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ABSTRACT
When multiple targets are close to each other and intersect, the Gaussian mixture probability hypothesis density (GM-PHD) filtering 

algorithm experiences degraded tracking performance. To address this problem, a neighborhood multi-target tracking optimization 
algorithm based on weight correction is proposed. In the proposed method, a proximity monitoring mechanism is first introduced to 
detect the distance between targets. Next, the similarity between the measured data and the target predicted value is calculate to form 
a similarity matrix. If there are multiple data points in a row of the similarity matrix exceed the threshold, further correction should be 
performed on the data in that row. Finally, the weight correction matrix is formed by combining the above two steps. Simulation results 
demonstrate that the tracking accuracy and stability of the proposed algorithm are significantly improved in scenarios of multi-target 
intersection and parallel tracking, and its performance is better than that of the traditional GM-PHD filtering algorithm.
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INTRODUCTION

With the continuous development and improvement of radar, sonar, infrared, laser, and other sensor technologies, target 
tracking has become a research field that has attracted the attention of many scholars. Its importance in theory and practice has 
become increasingly prominent, and it has been applied to various fields. Target tracking is the process of using data obtained from 
sensors in a monitoring system to predict and estimate the position, velocity, acceleration, and other states of a target in real-time 
or intermittently (Vo et al. 2015; Yang et al. 2023a; b; Zhang et al. 2024). The purpose of this process is to be able to continuously 
track the trajectory of the target to achieve monitoring, positioning, and tracking of the target.

Early target tracking was mainly a one-to-one approach, i.e., a sensor could only continuously track one target (Ahmad et al. 
2024). Due to the modern warfare development trend and changing tactics and strategies, single-sensor single-target tracking has 
gradually failed to meet users’ increasingly complex requirements. To adapt to the changing battlefield environment, researchers 
introduced scan-tracking technology into the tracking systems. This technique can continuously track multiple targets simultaneously 
while scanning the search space, so that the target tracking problem becomes a problem of multiple targets tracking (MTT) (Wax 
1955). There are two main problems in multi-target tracking and the first is the uncertainty of the number of targets. Throughout 
the tracking process, targets may disappear, be added, or evolve for various reasons, making it difficult to accurately predict and 
determine the number of targets at each moment. The second is the uncertainty of the measurement data. Since the environment 
of target tracking changes over time, it is not possible to accurately obtain the environmental parameters at the current moment, 
which leads to the ambiguity and uncertainty of the correspondence between the measurement data and the target.

Received: Jun. 13, 2024 | Accepted: Oct. 23, 2024
Section editor: Alison Moraes 
Peer Review History: Single Blind Peer Review



J. Aerosp. Technol. Manag., v17, e0125, 2025

Sun L, Xu L, Xue W, Liu J, Gao D2

Initially, researchers used a data-based approach to solve these problems, and the results were fruitful. Among these, the 
representative methods include multiple hypotheses tracking (MHT) (Coraluppi and Carthel 2018) and joint probabilistic 
data association (JPDA) (He et al. 2020). This type of method is mainly based on the correct association of the target and the 
measurement data. If there is an error in the association of the target and the measurement data, the tracking accuracy will drop 
sharply. In cases where the number of targets is very small, the correlation is relatively simple. However, as the number of targets 
increases, the relationship between them becomes intricate. To solve this problem, Mahler (2004) proposed the random finite set 
(RFS) theory, which models the target state data and the measurement data as two independent random sets, eliminating the need 
for complex data associations. After the RFS theory was proposed, it has been widely used in the field of multi-target tracking due 
to its advantages, and a series of filtering algorithms based on RFS have been developed, such as Gaussian mixture probability 
hypothesis density (GM-PHD) filters (Gning et al. 2010; Gunnarsson et al. 2007) and sequential Monte Carlo PHD (SMC-PHD) 
filters (Qin et al. 2024). These algorithms are not only computationally intensive, but also do not require data association, which 
can improve the accuracy of target state and quantity estimation and are easy to implement.

