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ABSTRACT
!is study presents the development of a methodology for designing neuro-adaptive robust controllers based on a reference 

model associated with an arti"cial neural network of radial basis functions (ANN-RBF) for solid fuel suborbital rockets. !e 
modelling and neuro-adaptive robust control algorithms for these rockets are presented. Initially, the methodology is evaluated 
for a robust controller based on a reference model with ANN-RBF for altitude control. !e main objective of the control is to 
suppress the e#ect of non-linear uncertainties inherent in the process. !e method involves mathematical and computational 
modelling, together with the design of adaptive controllers for stability and performance analysis. !e controllers considered 
include model reference adaptive control (MRAC) techniques and a model reference neuro-adaptive control (MRNAC) 
approach. !e analysis, carried out using computer simulations, evaluates the behavior of each controller in relation to system 
stability and performance. !e "nal objective is to select the most suitable controller for the suborbital rocket, taking into 
account the system constraints, robust performance requirements, robust stability, and optimal adaptability. !is research 
promotes the development of adaptive controllers for suborbital rockets, with possible applications in scienti"c research and 
commercial launches.

Keywords: Robust control; Rocket; Model reference adaptive control; Model reference neuro-adaptive control; Arti"cial neural 
networks; Radial basis function neural networks.
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INTRODUCTION

Aerospace has experienced rapid technological evolution in recent decades, driven by a growing need to improve the e$ciency, 
safety, and sustainability of airspace operations. In this context, control systems are key elements in ensuring the proper performance 
and reliable operation of various aircra% and space vehicles.

A reusable launch vehicle is an aerospace vehicle that can have its parts reused a%er launch, thus avoiding space debris. !e 
stages of re-entry into the atmosphere, for the subsequent recovery of the parts, are managed by attitude control systems (Alves 
and Sica 2023), whose main objective is to minimize disturbances from outside the vehicle so that it can maintain its stability 
(Sampaio 2006).

Satellites play a crucial role in various applications, from telecommunications to environmental monitoring. !erefore, 
ensuring precise control of these spacecra% in orbit is essential to optimizing their performance and extending their lifespan. Ji 
and Shi (2023) propose a new velocity control strategy based on adaptive neural dynamics for stable subsatellite recovery of the 
tethered satellite system.
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In Farsana et al. (2023), a study is presented on the adaptive control of electromechanical actuation systems for launch vehicles. 
!e aim is to overcome the main challenges faced by these systems, such as parameter variations, disturbances, and sensor failures. 
!e proposed adaptive control uses model reference adaptive control (MRAC), which does not require precise information about 
the location or amplitude of the fault. In addition, the use of the modi"ed Massachusetts Institute of Technology (MIT) rule for 
the design of MRAC is discussed. !e study addresses system modeling, including motor dynamics, load dynamics, and actuator 
dynamics. Non-linear mathematical models of the system and classical compensations for linear system control are presented. 
It is shown that both classical compensation and MRAC are capable of tracking the output of the non-linear model of the system. 
In addition, MRAC is shown to be tolerant of parameter variations and motor winding faults. In summary, MRAC is used to 
overcome system challenges such as parameter variations, disturbances, and sensor failures. !e results show the e#ectiveness 
of the proposed control.

The development of suborbital rockets represents a fascinating challenge full of possibilities, propelling science and space 
exploration to new horizons. In this context, the motivation for this research arises, with the aim of designing an efficient 
altitude controller for solid-fuel suborbital rockets, guaranteeing the desired stability and performance in the face of the 
uncertainties inherent in the process. These uncertainties, arising from various sources such as modeling, environmental 
conditions, payload, engine behavior, and structural integrity, highlight the complexity of the challenge. The implementation 
of adaptive control systems is crucial to strengthening the rocket’s ability to cope with unforeseen situations during flight. 
Through mathematical and computational modeling, this study explores adaptive control strategies, including direct 
and indirect MRAC and direct and indirect model reference neuro-adaptive control (MRNAC), as addressed by Lavretsky and 
Wise (2024). The detailed analysis of these controllers aims to identify their advantages and limitations in order to select 
the most suitable approach for altitude control, with a view to guaranteeing the stability and performance required for 
successful suborbital rocket missions.

