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ABSTRACT
This work reports the development of an induction melting system for producing paraffin-based fuel units for hybrid rockets. 

The system is based in oscillating low-frequency magnetic field to generate heat within the material, enabling a precise temperature 
control through an on/off process. Additionally, the steel used as the material for fabricating the mold facilitates a slow cooling rate, 
leading to the formation of homogeneous paraffin fuel units free from cracks and microfractures, which is a critical requirement 
for their safe application in hybrid rockets and to ensure an efficient fuel combustion. The fabricated paraffin fuel units underwent 
rigorous characterization of their thermal, structural, and optical properties to ensure their suitability as fuel units in a hybrid 
rocket engine developed for the Mexican Cabo Tuna space program.
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INTRODUCTION

Rocket engines typically use either solid or liquid propellants. However, hybrid propulsion offers a unique combination of 
both systems. The development of hybrid rocket engines shows interesting advantages by utilizing a unique combination of solid 
fuel grains and gaseous or liquid oxidizer, overcoming some of the limitations inherent in traditional rocket engines. In hybrid 
rockets, propellants often comprise a solid fuel and a liquid or gaseous oxidizer. Notably, hybrid rockets boast improved safety 
compared to solid propellant rockets. This is because the oxidizer, a highly reactive component, is stored separately from the solid 
fuel until it is injected into the combustion chamber, minimizing the risk of accidental ignition.

While hybrid propulsion offers advantages over traditional solid and liquid propellant rocket engines (Casiano et al. 2010; 
Caveny et al. 2003; Okninski 2018; Oztan and Coverstone 2021; Sackheim 2006), its development has been hindered by challenges 
associated with these propellants. In this context, paraffin wax emerges as a promising fuel option for hybrid engines, but its use 
in launch applications requires a more comprehensive characterization of its structural integrity (Mazzetti et al. 2016; Veale et al. 
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2017; 2018; 2021). Within the Mexican Cabo Tuna space program (Saucedo-Zárate et al. 2022a; b), there is a project focused on 
developing a hybrid propulsion system using nitrous oxide as the oxidizer component and paraffin wax as the solid fuel.

Paraffin-based fuels are the next step for improving the performance of hybrid rocket motors, offering low obtention costs 
and improved performance due to their favorable thermal properties. This readily available organic material holds potential not 
only in the development of fuel grains for hybrid rockets but also in energy storage systems (Karabeyoglu et al. 2001; Leccese 
et al. 2019). Paraffin is an odorless, tasteless, waxy solid. It melts from 23 to 67 °C and is unaffected by the most common chemical 
reagents but burns readily in the air (Abhat 1983). Paraffin wax is representative exponent of a typical phase-change material due 
to its large latent heat and stable phase change. The paraffin chemical bonds break up when its temperature increases, leading to a 
phase change from solid to liquid (Alkan 2006). This process is endothermic, meaning paraffin absorbs heat from the surrounding 
environment. Then, after storing heat, the paraffin melts when the phase change temperature is reached (Sharma and Sagara 2005).

Paraffin wax is made from long chains of hydrocarbons that remain solid at room temperature. Chemically, paraffin wax is a 
mixture of high molecular weight alkanes with the general formula CnH2n+2, where n is an integer number from 22 to 27. Paraffin is 
chemically stable, having no tendency to segregate, with high heat of fusion and non-reactivity (Mansoori et al. 2003). Beyond its 
inherent advantages (non-toxic, non-hazardous, easily shippable, low-cost, and potentially reusable), paraffin wax presents some 
benefits when used as a solid fuel in a hybrid rocket due to its high performance with nitrous oxide. This makes paraffin wax 
a highly desirable propellant choice (Kobald et al. 2018; Thomas et al. 2021). Despite its advantages, paraffin wax also presents 
some weaknesses. In its solid state, it shows low thermal conductivity, is flammable and has poor mechanical strength, making 
it necessary to design of special containers to alleviate the lack of structural strength in aerospace applications (Hasnain 1998; 
Hiran et al. 1994). Furthermore, tight-tolerance processing of paraffin wax involves a complex challenge due to its high shrinkage 
rate from 15 to 25% (Karabeyoglu et al. 2004). In addition, the solidification process can introduce grain deformations, internal 
stresses, rips, defects, and microcracks, creating microstructural discontinuities, which change the combustion behavior of the 
paraffin wax. Therefore, this inhomogeneity is undesirable for its application as a fuel for launching rockets equipped with hybrid 
engines. Achieving high structural uniformity in the fabrication of paraffin-based solid fuel grains is a pending task.