However, with the continuous development of sensor technology and data processing algorithms, the complexity of multi-target 
tracking systems has become more pronounced. In practical application scenarios, multiple targets are often dense and adjacent 
to each other, which brings challenges for traditional target tracking algorithms. First, targets that are too close to each other may 
prevent the sensor from effectively acquiring measurements of these targets. This is due to the sensor’s limited resolution and detection 
range. When the distances between targets are very close, the sensors may not be able to distinguish them accurately, resulting 
in the loss or confusion of measurement information for some targets. Second, targets in close proximity may lead to multiple 
measurements corresponding to the same target, which can cause complicates subsequent target tracking and state estimation.

In the multi-target proximity tracking environments, effectively solving the problems of target state estimation, quantity 
estimation, and data association has become a key research focus. When targets are nearby, two or more measurements may be 
associated with a single target, violating the one-to-one assumption and causing the performance of the GM-PHD filter to drop 
sharply. To address this problem Aoki (2016) proposes a multi-target Bayes filter based on the particle labeling method, which 
describes the uncertainty of target labeling in the iterative process and provides a physical explanation for measuring this uncertainty. 
Gong and Cui (2022) proposed a spatial proximity multi-target tracking algorithm based on GM-PHD filtering, which improves 
tracking accuracy by redistributing the weights of the Gaussian components of the target.

In recent years, with advancements in science and technology, several multi-target tracking algorithms have been proposed to 
address various challenges. For example, to address the multi-target tracking problem in complex environments, Sun et al. (2024) 
proposed a Gaussian mixture probability hypothesis density filter for clutter density estimation; Zhang et al. (2023) proposed 
a maneuvering star convex extended target tracking algorithm based on expected mode augmentation to solve the problem of 
maneuvering extended target tracking. Tovkach and Zhuk (2021) proposes a sensor network based on received signal strength 
measurement to solve unknown power anomalies in transmitter measurements, though, it did not consider the relationship 
between the measured values and the target state. Yan (2014) proposed a Gaussian hybrid PHD tracker based on cooperative 
punishment for short-range target tracking, which penalizes the weights of targets with the same label by tagging them. However, 
this algorithm also encounters tracking instability.” should be corrected as “Wang (2014) proposed a Gaussian hybrid PHD tracker 
based on cooperative punishment for short-range target tracking, which penalizes the weights of targets with the same label by 
tagging them. However, this algorithm also encounters tracking instability.

The main contributions of this paper are as follows:
• A proximity monitoring mechanism is introduced to determine whether targets are in close proximity by calculating 

the Euclidean distance between them. When the distance between two targets is less than a preset distance threshold, a 
remediation strategy is triggered.

• The minimum mean square error matrix is introduced. The matrix comprehensively considers multiple historical states and 
further optimizes tracking accuracy by calculating the weighted mean square error between the historical trajectory and the 
measurement, thereby more comprehensively reflecting the dynamic characteristics of the target.
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• A method for correcting the weights is proposed, which combines the similarity matrix and the minimum mean square 
error matrix. Based on the calculation of the similarity matrix, the similarity between the measured value and the target 
state is quantified and further optimized by the minimum mean square error matrix. This synthesis strategy yields a weight 
correction matrix that adjusts the weights of the GM-PHD filter update step to more accurately reflect the target state.
The rest of this paper is organized as follows: in the problem formulation section, the multi-target RFS modeling, the GM-PHD 

recursion, and the multi-target proximity problem are presented. The optimization algorithm for close multi-target tracking based 
on weight correction is proposed in the multi-target weight correction strategy section. In the simulation results and discussions 
section, simulation results are provided. Finally, conclusions are presented.