According to Anavatti et al. (2015), driven by the need for highly e$cient 'ight control systems, especially for experimental 
aircra% such as the X-15, the aeronautical industry saw a signi"cant increase in interest in adaptive controls during the 1950s. 
In 1951, researchers reached an important milestone by successfully developing a self-optimizing controller for combustion 
engines, demonstrating its e#ectiveness in subsequent 'ight tests. Between 1957 and 1961, there were investigations into the use 
of dynamic programming in adaptive controls. In 1958, the Model Reference Adaptive System (MRAS) concept was introduced 
to solve 'ight control challenges, while in 1965 Lyapunov’s theory was applied to address stability issues in MRAS. !e following 
decades, from the 1970s to the 1980s, saw signi"cant advances in the area of self-tuning regulators, with the introduction of 
gain programming to solve problems in 'ight control systems. From 1980 onwards, process control systems experienced major 
advances, leading to the commercial implementation of adaptive controls. In the early 1990s, the focus shi%ed to the robustness 
of adaptive controllers, seeking to make them more resilient in the face of uncertainties and variations in the system. Figure 1 
describes the timeline of the evolution of robust neuro-adaptive control throughout history, together with the contributions of 
the main research to the present day.

!e introduction of adaptive control was mainly motivated by the need to develop controllers capable of adjusting to variations 
in system dynamics and disturbance characteristics, as discussed by Aström and Wittenmark (2013). In addition, according to 
the authors, adaptive techniques have the potential to automatically tune controllers. According to Landau et al. (2011), adaptive 
control encompasses a set of techniques that provide a systematic approach for automatically tuning controllers in real time in 
order to achieve or maintain a desired level of control system performance when the parameters of the plant’s dynamic model 
are unknown and/or change over time.

!e general objective of this research is to develop a methodology to design a robust neuro-adaptive controller by reference 
model, using a neural network with radial basis functions (RBF), for the altitude control of a solid fuel suborbital rocket. !e speci"c 
objectives are to obtain a mathematical model for the rocket based on its design characteristics and atmospheric conditions, to 
develop methods for designing adaptive controllers using direct and indirect approaches, to develop control algorithms for future 
applications and to validate the controller using simulations, including a comparison of robustness and stability between direct 
and indirect neuro-adaptive control techniques.
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Figure 1. Neuro-adaptive robust control timeline.
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Direct MRNAC
!e aim of developing the direct MRNAC (DMRNAC) for the solid-fuel suborbital rocket model stems from the need to cancel 

out unstructured (non-parametric) time-varying uncertainties that cannot be measured or determined precisely and which can 
signi"cantly alter the vehicle’s trajectory during 'ight. !ese uncertainties include unmodeled dynamics of the real system, wind 
forces, and variations of parameters such as propellant mass, air density, drag force, etc.

An ANN-RBF is implemented to approximate the dynamics of a complex time-varying uncertainty and estimate its parameters, 
so that later the adaptation mechanism cancels it out, making the system converge to the ideal reference model.

Due to the approximation of the uncertainty by the neural network, a residual error ϵ(x) is generated. !e strategy is to implement 
a neural network with a su$cient number of neurons (nuclei) to make the residual error smaller quickly, thereby guaranteeing the 
accuracy of the approximation. Because of ϵ(x), it is not possible to obtain the derivative of the negative semi-de"nite Lyapunov 
candidate function V ≤ 0, i.e., according to Khalil (2002), the stability of the system over time cannot be guaranteed. For this, an 
escape modi"cation term is used in the adaptation law.

In the closed loop, in order to guarantee zero error in the permanent regime, a control regulator signal (correction signal) 
is implemented to recover the system’s performance. Figure 2 illustrates the architecture diagram of the DMRNAC controller.

K2

K1

∆

x·m(t) = Amxm(t) + Bmr(t)

x·(t) = Ax(t) + B[u(t) + ∆(x(t))]

W
·͡  = ΓΘ(x(t))eT(t)PBW͡ TΘ(x(t))

+ + +

-

+
+ -

-

Reference Model

x(t)u(t)r(t)

e(t)

Uncertainty

System

Adaptation MechanismNeural Network RBF

xm(t)

Source: Elaborated by the authors.

Figure 2. DMRNAC controller architecture.

