoretical foundation of OED outlines the weighted guidance law, highlighting the importance of a weighting 

function W(t) > 0. !is function shapes the optimal control signal by governing its amplitude. When the weighting function’s 
amplitude is large, the control signal’s amplitude decreases to minimize the performance index and vice versa. Increasing the 
relative weighting at the beginning and end of the guidance phase reduces initial and "nal command accelerations compared to 
uniform weighting. !us, distributing the weighting function throughout the engagement process allows for precise adjustment 
of command acceleration.

!e OED in this case is given by:

 
( )

( ) ( ) 0p
z z

go

N t
e t e t

t
+ =  (42)

Once the appropriate weighting function W(t) is selected, we derive the guidance gain function Np(t) from Eq. 27 is as follows:

 
1 2

1 2

( ) ( )
( )

( ) ( )
f

go
p t

t

t W t g t
N t

W g dτ τ τ

−

−

=

∫
 (43)
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To ensure that the calculation of the coe(cient Np(t) in the integral of Eq. 43 does not depend on the function g(t), we choose 
the weighting function in the following form: 2( ) ( ) ( )W t g t R t= . To implement the aforementioned idea, we propose the weighting 
function R(t) in the form of a rational polynomial function of tgo as follows:

 1( ) go
go

R t bt
at

= +  (44)

The Eq. 44 indicates that the variables a > 0 and b > 0 serve as distribution parameters for designing the weighting 
function. From Eq. 44, the second term dominates initially, resulting in a considerable weighting value. This significant 
value mitigates sensitivity to the initial HE by reducing the initial guidance command. The second term decreases as tgo 
approaches zero. At the terminal time, the weighting function R(t) also produces a considerable value due to the increase 
in the first term of Eq. 44. Moreover, the weighting function R(t) exhibits higher or minimum values at specific points in 
the engagement process than others.

Unlike traditional PNG laws with "xed weights corresponding to constant guidance gain or some guidance laws with 
weighting functions that monotonically increase as tgo decreases, the authors’ selected weighting function may display 
nonmonotonic behavior with extremal points.

!is allows designers to adjust relative weighting values over time for the terminal guidance phase by tuning the design 
parameters a and b. From Eq. 44, it can be shown through straightforward calculations that this proposed weighting function 
R(t) has a minimum value at 2 b a  at 1got ab= . !erefore, the boundary of the design parameters to ensure that the 
minimum value occurs during the engagement process (i.e., 0 ≤ t ≤ tf) is given by 1 fab t≥ .

Simulation results in Fig. 4 for the R(t) function demonstrate that by choosing suitable design parameters a and b, 
relative weight values can be easily adjusted throughout the entire guidance process. This includes controlling minimum 
and maximum values, as well as the ratio between initial and terminal values relative to the minimum. In contrast, for 
a weighting function in the form of 1/tgo, the weight starts at zero during the initial stage and progressively increases in 
the cost function. The chosen weighting function facilitates the generation of smaller guidance command values at both the 
start and end of the guidance phase.

20
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R
(t
)

R(t) = 1
atgo

 + btgo, with : a = 1,b = 1

R(t) = 1
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tgo

0 2 4 6 8 10

Source: Elaborated by the authors.

Figure 4. Compare the weighting functions and the e#ects of the design parameters a and b.

Substituting Eq. 44 into Eq. 43, we get the following expression for ( )N t :
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2 2

2 2

2
( )

(1 ) ln(1 )
go

p
go go

ab t
N t

abt abt
=

+ +
 (45)

!e expression of the guidance law (Eq. 36) has been adjusted to account for the time-varying guidance gain Np, resulting in 
the following form:

 2

( )( ) ( )R p p R
go

ZEM ta N t N t V
t

λ= ≈   (46)

!e guidance law in Eq. 46 is derived in a relative virtual coordinate system. To obtain the expression for the command 
acceleration in the original inertial frame, we substitute Eq. 46 or Eq. 36 into Eq. 15, yielding:

 cos( ) sin( )
cos( )

R T R T T R T
M

R M

a a Aa ψ ψ ψ ψ
ψ ψ

+ − − −
=

−
 (47)

In the case where the target tank is stationary, it follows that VR = VM and ΨR= ΨM. Consequently, the synthesized guidance 
law will precisely become the PNG law:

 pM Ma N V λ=   (48)

!e guidance law expression (Eq. 47) is of an analytical form, making real-time processing straightforward. To apply this 
guidance law, besides the predetermined design parameter values such as the guidance coe(cient Np, variables such as aT, AT, and 
ΨT are considered known due to the predetermined motion state of the target. Target information is collected from the tracking 
system, which typically uses guidance "lters (Song et al. 1988).