Solid fuel grains with an annular central port can be fabricated from paraffin wax using both laboratory and industrial-scale 
manufacturing techniques. The lab-made model uses a configuration consisting of a circular mold and a piston. This piston 
applies a mechanical force to counteract the volumetric shrinkage experienced by paraffin wax during its transition from liquid 
to solid (Bernard et al. 2013; Piscitelli et al. 2018). However, higher-scale fabrication uses a spin-casting machine. In this case, a 
variable rotational speed allows for control over the centrifugal forces acting on the molten paraffin wax during its solidification 
(Mahottamananda and Kadiresh 2019; Piscitelli et al. 2015; Tang et al. 2017). On the other hand, paraffin donuts used as fuel 
are usually fabricated by a mechanical process or by melting paraffin into a mold. In this case, the paraffin wax forms a thin 
hydrodynamically unstable liquid layer. Other mechanical techniques based on die casting and centrifugal casting have been used 
(Masato et al. 2017; Stober et al. 2021). Paraffin wax fuel grains typically fabricated using a heating and cooling process to induce a 
solid-to-liquid phase transition, are susceptible to conducive to the formation of cracks and microcracks within the paraffin grains. 
Thus, eliminating these defects during the fabrication of paraffin-based fuel grains with specific geometries is crucial for hybrid 
combustion. Cracks and other imperfections can lead to combustion instabilities, highlighting the importance of a defect-free 
manufacturing process. Additionally, paraffin wax has poor mechanical strength, making it susceptible to structural deformation 
during various stages like fabrication, casting, handling, and transportation. A surge in research activity has recently focused 
on enhancing the mechanical properties of paraffin-based fuels. This is being achieved through the incorporation of energetic 
additives and reinforcing frameworks (Bisin et al. 2020; Pal et al. 2021; Risha et al. 2007). Polyethylene, carbon black, ethylene-vinyl 
acetate, boron, aluminum, and nano-metallic additives improve the mechanical strength and combustion efficiency of paraffin 
fuel units (Kim et al. 2015; Kumar and Ramakrishna 2016). However, additives can diminish the positive effect of paraffin wax 
as a high regression rate fuel.

This work presents a novel system designed to manufacture paraffin fuel units conforming the requirements of the hybrid 
rocket engine employed in the Mexican Cabo Tuna space program. The system explores the application of the induction heating 
principle as a promising alternative for fabricating paraffin wax fuel grains for hybrid rocket motors. Furthermore, the system 
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facilitates the technical evaluation of paraffin units due to the absence of aggregates. Notably, the design allows for scalability to 
produce paraffin units in various geometries and explore the effects of additive incorporation. Induction heating, commonly used 
in high-temperature metal melting applications, relies on the application of strong magnetic fields. In contrast, our design utilizes 
an oscillating low magnetic field to generate heat within a safe physiological range, specifically tailored for paraffin wax melting. 
This enables the fabrication of paraffin fuel units with a donut shape, free of structural defects like cracks or air bubbles, and with 
enhanced mechanical properties, suitable for use in hybrid motors of suborbital rocket vehicles.

Crack formation typically arises due to thermal shrinkage of the paraffin grain during cooling, resulting in elevated hoop 
stresses. Our system employs strict temperature control during melting. Notably, to the best of our knowledge, this is the first 
work utilizing an induction system for the specific purpose of fabricating paraffin wax fuel for hybrid rockets. Beyond its novelty, 
the system offers a simple, cost-effective, and efficient approach to producing high-quality, homogeneous paraffin donuts for 
this application.

Experimental
The fuel grains were fabricated from microcrystalline paraffin wax (Micro Shell lmp, CAS 64742-60-5), purchased from a 

local supplier. The paraffin consists of a complex combination of hydrocarbons obtained by treating petroleum microcrystalline 
wax with hydrogen in a catalyst. Paraffin is formed from long-branched chains of hydrocarbons with carbon numbers mainly 
from C25 to C50.

Our hybrid rocket can accommodate cylindrical fuel grains with a height of 87 mm and a diameter of 132.2 mm. These grains 
have a central cylindrical hole with a diameter of 42.05 mm.

The induction melting system was specifically designed to fabricate paraffin fuel units with the required specifications for our 
hybrid rocket. Figure 1 depicts a melting system using a cylindrical steel mold (D) aligned with a coil (E). This coil connects to a 
zero-voltage-crossing oscillator (B), creating an oscillating circuit (C) that generates a magnetic field in the kHz range. This system 
can reach 100 °C within 30 minutes. The induction melting system was characterized using magnetic and temperature sensors.

(A) (B)

(C)

(D)

(E)

Source: Elaborated by the authors.