Linearization of the nonlinear model
According to Hodel and Baginski (1995), a non-linear model that includes the elevation angle and the roll angle is proposed 

in their study, the approximate equations of rocket dynamics were derived, and the rocket dynamics is modeled according to 
Eqs. 1 and 2:

  (1)

  (2)
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where m is the mass of the rocket, v is the speed of the rocket, g is the acceleration due to gravity, T is the thrust force, θ is the 
li% angle, ϕ is the roll angle, δ is the de'ection angle of the motor nozzle, and c1 and c2 are aerodynamic constants given by Eq. 3:

  (3)

For the nominal trajectory studied, the elevation angle of the launch pad is 82º, the elevation angle θ = 8º is considered to be 
the angle between the initial launch direction and the vertical, in this case 90º - 82º = 8º, and to simplify the model the roll angle 
can be ϕ = 0º. In this case, the modi"ed di#erential equation for the z component (altitude) is given by Eq. 4:

  (4)

According to Wie et al. (2008), to add the δ angle of de'ection of the motor nozzle, divide the thrust by cos(δ). In this case, 
the term u(t) = 1/cos(δ) is the system’s control input. !e model equation results in Eq. 5:

  (5)

!e non-linear model given by Eq.5 is linearized by Taylor series expansion, according to Ogata (2010), at the operating point 
(x1 = 2,595 m, x2 = 1,136 m/s), equivalent to the position and "nal velocity of the propelled phase of the suborbital rocket (t = 4 s). 
!e values refer to the operating point at the end of the propelled phase, which for the model in question lasts approximately 4 s 
of propellant burn. !e control will only act in the propelled phase, the reference trajectory is a set of points to be followed, and 
the operating point (x1, x2) is the end point of the reference trajectory, which the rocket will follow as a target before entering its 
ballistic (unpropelled) phase.

!e linear model of the system to be controlled is given by Eq. 6:

  (6)

!e controllability and observability requirements for the system were met, as discussed by Lavretsky and Wise (2024).

Problem formulation
According to Singh and Pal (2019), the MRAC method is an approach used in the design of an adaptive controller that 

modi"es the parameters of the controller so that the output of the real system tracks the output of a reference model under the 
same reference input.

In line with the robust adaptive control formulations and structures found in the literature, such as Arabi et al. (2019), 
Glushchenko and Lastochkin (2022), and Gruenwald et al. (2017), this study addresses the following structure and mathematical 
modeling for a DMRNAC controller.

As discussed by Lavretsky and Wise (2024), the dynamic system with uncertainty is considered according to Eq. 7:

  (7)

where x ∈ℝn is the system state, u ∈ℝm is the control input, B ∈ℝn×m is the known control matrix. Furthermore, it is assumed 
that the pair (A, B) is controllable. In Eq. 7, the unknown vector function, which may be non-linear, ∆(x) : ℝn→ℝm, describes the 
intrinsic uncertainty of the system.
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!e parameterization of the unstructured uncertainty ∆(x) is given by Eq. 8:

  (8)

where WT is a vector of unknown weights, to be estimated by the parameter update law, Θ(x) is a vector and includes RBF in its 
elements, and ε : ℝn→ℝm is the residual error.

It should be noted that the residual error ε(x) comes from the universal approximation theorem for RBF neural networks 
(Lavretsky and Wise 2024), and by including more neurons in the neural network it is possible to reduce this error. In addition, 
in second-order cases, as discussed in this research, or in high-order cases, it is necessary to include RBF for each xi to cover each 
compact domain Di.

!e vector Θ(x) is given by Eq. 9:

  (9)

!erefore, the system is represented by Eq. 10:

  (10)

RBF neural network
For some control problems, an arti"cial neural network (ANN) can be trained to remember how to regulate a system by 

repeatedly providing examples of how to perform such a task. A%er this learning, the neural network can be used to retrieve the 
control input for each value of the detected output (Levine 2011).