Problem formulation

Basic knowledge related to RFS
In multi-target tracking, the number of targets changes at any given moment. This is because, at any given moment, the target 

will disappear, survive, or spawn (Mahler 2019). The emergence of RFS theory can better describe this evolutionary process. RFS 
defines the state and measurements of multiple targets as RFS variables, respectively, where each set represents a set of targets 
or measurements. In this way, it is possible to better characterize the dynamic changes of targets and the uncertainty of sensor 
measurements in multi-target systems (Mahler 2003, 2009a; b). The details are as follows:

  (1)

  (2)

where Xk is the set of target states at time k, Zk is the set of measurements at time k, Nk is the number of targets at time k, Mk is 
the number of measurements at time k xk,i (i = 1, 2, . . ., Nk) is the state of the i th target at time k, and zk,j (j = 1, 2, . . ., Mk) is the 
jth measurement at time k.

If Xk–1 is used to represent the set of multi-target states at time k – 1, considering the multiple situations that exist for the target 
at each time, the set of multi-target states at time k can be expressed as follows:

  (3)

where Bk|k–1 (xk–1) and Sk|k–1 (xk–1) respectively represent the RFS of states of the xk–1-derived target and the survival target at time 
k and Γk represents the new target set at time k.

On the one hand, the number of measurements at each moment is uncertain and disordered, and on the other hand, targets may 
either be detected or missed by sensors. Therefore, it can be assumed that each state xk ∈ Xk produces an RFS Θk(x), where Θk(x) 
is {zk} when the target is detected and Θk(x) is an empty set when the target is not detected. However, there is clutter interference 
in the actual environment, resulting in the measurement set obtained by the sensor containing not only the measurement of the 
real target but also includes the set of false alarms or clutter.

Then the model established using the stochastic finite set for the observation of multi-target at time k is as follows:

  (4)
where Kk is a collection of clutter.

According to the probabilistic and statistical properties of the stochastic finite set, a PHD filter is proposed. The filter uses the 
sensor at time k to measure RFS Zk, and iteratively transmits the intensity function of the multi-point target at time k through the 
prediction step and the update step, in order to realize multi-target tracking. The specific filtering steps are as follows.

Prediction step
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Assuming that the multi-target state intensity function at time k – 1 is Dk–1|k–1(Xk–1|Z1:k–1), the probability that single-target 
state Xk–1 will continue to exist at time k is PS,k|k–1 (Xk–1), and the transition from target state Xk–1 to target state xk conforms to 
Markovality, which can be described by the state transition probability density function fk|k–1(xk|xk–1). In addition, the usable state 
transition probability density function βk|k–1(xk|xk–1) of the derived target process generated by the single-point target state xk–1 
at time k is described, and the RFS intensity function of the nascent target is γk (xk).

According to the generalized finite set statistics (FISST) theory, the prediction formula is:

  (5)

  (6)

In the above equation, Dk–1|k–1(Xk–1|Z1:k–1) denotes the predicted intensity function of the multi-target state.

Update step
Assuming that the measurement set at time k is RFS Zk and the probability of a single point target Xk being detected by the 

sensor is PD.k (xk), the measurement process can be described by the point target likelihood function f(zk|zk), the measurement 
of each target is independent of each other, and the target measurement and clutter RFS are independent of each other, then the 
formula for updating the prediction intensity function by using the measurement data at the current time is:

  

  (7)

In the above equation, Dk|k(Xk|Z1:k) is the posterior intensity function of multi-target RFS at time k and Kk (Zk) is the intensity 
function of clutter. Assuming that the number of clutters obeys a uniform distribution with a Poisson ratio of λk and the probability 
density function of the spatial distribution of clutter is ck (Zk), then the formula for calculating Kk (zk) is:

  (8)

The GM-PHD recursion
By studying the recursive formula of the PHD filter, it becomes apparent that it involves complex operations of multiple integrals 

in the prediction and update processes, making it difficult to obtain an analytical solution. To address this, three assumptions are 
proposed in (Clark et al. 2006) under linear Gaussian conditions, providing an analytical solution for the recursive Eqs. 5 and 7 
of PHD filters.