Figure 1. Diagram of the induction melting system used to manufacture paraffin 
grains for use as the solid fuel component in hybrid combustion. 

The structural behavior of molten and raw paraffin wax was analyzed by X-ray diffraction (XRD) and Fourier transform 
infrared spectroscopy (FT-IR). The X-ray patterns were obtained using an Inel Equinox 2000 diffractometer with a cobalt source 
(λ = 1.7890 Å) in the Bragg-Brentano geometry from a 10° to 60° diffraction angle and steps of 0.02°. The IR was carried out with 
a Bruker Vertex 70 FT-IR using diffuse reflectance mode. Thermal properties were analyzed by DSC measurements performed 
with a TA-Instruments series TSC Discovery at a constant rate of 10 °C/minute inside the differential thermal analysis (DTA) 
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in an oxygen atmosphere up to 150 °C. Additionally, optical properties were analyzed with a Perkin Elmer LS55 fluorescence 
spectrophotometer using an excitation wavelength of λex = 317 nm. Pressure tests were performed using a homemade mechanical 
pressure machine that utilizes a force sensor from Pasco, CI6746 economy force sensor (-50 N to 50 N). Surface analysis of the 
solid grains of paraffin was examined using a LEICA MZ-12x optical microscope with 50x and 500x magnifications, illuminated 
by a 650 nm line laser with power < 500 mW and a 532 nm lase with power < 1,000 mW.

RESULTS

Characterization of the induction melting system
The induction melting system shown in Fig. 1 consists of a cylindrical coil made from a flexible copper tube of 9.25 mm (3/8”). 

The coil has a height of 8.5 cm, a 16 cm internal diameter, and seven turns (E). The coil is powered by a zero-voltage-crossing 
oscillator module (C). In a close-loop scheme, the oscillating circuit (E + C) can generate a magnetic field in the kHz range, which 
induces a temperature increase to 100 °C in 30 minutes. The close-loop scheme comprises an oscillator circuit, a power source 
(A), and a temperature control (B). This configuration is required for our application within the desirable temperature range. 
The copper coil is placed around the steel mold, with a heating volume of 1.709 cm3 (D), where the raw paraffin is melted. The coil 
was connected to the low-voltage and high-frequency (1000 W, 20 A, 12 to 48 V) oscillator (plugs 1 and 2).

Figures 2 and 3 show the axial and tangential magnetic fields measured inside of the mold. Additionally, measurements without 
the mold were performed to evaluate the effect of the steel mold. The magnetic field was measured at four points: (i) inside of the 
coil at the top, (ii) at the bottom, (iii) close to the coil, and (iv) at the center. Figure 2a shows the magnetic field measurements 
performed without the steel mold, revealing similar signals at the four points, except for one, due to the loop geometry presenting 
a small variation at the point where the loop begins and ends. Measurements with the steel mold are shown in Figs 2b-d. Figure 2b 
shows the magnetic field signals measured with the mold in place, but without the metal cover or the inner cylinder. Figure 2c 
shows the effect of adding the metal lid of the inner container and Fig. 2d shows the magnetic field signal of the fully assembled 
mold, including the cover and the inner cylinder.
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Figure 2. Magnetic field signals obtained from four points (color lines) measured inside of the mold, near the end of the coil 
for (a) without the steel mold, (b) with the basic mold in place, (c) basic mold with its cover, and (d) with the complete mold.
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Figure 3. Signals of the magnetic field for four equidistant points (a) at the bottom near the end of the coil without the mold, 
(b) at the same points as (a) but with the mold, (c) coil without mold in the center, and (d) in the center with the mold.

The magnetic field signal’s shape and intensity change when the different mold elements are added. This is caused by the magnetic field’s 
interaction with the steel of the mold. Furthermore, the change in the signal’s shape from sinusoidal to other forms is related to a rising 
temperature inside the mold. This effect is utilized to create the donut-shaped paraffin. Figure 2b shows that the intensity of the magnetic field 
in the system with the mold is about 25% compared to the one without the mold, and a phase shift is observed at the measurement points. 
Figure 2c shows that the shape of the magnetic field is altered when the lid of the inner container is added, and its intensity diminishes. Finally, 
the magnetic field for the completed mold is shown in Fig. 2d. In this case, the magnetic field intensity increases due to the presence of the inner 
cylindrical metal core. Similar measurements were obtained at points near the coil and at the center (both top and bottom) because the radial 
magnetic field is constant. However, there is a reduction of the magnetic field at the bottom of the coil in the vertical direction. These results 
demonstrate that the system can achieve the necessary temperature to melt raw paraffin, resulting in the paraffin fuel grains upon solidification.