According to Lavretsky and Wise (2024), an RBF neural network feedforward is a mapping from ℝn to ℝm, according to Eq. 11:

  (11)

where W͡  = [W͡T
0

  b]T ∈ ℝ(n+1)×m is the vector of weights, ci ∈ ℝn is the center of the i-th receptive "eld, b ∈ℝm is the bias of the neural 
network, and Θ(x) = [θi(x) . . . θn(x) 1]T ∈ ℝn+1 is the regressor vector, whose components are the basis (activation) functions, given 
by θi(x) = exp(–||x – ci ||2wi), and the unit function. !e terms wi to wn are the widths of the RBF and form a symmetric positive 
de"nite matrix, wi is calculated by Eq. 12:

  (12)

!e standard deviation σ of all components of the isotropic Gaussian RBF is set to:

  (13)

where n is the number of centers and dmax is the maximum distance between the chosen centers. !is formula ensures that the 
individual RBFs are neither too sharp nor too 'at, avoiding both extreme conditions (Lavretsky and Wise 2024).
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Radial basis function networks o#er a simple architecture, robust generalization, good noise tolerance, and online learning. 
In addition, from a generalization point of view, RBF networks must react e#ectively to patterns not used during training (Heidari 
et al. 2023).

Neuro-adaptive control law
According to Gruenwald et al. (2018), when the actuator dynamics are not present, this problem is solved by considering the 

control law given by Eq. 14:

  (14)

where un and ua are the nominal and adaptive control laws, respectively. !erefore, the nominal control law is given by Eq. 15:

  (15)

where K1 ∈ ℝm×n and K2 ∈ ℝm×n are the nominal feedback and feedforward gains, respectively, so that in closed loop, Eqs. 16 and 
17 are obtained:

  (16)

  (17)

!e (A, B) pair of the system is controllable, so the state feedback gain K1 is calculated by pole allocation or by linear quadratic 
regulator (LQR). !e direct-feedback gain K2 is calculated according to Eq. 18:

  (18)

If Am = A – BK1 and Bm = BK2, then the reference model of the system is described by Eq. 19:

  (19)

If the uncertainty can be parameterized as ∆(x) = WTΘ(x), then the adaptive control signal that cancels it is approximated by 
an ANN-RBF, according to Eq. 11. !e adaptive control signal ua is represented by Eq. 20:

  (20)

Substituting Eqs. 15 and 20 in Eq. 14, Eq. 21 is obtained:

  (21)

System error dynamics
According to Dogan et al. (2020), the system error is given by Eq. 22:

  (22)

and the dynamics of the error is given by Eq. 23:
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  (23)

Substituting Eqs. 10, 19, and 21 in Eq. 23, Eq. 24 is obtained:

  (24)

where W͠ is the weight update error matrix, represented by Eq. 25:

  (25)

Adaptation law
As presented by Yucelen and Calise (2010), an adaptation law must be chosen to bring the system error asymptotically to zero. 

A generic equation is written for the dynamics of weight estimation given by Eq. 26:

  (26)

where Γ ∈ℝ+ is the constant and positive learning rate and fa(.) is a generic adaptation function.
!e dynamics of the weight update error is represented by Eq. 27:

  (27)

It should be noted that, assuming that the vector of real uncertainty weights ∆(x) are time invariant parameters, the 
variation of W is zero. Therefore, replacing Eq. 26 in Eq. 27, and taking the vector of real weights W as a constant, Eq. 28 
is obtained:

  (28)

According to Gruenwald et al. (2017), using the system error and the weight update error, it is possible to construct a candidate 
Lyapunov function described by Eq. 29:

  (29)

It can be seen that V (0, 0) = 0 and V (e, W͠) > 0 for all (e, W͠) ≠ (0, 0), and its derivative is given by Eq. 30:

  (30)

Substituting Eqs. 24 and 28 in Eq. 30, Eq. 31 is obtained:

  (31)

From Eq. 31, it can be seen that if a generic adaptation function such as that described by Eq. 32:

  (32)
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!e term [fa(.) – Φ(x)eT PB] will be zero, so the derivative of the candidate Lyapunov function is negative semide"nite, according 
to Eq. 33:
  (33)

According to Arabi et al. (2020), P ∈ℝ+
n×n is the solution of the Lyapunov equation, given by Eq. 34:

  (34)

!erefore, substituting Eq. 32 into Eq. 26, the adaptation law is given by Eq. 35:

  (35)

σ-modi!cation
Because of the term Bε(x) in Eq. 24, it is not possible to reach V̇ ≤ 0. In this case, it is necessary to use an escape modi"cation; 

in this work, the σ-modi"cation is used. !is approach is valid both when W is constant and when W(t) is time-varying.
According to Lavretsky and Wise (2024), the adaptation law with the σ-modi"cation is given by Eq. 36:

  (36)

where Γ ∈ℝ+ is a constant and positive learning rate and –σW͡ is the σ-modi"cation term, which guarantees the stability of the 
system over time.