The three assumptions for the GM-PHD filter are as follows:
• It is assumed that the motion model and measurement model of each target are linear Gaussian:

  (9)

  (10)

where N (; m,P) is the density of Gaussian probability assumptions with a mean of m and a covariance of P, Fk–1 is the state 
transition matrix, ξ is the posterior of the state vector x in the previous time step k-1, Hk is a measurement matrix, and Rk is the 
covariance matrix of the noise.
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• It is assumed that the survival probability and the detected probability of the target are independent of the target state:

  (11)

  (12)

where PS,k represents the target survival probability and PD,k is the detection probability. 
• The intensity of the new target RFS is assumed to be in Gaussian mixture:

  (13)

where w(i)
B,k, m(i)

B,k, and P(i)
B,k are, respectively, the weight, mean, and covariance of the ith new target at time k and JB,k is the number 

of new target at time k.
Based on these three assumptions, the PHD filter can obtain the following analytical solution. 
The Gaussian mixture of the predicted intensity function is as follows:

  (14)

where Jk|k–1 represents the number of predicted Gaussian components, w(i)
B,k–1, m(i)

B,k–1 and P(i)
B,k–1  represent the weight, mean, and 

covariance of the ith predicted Gaussian components, respectively.
Depending on whether the target is detected by the sensor or not, the formula for calculating the posterior intensity function 

vk|k (x) (i.e., updating the formula) is as follows:

  (15)

where

  (16)

  (17)

  (18)

  (19)

  (20)

Multi-target proximity problem
In a point target tracking system, it is generally assumed that there is a unique correspondence between each target and 

its measurement data. At any discrete moment, a maximum of one measurement value can be generated per target, and each 
measurement can only be associated with one target. Compared with other methods, the GM-PHD algorithm does not require a 



J. Aerosp. Technol. Manag., v17, e0125, 2025

Sun L, Xu L, Xue W, Liu J, Gao D6

strict one-to-one relationship between the target and the measurement. It implicitly considers the association between all possible 
targets and the measurement data, assuming that the prior probability that each measurement data is associated with a different 
target is the same. Therefore, in the GM-PHD algorithm, one measurement data can match multiple targets, and there may be 
multiple measurement data matching the same target. After the cropping and merging process, those parts that weigh more than 
the threshold are extracted as the target estimates.

When targets are far apart, there is a significant difference in the weight of the Gaussian components generated by different 
targets, so the filter can more accurately determine which target the measurement data matches better. In this case, the filter is 
able to determine exactly which target the measurement data is coming from because there is clear discrimination. However, 
when multiple targets are in close proximity to each other, the difference in the weights of the Gaussian components becomes less 
obvious. As a result, the merging of different targets in the Gaussian component merging stage leads to a decrease in the number 
of target estimates, which affects the performance of the multi-target tracking system.

In the case of multiple targets close to each other, the GM-PHD algorithm may experience performance degradation because 
the relationship between the measurement data and the target cannot be accurately determined. When multiple targets are close 
to each other, the weight relationship between the measurement data and the target is ambiguous, which brings challenges to the 
tracking system.

Figure 1 shows a multi-target cross-tracking measurement distribution scenario. Within region D, target A, target B, and target 
C are in close proximity, causing their measurement data to be mixed. This situation can cause the target forecast strength to be 
incorrectly updated during the update phase. In the GM-PHD filter, when n targets cross or approach, ideally, the PHD distribution 
at the intersection location should have n peaks, with each peak representing a target. However, the GM-PHD filtering algorithm 
does not limit the one-to-one relationship between the target and the measurement. A target can be disturbed by measurements 
from adjacent targets, causing its peaks to split into multiple peaks with less intensity, i.e., the Gaussian component with less 
weight. In the merging and clipping stage, it is difficult to recombine these components into the correct number of targets, which 
leads to inaccurate estimation of the number of targets and reduces the estimation accuracy of the target state.

D

Taget A Taget C

Taget B Taget B

Taget C Taget A

Source: Elaborated by the authors.

Figure 1. Multi-target cross tracking.

Multi-target weight correction strategy
When the GM-PHD filter copes with multi-target tracking scenarios involving close parallel motion and staggered motion, 

the motion trajectories in the sensor’s field of view are very similar, resulting in a lack of discrimination in the measurement 
information received by the sensor. In this case, it may be difficult for the filter to accurately distinguish between measurements 
of different targets, leading to mismatches between measurements and targets.