Figure 4 shows the temperature measurements obtained from sensors located at different points inside of the mold during 
the heating and cooling cycle. We observed a low-temperature dispersion at the bottom of the mold, with about eight degrees 
difference for the middle and top, and the maximum temperature diminished as the mold height increased.
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Figure 4. Temperature measured in the interior of the mold at eight points: 
(a) on the top, (b) in the middle, and (c) on at the bottom.

Figure 5 shows temperature measurements in three higher positions, where the interaction with the ambient is greater. 
In this case, the temperature increases more slowly than recorded at the bottom or in the middle regions. In the higher region, 
a temperature of 77 °C is reached in 4,100 seconds, compared with 97 °C and 101 °C reached in the middle and bottom regions. 
Therefore, the temperature range reached by induction in the steel mold corresponds to the melting temperature of raw paraffin, 
allowing the system to be used for the fabrication of paraffin grains for its use as solid fuel for the hybrid rocket motor.
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Figure 5. Temperature records at the top, middle, and bottom regions of the fully assembled steel mold.

In the system with raw paraffin, the magnetic field was adjusted to 30 kHz, and the temperature was controlled by a sensor 
located in the mold. After 1.4 hours, the temperature reached 100 °C, and the paraffin was completely melted inside the mold. 
Then, the system was turned off and left to cool under ambient conditions. The cooling process is slow, and 20 hours later, the 
paraffin reaches the room temperature. Figure 6 plots the temperature profile of the process followed by the paraffin. As seen, the 
temperature increases up to 100 °C and subsequently decreases when the magnetic field is turned off. The slow cooling process 
of the system prevents disturbances in the material during solidification. According to the results, solidification starts at the top 
of the paraffin, forming star-shaped solid rings until a homogeneously solidified paraffin unit is obtained.
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Figure 6. Heating and cooling temperature profile of the raw paraffin.

Characterization of the paraffin fuel unit
Figure 7 displays the DTA of the microcrystalline paraffin wax, showing one peak with two shoulders in the temperature range 

from 30 to 90 °C. These analyses indicate that paraffin wax, at atmospheric pressure, is completely melted at 85 °C. The peaks are 
interpreted as the solid-liquid phase transition. The manufactured paraffin grains exhibited an initial melting point of 52.8 °C 
and presented a melting enthalpy of 160.3 J·g. As there is no small peak below 53 °C, we can confirm that the solid-solid phase 
transition below the main melting temperature (referred to as the melting temperature hereinafter) of the larger peak is not present. 
The commercial paraffin wax did not show significant degradation in thermal properties after repeated 1,500 melting-cooling cycles.
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Figure 7. DTA measurement of the microcrystalline commercial paraffin wax.

Figure 8a shows the experimental X-ray pattern for the raw paraffin (crystalline), the molten paraffin using our induction 
system, and one sample molten twice in the same system. The main difference in the X-ray diffractograms corresponds to a shift 
of the semicrystalline peaks for molten paraffin to higher diffraction angles. Additionally, the semi-crystallinity of the paraffin 
structure is recovered in the paraffin molten twice, as observed in Figs. 8b and c for the paraffin molten two times. The solid-
solid phase transition is not observed in the differential scanning calorimetry (DSC) curves but is evident in the X-ray patterns. 
After the first melting process, the cooling gives one of the solid phases associated with the number of C and H atoms in the 
paraffin. In contrast, the second melting process results in another solid phase after cooling. 
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Figure 8. Experimental X-ray patterns obtained from the raw paraffin, and the paraffin subjected to a one and two melting processes 
(a). Comparison between the raw paraffin and the molten paraffin (b) and the raw paraffin and the paraffin molten twice (c).
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Previous works reported that paraffin transitions to a different solid phase after the cooling process (Piscitelli et al. 2018). 
A detailed analysis of the structural behavior of paraffin under the heating-cooling process needs to be discussed in future 
works. The phases of the paraffin may include the following: n-nonacosane, C29H60 (40-1997); n-heneicosane, C21H44 (31-
1705); n-tricosane-n-pentacosane, C23H48, C25H52 (53-1798); n-tricosane, C23H48 (43-1854); and n-pentacosane, C25H52 
(53-1793) (Bucio et al. 2021; Gulfam et al. 2019; Wunderlich et al. 2003). The degree of crystallinity for the first molten 
process is lower than for the second molten process, which is longer for the raw paraffin (Lee et al. 2010; Ryan et al. 1997). 
Additionally, the highest diffraction intensities of paraffin are related to the presence of straight alkanes (CnH2n+2) (Dorset 
1995). Linear alkanes exhibit more crystallinity than nonlinear alkanes (Dorset 2005). Moreover, as it was observed in paraffin 
with varying crystallinity, achieving a high degree of crystallinity generally requires more energy for solid-liquid transitions 
(enthalpy of fusion).