Parameters such as the LOS angular rate, range r, missile velocity VM, time-to-go (tgo) parameter, and computed quantities 
like θR, VR need to be provided. Missile information is obtained from the integrated inertial navigation system (INS), while 
the LOS rate is measured by the seeker. If the missile uses a gimbaled seeker, the LOS rate can be measured directly; if it 
uses a strapdown IIR seeker, the LOS rate needs to be estimated using an unscented Kalman filter (Sun et al. 2015; Xu et al. 
2020). The relative distance from the missile to the target can be estimated using infrared imaging information, which is 
indirectly reflected through the pixels (Yu et al. 2017). The tgo parameter can also be calculated based on these measured 
and estimated parameters.

We assume that all necessary information to implement the proposed guidance law has been perfectly obtained. !erefore, if 
the missile is equipped with a seeker, guidance "lter, and INS, the proposed guidance law can be calculated from the measured 
and estimated information.

Simulations
Survey of the proposed guidance laws

In this section, the author conducts combat scenario simulations to validate the e(cacy of the synthesized guidance laws, 
employing a foreign tank as a hypothetical target. !is target tank is highly maneuverable and capable of moving forward-
backward and le$-right on the ground. !e military vehicles in the simulation can turn with an acceleration ranging from 0.3 
to 0.5 g and have a braking capability of up to 0.9 g (Gibbs 2011). In the hypothetical scenario, the target tank moves with an 
initial speed of V  T0 = 10 m/s, with a longitudinal acceleration of 1 m/s², and performs a wave maneuver to avoid missile attacks, 
with the acceleration at time t given by 0 0sin( 2)TT Ta a tω ψ π+ += . !e missile velocity in the simulation is assumed to be 
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constant, VM = 300 m/s. !ese factors are established to create a realistic simulation environment, testing the adaptability and 
e#ectiveness of the guidance laws in diverse and complex combat situations. Furthermore, the homing process concludes when 
the relative range r is less than or equal to 0.5 m in all scenarios.

To solve the system of di#erential equations from Eqs. 1–10 using numerical simulation in Matlab, we need to incorporate 
the guidance law expression (Eq. 47) into the solution process. Before proceeding, the initial values of the parameter variables 
must be provided. Some initial conditions are given in Table 1, and the initial values for variables such as 0r , 0λ  and the initial 
heading angle of the missile 0Mψ  need to be calculated from other initial parameters. !is ensures that we have complete and 
accurate initial conditions for the simulation process.

Table 1. Simulation setting.

Parameters Values

Initial position of the missile (xM(0), zM(0)) (0, 0) m

Initial position of the target (xT (0), zT (0)) (2,000, 100) m

Missile speed VM 300 m/s

HE -30 ⁓ 30 deg

Missile acceleration limits |aM|max 10 g

Initial velocity of the target VT0 10 m/s

Axial acceleration of target AT 1 m/s2

The initial heading angle of the target ΨT0 2 π/6 rad

Maneuver magnitude of target aT0 5 m/s2

Natural frequency of target ω 1,256 rad/s

Source: Elaborated by the authors.

where:

 ( ) ( )2 2
0 0 0 0 0T M T Mr x x z z= − + −  (49)

 ( )
( )

0 01
0

0 0

tan T M

T M

z z
x x

λ − −
=

−
 (50)

We need to calculate the initial lead angle to determine the initial trajectory heading angle of the missile 0Mψ . !is angle, 
known as the missile lead angle L0, is the angle between the missile’s velocity vector and the initial LOS. !e theoretical missile 
lead angle can be calculated by applying the law of sines, yielding the following result:

 1 0 0 0
0

sin( )sin T T

M

V
L

V
ψ λ− +

=  (51)

At that point, the initial trajectory-heading angle of the missile is calculated as follows:

 0 0 0M L HEψ λ= + +  (52)
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In this context, the HE indicates the initial angular deviation of the missile relative to the collision triangle (Tanriverdi and 
Cavdaroglu 2017).