Proximity monitoring mechanism
First, a monitoring mechanism is introduced to determine when targets are in proximity. If multiple targets are found to be 

in close proximity, the corresponding remediation strategy is executed.
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Assuming that the predicted mean of the ith Gaussian component m(i)
k,k–1 is (xi

k–1|k, yi
k–1|k) and the predicted mean of the jth 

Gaussian component m(i)
k,k–1 is (xj

k–1|k, yj
k–1|k) at time k, the distance between the two is:

  (21)

  (22)

where δ is the distance threshold.
By calculating the distance relationship between multiple targets and setting a distance threshold δ, it is possible to determine 

whether the targets are in a close state. If the distance between the targets is less than the threshold, you can assume that they are 
moving closer to each other and begin to execute the following remediation strategy.

Similarity matrix
Suppose that the predicted mean of the ith Gaussian component m(i)

k|k–1 is (xi
k–1|k, y

i
k–1|k) and the measurement set is Zk = {Z1

k, . . . Z
j
k} 

at time k. Calculate the residual vector between each measured value and each target state:

  (23)

Using the residual vector and the covariance matrix, the Mahalanobis distance matrix can be calculated; for each observation 
to the target state, the Mahalanobis distance is calculated by the following formula:

  (24)

Each element in the Mahalanobis distance matrix is converted to a similarity value to construct a similarity matrix. In general, 
you can use the reciprocal of the distance as the similarity value, i.e., the similarity is:

  (25)

This results in a i × j similarity matrix of ℜk:

  (26)

By looking at the values in the similarity matrix, it is possible to determine which measurements have a high degree of similarity 
to which target states. Typically, a similarity threshold can be set to determine whether the similarity has reached a certain level, 
thus determining the membership of the measurement. A larger similarity value indicates a higher degree of correlation between 
the measurement and the target state, while a smaller value indicates a lower degree of association.

Minimum mean square error matrix
In some complex tracking scenarios, the similarity matrix may show that the target and the measurement may be one-to-

many or many-to-one, which can be judged by whether there are multiple data points in each row of the similarity matrix that are 
greater than the similarity threshold. In order to further optimize, only the data with this problem are corrected by constructing 
the weighted fusion of the minimum mean square error between the historical trajectory of the target and the measurement, to 
achieve accurate tracking of the motion of adjacent multiple targets.

The root mean square of the minimum error between the target state estimation from time k – n to time k and the measurement 
of the current time k is calculated separately, and the matrix formed by weighted fusion is as follows:
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  (27)

where;

  (28)

  (29)

  (30)

  (31)

In the above equation, εn
k–n (mi

k–n, Zj
k) is the estimation of the minimum mean square error of the state estimation of the jth 

observation data zj
k at time k and the ith target at time k – n, and the different values from 1 to 6 of n are verified by simulation 

experiments. Comparing the effects of selecting different first n moments, it is found that the effect of taking 5 from n is better.
Therefore, it is chosen to fuse the root mean square weighting of the target state estimation at the first five moments with the 

minimum error of the current measurement calculation.

Weight correction matrix
Based on the similarity matrix and the minimum mean square error matrix, the matrix Λk used to correct the target update step is:

  (32)

  (33)

Then, based on the sensor measurement set at time k, the target prediction intensity and the correction matrix, the target 
posterior intensity can be expressed as:

  (34)

  (35)

  (36)

Weight Correction -Gaussian mixture probability hypothesis density (GM-PHD) filtering 
A correction strategy is presented to handle the multi-target proximity problem. First, the monitoring mechanism determines 

when the targets are approaching, and if multiple targets are found to be approaching each other, corresponding correction 
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strategies are executed. In the calibration process, the correlation between data features is comprehensively considered. 
Simultaneously, in order to avoid a one-to-one situation between the target and the measurement, the minimum mean square 
error is calculated between the historical state of the target at the previous time and the measurement at the current time. 
Considering the similarity between the target state and the current measurement information, as well as the minimum mean 
square error between the historical state of the target and the measurement value, a weight correction matrix is formed. The 
flowchart of this algorithm is shown in Table 1.