!e σ-modi"cation term in Eq. 36 is used to damp possible oscillations in the control signal that could be induced in the case 
of high-gain adaptation (Fravolini et al. 2015).

According to Orłowski et al. (2022), the σ-modi"cation does not guarantee, in general, that the state reaches an arbitrarily 
small neighborhood of the origin (for su$ciently small σ) and remains there inde"nitely, even in a delay-free context.

In Stepanyan and Kalmanje (2010), a complete performance analysis is presented, including asymptotic and transient analysis 
of the modi"ed MRAC (M-MRAC) architecture with σ-modi"cation.

Stability
So, according to Khalil (2002), if V̇ (e, W͠) ≤ 0, there is a stable system according to Lyapunov, but the asymptotic stability of 

the system must be veri"ed.
In the theory of ordinary di#erential equations, Barbalat’s lemma is a mathematical result about the asymptotic properties of 

functions and their derivatives. When used correctly for dynamic systems, it can lead to the solution of many asymptotic stability 
problems, including compartmental epidemiological models. In general terms, it is the convergence to zero of a su$ciently well-
behaved function whose integral is bounded (Zeraick Monteiro and Rodrigues Mazorche 2023). Barbalat’s lemma is a useful 
technique for assessing the instability of non-autonomous systems. For non-autonomous systems with piecewise continuous 
dynamics, an extended adaptation of the lemma was presented by Su and Huang (2011).

According to Slotine and Li (1991) and as demonstrated by Lu et al. (2020), it is stated that:
• If V (e, W͠) is lower bounded and V̇ (e, W͠) = −eT Re ≤ 0, then V (e, W͠) approaches a "nite limit when t → ∞.
• Moreover, if V̈ (e, W͠) is bounded, then V̇ (e, W͠) is a uniformly continuous function of time.
• !en, by Barbalat’s Lemma, as discussed by Lavretsky and Wise (2024), proved and exempli"ed by Hou et al. (2010), it 

follows that limt→∞ V̇ (e, ͠W) = 0, as long as the matrix R is positive de"nite, and therefore the error e converges asymptotically 
to zero.
!erefore, the state x(t) of the system with uncertainties will approach the desired ideal state xm(t) (Eq. 37):

  (37)
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Command regulator signal
According to Yucelen and Johnson (2013), a command regulator signal is proposed to recover the steady-state performance 

of a closed-loop controlled system using adaptive methods. !e methodology proposed by the authors guarantees both 
transient and steady-state performance in the closed loop, and can shape the transient response by adjusting the trajectory of 
the reference with the command regulator.

According to Yucelen and Johnson (2013), the control architecture by command regulator signal for the adaptive control 
problem with time-varying non-parametric uncertainty is given by Eq. 38:

  (38)

where rv ∈ℝm is the total reference command, r ∈ℝm is the command given uniformly continuous and limited, and Gv ∈ℝm is the 
command regulator signal, with G ∈ℝm×n being the matrix of the command regulator signal added to the total reference signal, 
de"ned by Eq. 39, and v ∈ℝn is the output of the command regulator:

  (39)

!e dynamic system of the control regulator is given by Eqs. 40 and 41:

  (40)

  (41)

where Ψ ∈ℝn is the command regulator state vector and λ ∈ℝ+ is the command regulator gain. !erefore, substituting Eqs. 15 
and 20 in Eq. 14 and adding the correction signal given by Eq. 38, the total control law is given by Eq. 42:

  (42)

Substituting the new reference command from Eq. 38 into Eq. 19 results in Eq. 43:

  (43)

!erefore, the new reference model is represented by Eq. 44:
 
  (44)

where Ω is the command regulator signal matrix added to the reference model, given by Eq. 45:

  (45)

A%er implementing the dynamic system of the command regulator to recover system performance and adding the σ-modi"cation 
term, the diagram of the complete control loop architecture is represented by Fig. 3.
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Indirect MRNAC
!e indirect MRNAC (IMRNAC) represents a sophisticated and e#ective approach to controlling dynamic systems subject to 

uncertainty and variation, distinguished by its ability to dynamically adjust its parameters based on the system’s actual response.
By employing the indirect methodology, the controller is based on identifying the dynamic model of the system, using 

the response to the control signal to adjust the adaptive parameters. !is approach excels in environments where the system’s 
characteristics are subject to change, o#ering the 'exibility needed to deal with uncertainties, non-linearities, and time variations.