We will conduct numerical simulations to evaluate the e#ectiveness of the proposed guidance laws in two scenarios: with 
a constant Np factor and an Np factor that varies according to the weight function R(t). Both scenarios use the same input 
parameter values in Table 1 and are examined with an initial HE ranging from -30 to 30 degrees. For the case of a constant Np 
factor, the chosen value is Np= 3. For the scenario where the Np factor varies, the authors selected parameters a = 0.5 and b = 2.5 
for the weight function R(t).

!e simulation results shown in Fig. 5 indicate that both the RPNG law with constant Np and the RPNG law with variable Np 
successfully intercept the target with zero "nal miss distance. !e graphs of the look angle over time converge to zero, demonstrating 
that the target approach conditions analyzed earlier are met.
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Figure 5. Simulation Results of the RPNG law with constant Np.

!e di#erence between the RPNG law with variable Np and the RPNG law with constant Np is highlighted in the missile’s 
command acceleration graph. Speci"cally, the RPNG law with variable Np, where the guidance coe(cient Np is distributed 
according to the weighting function R(t), shows a lower initial command acceleration than the RPNG law with constant Np. !is 
di#erence is particularly noticeable when the initial HE angle is large.

!e graph of the guidance coe(cient Np for the RPNG law with variable Np in Fig. 6d shows that Np changes over time, 
starting from a low value and reaching "ve at the "nal time, in contrast to the constant Np = 3 for the RPNG law with constant 
Np. !erefore, the RPNG law with variable Np is more e#ective in scenarios with large initial HE angles, as it reduces the initial 
command acceleration during the homing phase, avoiding abrupt command changes during the transition between guidance 
phases and preventing overload on the missile’s control actuators.
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Figure 6. Simulation results of the RPNG law with variable Np.

Monte Carlo simulation 
In practice, uncertainties due to measurement errors and environmental noise always exist, combined with the missile 

system’s autopilot lag and acceleration limits, causing signi"cant miss distance and resulting in missile performance degradation. 
To address this issue, the guidance law needs to be highly robust. A Monte Carlo simulation with 500 runs has been conducted to 
demonstrate the robustness of the proposed guidance laws and compare the average ZEM and control energy of these proposed 
guidance laws with the APNG law. !e simulation conditions include the initial positions of the target and missile as per Table 
1, HE set to 20 degrees; other initial parameters were randomly chosen according to a uniform distribution on [ ]0,1U � , with lower 
and upper limits as listed in Table 2. !e autopilot system is modeled as a "rst-order lag system as follows:

 1
1

M

c

a
a sτ

=
+

 (53)

Table 2. Lower and upper limits of some initial parameters.

Parameter Lower limit Upper limit Parameter Lower limit Upper limit

VM 250 m/s 300 m·s AT 0 m/s2 2 m/s2

VT0 8 m/s 12 m·s aM 3 m/s2 5 m/s2

Source: Elaborated by the authors.

In this model, aM represents the achieved missile acceleration, ac is the commanded missile acceleration, and τ denotes the 
time constant of the 'ight-control system. Due to practical limitations in actuator dynamics in real engineering applications, 
the maximum lateral acceleration is constrained as follows:

 max max

max

( )  
  

M M M M
M

M M M

a sign a if a a
a

a if a a
 ≥=  <

 (54)



J. Aerosp. Technol. Manag., v16, e2424, 2024

Nonlinear Guidance Laws for Anti-tank Guided Missile to Intercept Maneuvering Tank Targets Using Optimal Error Dynamics and Relative Virtual Model 15

We select the first-order time constant as τ = 0.3 seconds and limit the missile’s acceleration command to a maximum 
of ± 10 g.

!e APNG law, when transformed to be perpendicular to the missile’s velocity vector, will have the following form:

 
2 cos( )

cos( )
p C T T

APNG
M

N V N a
a

λ ψ λ
ψ λ

+ −
=

−


 (55)

!e Monte Carlo simulation results of the guidance methods RPNG with variable Np, RPNG with constant Np, and APNG 
are presented through scatter plots of the "nal miss distance values (ZEM) and cumulative distribution plots of the ZEM values, 
corresponding to Figs. 7–9, respectively.
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Figure 7. Monte Carlo simulation result of RPNG with variable Np. (a) scatter 
diagram of ZEMs; (b) cumulative distribution of ZEMs.
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Figure 8. Monte Carlo simulation result of RPNG with constant Np. (a) scatter 
diagram of ZEMs; (b) cumulative distribution of ZEMs.