Table 1. The flowchart of the proposed filtering method.

Step Title Description

1 Proximity monitoring mechanism
a) Calculate the Euclidean distance dij between targets;

b) Determine dij < δ to determine whether there is a neighbor 
target.

2 Similarity matrix
a) Calculate the residual vector εij;

b) Calculate the Mahalanobis distance Dij;
c) Calculate the similarity matrix ℜk.

3 Minimum mean square error matrix

a) Check whether there are multiple data in each row of the 
similarity matrix that is greater than the threshold λ;

b) Construct the minimum mean square error between the 
historical state of the target and the measurement.

4 Weight correction matrix Based on the similarity matrix and the minimum mean square 
error matrix, the weight correction matrix was calculated Λk.

5 Update Use Λk for the weight wi
k correction of the update step.

Source: Elaborated by the authors.

SIMULATION RESULTS AND DISCUSSIONS

To verify the effectiveness of the proposed weight correction algorithm, it was compared it with the GM-PHD filter in different 
scenarios, such as multi-target intersecting motion and multi-target parallel motion. These scenarios help evaluate the performance 
of the algorithm in response to different situations and target proximity tracking challenges.

In these two scenarios, the target detection probability is Pd = 0.98, the target survival probability is Ps = 0.98, the Gaussian 
weight clipping threshold is Tp = 10-5, the merge threshold is Tm = 5, and the maximum number of Gaussian components is Jmax.

The above simulation scenarios were simulated on a PC with Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz processor and 8G 
memory, using MATLAB R2020a.

A tracking scene where multiple target trajectories intersect
In this scenario, the estimation of the four crossover targets over the entire observation time and the measurement of clutter 

are shown in Fig. 2.
The total duration of the real motion trajectory simulation experiment is k = 20 s, and four targets appear at k = 1 s and 

disappear at k = 20 s. These targets approach each other from different positions, crossing at the origin and then separating. The 
initial intensity function of the multi-target is:

  
  (37)
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In order to verify the effectiveness of the adjacent multi-target tracking algorithm based on the comprehensive similarity 
weighting method of the target’s historical state, the proposed algorithm is compared with the ordinary GM-PHD algorithm in 
the multi-target intersection scenario. Figures 3 and 4 show the comparison results of the target trajectories and optimal sub-
pattern assignment (OSPA) distance results of the two algorithms.

It can be seen from Fig. 3 that when the target moves in a straight line at a uniform speed and is far apart, the two algorithms can 
track the target stably. However, when the targets are close at the moment of crossing, the target state estimated by the GM-PHD filter 
deviates from the correct target trajectory, and the blue and green targets even experience multiple moments of tracking loss. The 
target tracking trajectory of the algorithm in this paper, at the same time, is not only basically covered by the real trajectory, but also 
has a higher tracking accuracy than the GM-PHD filter. This shows that the proposed algorithm can accurately distinguish and track 
multiple targets when the target distance is close, and the effect is obviously better than that of the GM-PHD filter algorithm. Due to 
the comprehensive similarity weighting method of multi-target historical state measurement, the algorithm can estimate the similarity 
between targets more accurately, thereby better maintaining the tracking state. Table 2 shows an overall OSPA metric in the simulation.

One hundred Monte Carlo experiments were also performed with detailed statistical analysis of the performance of both 
algorithms. As can be seen in Fig. 4, the OSPA error is similar for both algorithms when there is no target crossing. However, there 
is a significant difference in the performance of the two algorithms during target proximity or crossing. In this case, the GM-PHD 
algorithm shows a large OSPA error, while the WC-GM-PHD exhibits a small error, comparable to the OSPA error when there is 

Source: Elaborated by the authors.