Problem formulation
According to the adaptive control frameworks in Arabi and Yucelen (2019) and Arabi et al. (2018), the indirect method approach 

consists of mathematically modeling the real system when its parameters are unknown, and a new state-space structure is set up in 
order to parameterize the complete uncertainty, containing not only the external disturbances inherent in the process but also the 
unknown parameters of the system. !erefore, all unknown parameters are estimated by the ANN-RBF and consequently canceled 
out as uncertainties. !rough this new state space structure, other constant matrices A and B are used in the reference model.

Considering the system of Eq. 5 and replacing the parameters with uncertainties
with the coe$cients α1, α2, α3, and α4, Eq. 46 is obtained:

  (46)

Assuming that none of the parameters of the real system is known, the system model can be represented by Eq. 47:

  (47)

Reference Model
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Figure 3. DMRNAC control architecture with command regulator and σ-modi"cation.
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Note that a control law u can be chosen, which cancels out all the parameters with uncertainties present in the system (Eq. 48):

  (48)

It is therefore possible to represent the system in state space with the model in Eq. 49:

  (49)

Organizing the terms, the system in state space is represented by Eq. 50:

  (50)

where WT
0 is the vector of initial weights and Θ0(x) is the vector of initial basis functions. !e equation for the nominal control law 

is the same as that described in Eq. 15, as are the calculations for the state feedback and direct supply gains, K1 and K2, respectively. 
In addition, the reference model used is the same as that presented in Eq. 19. !erefore, the system is represented by Eq. 51:

  (51)

Substituting the total control input from Eq. 14 and adding the terms Bun and −Bun to Eq. 51, Eq. 52 is obtained:

  (52)

If the uncertainty ∆(x) is parameterized as WT Θ(x), then the adaptive control signal, which cancels it, is approximated by an 
ANN-RBF, according to Eq. 11. !e adaptive control signal ua is represented by Eq. 53:

  (53)

!e dynamics of the error between the states of the system is given by Eq. 54:

  (54)
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!e adaptation law is given by Eq. 55:

  (55)

where Γ ∈ℝ+ is a constant and positive learning rate and P ∈ℝ+n×n is the solution of the Lyapunov equation according to Eq. 34.

RESULTS AND DISCUSSION

!is section presents a detailed analysis of the response of the controlled system and the reference model over time, providing 
a visual comparison of the control’s performance. In addition, graphs illustrating the tracking error between the controlled system 
and the reference model over time are displayed, allowing an accurate assessment of the control’s precision and the system’s ability 
to follow the reference. !e control signals generated by the adaptive controller are plotted on separate graphs, o#ering insights into 
how the controller responds to changes in the system. Performance metrics such as mean absolute error (MAE), mean square error 
(MSE), Root MSE (RMSE), coe$cient of determination (R-squared), and mean absolute percentage error (MAPE) are presented in 
tables or graphs, providing a quantitative assessment of the controller’s performance. In addition, the results of the robustness of the 
controller in relation to uncertainties in the system are discussed, such as variations in system parameters or external disturbances, 
by means of speci"c graphs or tables. Finally, a comparison is made between the direct and indirect methods, highlighting their 
respective advantages and limitations in the context of adaptive control. !e controllers and simulators developed in the study are 
presented in Algorithms 1 and 2 for the direct method (DMRNAC), and Algorithms 3 and 4 for the indirect method (IMRNAC).