!e scatter plots illustrate the distribution of "nal miss distance values between the missile and the target in di#erent simulations, 
helping us to understand the variability and dispersion of the miss distances under the in'uence of varying input parameters.

Meanwhile, the cumulative distribution plots of ZEM show the percentage of simulations that achieved a ZEM value below a 
certain threshold. !is provides a comprehensive view of the e#ectiveness and reliability of the guidance system, thereby evaluating 
its ability to achieve the desired accuracy in practice.
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Figure 9. Monte Carlo simulation result of APNG. (a) scatter diagram of ZEMs; (b) cumulative distribution of ZEMs.

Table 3 presents the statistical results of the average terminal miss distance and average control e#ort for the guidance laws 
RPNG with variable Np, RPNG with constant Np, and APNG a$er 500 Monte Carlo simulation runs. Speci"cally, Table 3 shows: 

Average ZEM (m): the average value of ZEM measures the average terminal miss distance by which the missile misses the 
target a$er applying di#erent guidance laws. !ese values re'ect the accuracy of the guidance laws in controlling the missile to 
approach the target.

Average control e#ort (m²/s³): the average value of control e#ort indicates the energy the system uses to control the missile. !is 
value provides information about the performance and energy e(ciency of the guidance laws. !e control energy consumption 

for each simulation run is de"ned as: 2

0

ft

Ma dτ∫
Table 3. Results of Monte Carlo simulation.

Guidance laws APNG
RPNG

(N constant)
RPNG

(variable N)

Average ZEM (m) 0.0478 0.0621 0.0215

Average control effort (m2/s3) 2752.93 3252.93 1082.52

Source: Elaborated by the authors.

Based on the Monte Carlo simulation outcomes depicted in Figs. 7–9 and the average miss distance results in Table 3, it is 
evident that the "nal miss distance for all three guidance laws is relatively small, with a narrow dispersion of miss distance values. 
!is meets the missile guidance requirements given the initial conditions and the variations in input parameters. However, when 
comparing the methods, we "nd that the RPNG guidance law with variable Np is the most e#ective, with the smallest average 
miss distance and the lowest control energy required. !e ZEM scatter plot and the cumulative distribution plot of ZEM values 
show that the "nal miss distance does not exceed 0.05 m with 100% probability.

Following this, the APNG guidance law has a "nal miss distance not exceeding 0.08 m with 100% probability. Lastly, the RPNG 
guidance law with constant Np has a "nal miss distance not exceeding 0.1 m with 100% probability and requires the highest 
control energy.

!e simulation results show that the weighting function W(t) e#ectively adjusts the guidance coe(cient Np, providing a reasonable 
distribution of command acceleration and reducing the initial acceleration. !is is particularly useful when the missile’s heading 
is far from the collision course. As a result, the control energy required for the RPNG guidance law with variable Np is minimized. 
On the other hand, when there is a signi"cant initial heading angle error, the term cos( )Mψ λ− in Eq. 55 of the APNG guidance 
law becomes small, leading to a higher required command acceleration and, consequently, higher demand for control energy.
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CONCLUSION

This paper introduces a new nonlinear optimal guidance law for ATGM to effectively intercept maneuvering tank 
targets. Using a nonlinear relative model in a two-dimensional horizontal plane and optimizing error dynamics significantly 
improves traditional methods, transforming moving targets into stationary ones, thereby simplifying the guidance law 
design process.

Including a time-decay weighting function optimizes the distribution of command accelerations, reducing initial requirements 
and converging to zero or near zero at the end time. Numerical simulations and Monte Carlo analyses con"rm this guidance 
law’s superior performance and robustness, with smaller average miss distances and lower control energy compared to existing 
methods. However, the study has limitations, such as assuming known target maneuvering information. Future research will 
expand to three-dimensional scenarios and integrate real-time target information estimation to enhance practical applicability. 
!is study signi"cantly contributes to missile guidance technology, providing a robust solution for ATGM to intercept 
maneuvering targets with high accuracy and e(ciency.
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