Figure 2. The true trajectories of targets and measurements with clutters in the tracking scenario with crossed trajectories.
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Figure 3. Multi-target tracking trajectories of two approaches.
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Figure 4. Tracking errors of the two approaches.
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no crossover. This result highlights the superiority of the algorithm with target intersection during target crossing. It can be seen 
that by using the historical state of the target to obtain the optimal match, the algorithm can obtain a more accurate target state 
estimation result during the adjacent period of multiple target intersections.

A tracking scene where multiple target trajectories are parallel
In this scenario, the estimation of the four targets approaching in parallel over the entire observation time and the measurement 

of the clutter are shown in Fig. 5.

The total time of the simulation experiment is k = 50 s. Four targets appear at k = 1 s and disappear at k = 50 s, moving in 
parallel. The initial intensity function of the multi-target is:

  

  (39)

Table 2. Mean comparison of OSPA in scenario A.

GM-PHD WC-GM-PHD

30.874 14.162

Source: Elaborated by the authors.
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Figure 5. The true trajectories of targets and measurements with clutter in the tracking scenario with crossed trajectories.
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where

  (40)

Similarly, experimental simulations were conducted in a multi-target parallel proximity tracking scenario. Figures 6 and 7 
show the trajectory comparison and OSPA distance of the two algorithms.

From the trajectory comparison in Fig. 6, it can be observed that the GM-PHD algorithm has some shortcomings in dealing 
with the immediate target tracking, primarily manifested in the loss of target tracking at multiple moments. The target tracking 
results of the algorithm proposed in this paper are accurately overlaid on the real trajectory. When the distance between 
two targets is large, the maximum target posterior intensity of the GM-PHD filter is distributed around the estimated state 
of their respective targets, and they are not affected by each other. However, if the distance between two targets is too close 
(proximity state), the target posterior strength will only output a single one, with its maximum value existing near the mean 
of the estimated state of the two targets. Furthermore, in a tracking environment with multiple adjacent targets, the GM-PHD 
filtering algorithm tends to make error in estimating the target’s state. In contrast, the proposed algorithm optimizes the 
weight allocation of the target by introducing a correction matrix, thereby improving the performance defects of the GM-PHD 
algorithm in proximity target tracking.

Further observation of the data in Fig. 7 shows that the OSPA performance index of the improved algorithm is significantly 
better than that of the GM-PHD filtering algorithm, indicating that the improved algorithm has achieved a higher level of target 
state estimation accuracy. This result highlights the effectiveness and superiority of the algorithm proposed in this paper in dealing 
with proximity target tracking.
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Figure 6. Multi-target tracking trajectories of two approaches.
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In interpreting these results, it can be noted that the advantage of the algorithm in this paper lies in its design during the filtering 
update stage. The algorithm makes full use of the historical state estimation of each target, enabling it to effectively match the 
measurement closest to the real state of each target from the measurement set at each discrete time. The algorithm minimizes 
the problem of false state updates that can occur at the intersection of targets.

CONCLUSION

In the field of multi-target tracking, it is critical to determine the correct correlation between each measurement and the target 
state. To achieve this, the Mahalanobis distance is introduced as a distance measure that considers the correlation between data 
features, allowing for accurately measurement of the similarity between the measurement and the target state. Additionally, to avoid 
the many-to-one correlation problem, the minimum mean square error matrix between the historical state of the target from the 
past moment to the current moment and the measurement is calculate, and, finally, a correction matrix is constructed to adjust the 
target weight in the update step. This approach makes full use of historical state information and combines it with measurement data 
from the current moment in time, making the correlation results more reliable and accurate. By considering the minimum mean 
square error between the historical state and the measurement, the measurement most consistent with the target can be effectively 
identified, avoiding the many-to-one correlation problem, and improving the robustness and stability of the tracking system.
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Figure 7. Tracking errors of the two approaches.

Table 3. Mean comparison of OSPA in scenario B

GM-PHD WC-GM-PHD

10.132 7.544

Source: Elaborated by the authors.

Table 3 shows an overall OSPA metric in the simulation.
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