Algorithm 1 implements DMRNAC robust control using the Lyapunov rule. !e main blocks include: Block 1 – Setup of initial 
conditions with de"nitions of the dynamic system matrices and initial states; Block 2 – Design of the nominal controller with 
calculation of gains by pole allocation, where K1 is determined by Ackerman’s formula and K2 by Eq. 18; Block 3 – De"nition of 
reference model matching conditions, where Am and Bm are calculated according to Eqs. 16 and 17; Block 4 – Calculation of the 
correction signal for performance recovery, using G and Ω, according to Eqs. 39 and 45; Block 5 – Solving an algebraic Lyapunov 
equation to obtain the P matrix, given by Eq. 34; and Block 6 – Parameterization of an ANN for estimation and cancellation of 
system uncertainties, including the parameters W͡ , width, Θ, and others, according to Eqs. 12 and 13.
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Algorithm 2 implements the simulator for the DMRNAC control system in discrete time, where the system is exposed to a non-linear 
uncertainty. Its main blocks include: Block 1 – Initialization of the simulation conditions with time and counter settings; Block 2 – De"nition 
of a non-linear uncertainty function ∆(x) as a function of the current state; Block 3 – De"nition of the reference signal r according to the 
current time; Block 4 - assembly of the regressor vector Θ of the ANN using RBFs and the bias according to Eq. Block 5 – Calculation of 
the correction signal for performance recovery with Ψ update and calculation of v according to Eqs. Block 6 – Calculation of the control 
signal u incorporating nominal control gains K1 and K2, reference signal r, correction signal Gv, and uncertainty estimate W͡T Θ(x) according 
to Eq. 42, as well as updating xm and applying the W adaptation law according to Eq. 55; and Block 7 – Updating the x state of the real 
system, taking into account the ∆(x) uncertainty and calculating the y output, repeating the iterations until the "nal simulation time.

Algorithm 3 implements IMRNAC robust control. Its main blocks include: Block 1 – Initial con"guration of the system with 
de"nition of the matrices and initial states; Block 2 – De"nition of the actual system parameters and the initial vector W0; Block 3 
– Design of the nominal controller, where K1 and K2 are calculated; Block 4 – Setting the reference model matching conditions 
Am and Bm are de"ned; Block 5 – Calculating the correction signal for performance recovery with G and Ω; Block 6 – Solving the 
Lyapunov algebraic equation (Eq. 34); and Block 7 – De"ning the parameters of the RBF neural network, including the number 
of neurons, domain boundary, vector of centers, and width of neurons for estimating and compensating for uncertainties.
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Algorithm 4 implements the IMRNAC control system simulator, where the system is exposed to a non-linear 
uncertainty. Its main blocks include: Block 1 – Initial configuration of the simulation, with definition of the total time 
and sampling interval; Block 2 – Definition of the non-linear uncertainty ∆(x), calculated using a regressor vector Θ0 
and a vector of weights W0; Block 3 – Creation of the reference signal r; Block 4 – Assembly of the RBF regressor vector 
Θ, where elements are calculated with RBF applied to the state x and the centers of the neurons; Block 5 – Calculation of 
the correction signal, where the vector Ψ and the vector v are updated based on the difference between the state x and 
the desired state xm; Block 6 – Calculating the control signal u, which includes the gains K1 and K2, the correction signal 
Gv, and the uncertainty estimate provided by the neural network W͡T Θ(x); and Block 7 – Updating the real system with 
the uncertainty ∆(x), Where the state x is adjusted with the control u, and the output y is obtained from the matrix C, 
until the end of the simulation.

Regarding the controller tests, the following observations are made.
• Figure 4 describes the response of the closed-loop system with DMRNAC control for both states x1 and x2 that follow the 

reference model, the control e#ort u(t) that presents limited oscillations, and the performance of the RBF neural network  
W͡ T Θ(x) to estimate the uncertainty ∆(x). !e errors between the states of the real system and the reference model (ex1

 
and ex2

) are limited and converge to zero, ex1
 → 0 and ex2

 → 0 (Fig. 5). !e estimation error of the RBF network converges 
to zero eRBF → 0 (Fig. 6).

• !e metrics used to measure the estimation error of the RBF network in DMRNAC control (Fig. 7) have satisfactory 
results (Table 1).

• In DMRNAC control, for faster tracking of the reference signal, poles at [- 3 -2] are chosen resulting in the response 
of Fig. 8.