The chemical behavior of the raw paraffin (crystalline) and the paraffin obtained after melting in our induction system 
is analyzed using the FT-IR spectra in Fig. 9. The paraffin spectra reveal the presence of carbon-hydrogen stretching and 
bending absorption bands from 1,000 to 3,000 cm-1. The symmetric carbon-hydrogen bending absorption of the CH3 group 
at 1,375 cm-1, the CH deformation around 1,459 cm-1, and the CH2 rocking absorption band at 888 and 731 cm-1 confirm the 
linear saturated aliphatic structure of the paraffin (Cho and Fogle 1999; Varshney et al. 2012). The FT-IR spectrum of the 
paraffin molten by induction confirms the absence of any oxygen bands (Vyshniak et al. 2018). The band at 1,471 cm-1 has 
been assigned to a bending (scissoring) vibration of methylene (CH2) groups. These features are typical for hydrocarbon 
chains and reflect the fact that the compounds have similar chain fragments characterized by simple molecular structures 
related to hydrocarbon absorption bands at 2,921, 2,852, 1,459, and 714 cm-1. There is a significant correlation exists between 
the images obtained at other wavenumbers, particularly those obtained at 1,375 cm-1 and 1,736 cm-1, corresponding to 
cholesterol esters, which are weakly present in the paraffin spectrum. This last wavenumber is related to the C=O vibration 
of wax samples (Vyshniak et al. 2018).
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Figure 9. FT-IR spectra of raw paraffin (crystalline) and the molten paraffin.

Figure 10 shows the fluorescence emission of the crystalline raw paraffin and the effect of melting once and two times. 
The fluorescence behavior can be related to the structural differences observed in the XRD patterns. In this case, the semicrystalline 
solid phase of the crystalline raw paraffin decomposes into two different solid phases when melted once or twice. The difference 
in the number of H and C atoms is reflected in the diminishing intensity of emission at 320, 348, and 370 nm for the crystalline 
raw paraffin and the molten paraffin.
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Figure 10. Emission spectra of the raw paraffin and those subjected to one and two melting cycles.

Figure 11 shows optical micrographs at two different magnifications of the paraffin-fuel unit obtained in our induction 

system. The unit was illuminated simultaneously with both red and green lasers in the center region of the paraffin fuel unit. 

This inspection method allows for obtaining structural information based on the light dispersion of the lasers used to illuminate 

the paraffin fuel unit. The obtained optical micrographs contain information about the inner and superficial structure of the 

paraffin. The optical micrographs showed a paraffin fuel unit free of internal or surface microvoids or microcracks, with high 

structural homogeneity.

(a) (b)

Source: Elaborated by the authors.

Figure 11. Optical micrographs of the paraffin donuts at (a) 50x and (b) 100x.

Figure 12 shows the plastic deformation of the paraffin fuel obtained by our induction system compared with the raw crystalline 

paraffin and the paraffin obtained from a commercial candle. The mechanical properties were measured with a mechanical press 

that uses a Pasco CI6746 force sensor (-50 N – 50 N). The mechanical properties of the melted paraffin show good plasticity and 

resistance to fracture compared with the raw paraffin and the paraffin and the candle paraffin. The paraffin’s mechanical properties 

and the powder’s compression behavior stemming from this material can be used to estimate the compressive resistance of the 

paraffin fuel units. The elongation at break and the toughness of the melted paraffin increased because the agglomerated paraffin 

is dispersed more uniformly.
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Figure 12. Plastic deformation for (a) raw microcrystalline paraffin, (b) commercial 
candle, and (c) paraffin grain obtained by the induction system.

CONCLUSION

A novel induction system utilizing an oscillating low magnetic field was successfully developed to fabricate paraffin fuel grains 
free of cracks and microfractures, ideal for combustion in the hybrid rocket engine designed for the Mexican Cabo Tuna space 
program. The physical characteristics of the system permit us adequate temperature control with a turn-on/off process of the 
oscillating magnetic field. The steel mold ensures a slow cooling process that produces a homogeneous paraffin without defects, 
which is a requirement for its application in the hybrid rocket motor. The optical, structural, and mechanical characterization of 
paraffin obtained by the induction system demonstrates the feasibility of producing paraffin grains with desirable properties for 
use as a solid propellant in hybrid rocket engines.
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