• Figure 9 describes the response of the closed-loop system with IMRNAC control for both states x1 and x2 that follow the 
reference model, the control e#ort u(t) that presents limited oscillations, and the performance of the RBF neural network 
 W͡ T Θ(x) to estimate the uncertainty ∆(x). !e errors between the states of the real system and the reference model (ex1

 and 
ex2

) are limited and converge to zero, ex1
 → 0 and ex2

 → 0 (Fig. 10). !e estimation error of the RBF network converges to zero 
eRBF → 0, but with oscillations when the reference signal changes (Fig. 11).
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Source: Elaborated by the authors.

Figure 4. Controlled system response (DMRNAC).
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Figure 5. Reference model tracking error (DMRNAC).
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Figure 6. RBF network estimation error (DMRNAC).

Source: Elaborated by the authors.

Figure 7. RBF network performance metrics (DMRNAC).
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Table 1. Metrics for evaluating the RBF network in DMRNAC control.

Metrics Value

Mean Absolute Error (MAE) 0.00864

Mean Square Error (MSE) 0.00198

Root Mean Square Error (RMSE) 0.04459

Coef"cient of Determination (R-squared) 0.99967

Mean Absolute Percentage Error (MAPE) 0.30919

Source: Elaborated by the authors.

Source: Elaborated by the authors.

Figure 8. Faster reference signal tracking (DMRNAC).
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Figure 9. Controlled system response (IMRNAC).
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Figure 10. Reference model tracking error (IMRNAC).
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• !e metrics used to measure the estimation error of the RBF network in IMRNAC control (Fig. 12), also showed satisfactory 
results (Table 2).
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Figure 12. RBF network performance metrics (IMRNAC).
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Figure 11. RBF network estimation error (IMRNAC).
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Table 2. Metrics for evaluating the RBF network in IMRNAC control.

Metrics Value

Mean Absolute Error (MAE) 0.46402

Mean Square Error (MSE) 0.54524

Root Mean Square Error (RMSE) 0.73841

Coef"cient of Determination (R-squared) 0.7692

Mean Absolute Percentage Error (MAPE) 110.7971

Source: Elaborated by the authors.

• In IMRNAC control, for faster tracking of the reference signal, poles at [-4 -5] are chosen, resulting in the response in 
Fig. 13.

Source: Elaborated by the authors.

Figure 13. Faster reference signal tracking (IMRNAC).

• The IMRNAC control showed robustness in all tests, with non-linear sinusoidal and quadratic uncertainties, isolated 
or summed.

• For all tests, both the DMRNAC and IMRNAC controls were stable, even in the presence of uncertainties.
• Based on Algorithms 1 and 2 an application with a graphical interface is developed, as shown in Fig. 14, for faster and more 

practical simulations of the controller, with information such as the performance of both states when following the reference 
model, the behavior of the control input and a comparison of the simulated uncertainty with the uncertainty estimated by the 
RBF neural network.
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Source: Elaborated by the authors.

Figure 14. DMRNAC simulator graphical interface.

CONCLUSION

!is article presents rocket modeling and a methodology for developing algorithms for the design of robust neuro-adaptive 
controllers. !e algorithms for the proposed controllers were evaluated in simulators that are based on mathematical models and 
can be applied to a class of systems by changing the values of their matrices, con"guration parameters, and the order of the models.

From the discussions presented, it can be concluded that this proposal o#ers a signi"cant contribution to the aerospace sector, 
speci"cally, in the "eld of adaptive control in the context of altitude control of solid fuel rockets. !roughout this research, the 
modeling and design of controllers was based on an RBF neural network, meeting the speci"c requirements of this engineering 
challenge. !e results obtained showed that the two controllers developed, DMRNAC and IMRNAC, demonstrated stability and 
robustness even in the presence of uncertainties.

!e performance of the controllers in response to changes in the reference signal was evaluated, highlighting the ability to 
track and regulate the controlled systems. In addition, the practical implementation of the controller and simulator developed 
proved to be viable and promising for applications in real-world systems, o#ering a 'exible and adaptable platform for future 
research and development.

As a general conclusion, this research provides a solid basis for future investigations in the field of adaptive control, 
paving the way for the continuous improvement of techniques and methodologies in this domain of control engineering 
and aerospace engineering.
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