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ABSTRACT

This study presents the development of a methodology for designing neuro-adaptive robust controllers based on a reference
model associated with an artificial neural network of radial basis functions (ANN-RBF) for solid fuel suborbital rockets. The
modelling and neuro-adaptive robust control algorithms for these rockets are presented. Initially, the methodology is evaluated
for a robust controller based on a reference model with ANN-RBF for altitude control. The main objective of the control is to
suppress the effect of non-linear uncertainties inherent in the process. The method involves mathematical and computational
modelling, together with the design of adaptive controllers for stability and performance analysis. The controllers considered
include model reference adaptive control (MRAC) techniques and a model reference neuro-adaptive control (MRNAC)
approach. The analysis, carried out using computer simulations, evaluates the behavior of each controller in relation to system
stability and performance. The final objective is to select the most suitable controller for the suborbital rocket, taking into
account the system constraints, robust performance requirements, robust stability, and optimal adaptability. This research
promotes the development of adaptive controllers for suborbital rockets, with possible applications in scientific research and
commercial launches.

Keywords: Robust control; Rocket; Model reference adaptive control; Model reference neuro-adaptive control; Artificial neural

networks; Radial basis function neural networks.

INTRODUCTION

Aerospace has experienced rapid technological evolution in recent decades, driven by a growing need to improve the efficiency,
safety, and sustainability of airspace operations. In this context, control systems are key elements in ensuring the proper performance
and reliable operation of various aircraft and space vehicles.

A reusable launch vehicle is an aerospace vehicle that can have its parts reused after launch, thus avoiding space debris. The
stages of re-entry into the atmosphere, for the subsequent recovery of the parts, are managed by attitude control systems (Alves
and Sica 2023), whose main objective is to minimize disturbances from outside the vehicle so that it can maintain its stability
(Sampaio 2006).

Satellites play a crucial role in various applications, from telecommunications to environmental monitoring. Therefore,
ensuring precise control of these spacecraft in orbit is essential to optimizing their performance and extending their lifespan. Ji
and Shi (2023) propose a new velocity control strategy based on adaptive neural dynamics for stable subsatellite recovery of the

tethered satellite system.
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In Farsana et al. (2023), a study is presented on the adaptive control of electromechanical actuation systems for launch vehicles.

The aim is to overcome the main challenges faced by these systems, such as parameter variations, disturbances, and sensor failures.
The proposed adaptive control uses model reference adaptive control (MRAC), which does not require precise information about
the location or amplitude of the fault. In addition, the use of the modified Massachusetts Institute of Technology (MIT) rule for
the design of MRAC is discussed. The study addresses system modeling, including motor dynamics, load dynamics, and actuator
dynamics. Non-linear mathematical models of the system and classical compensations for linear system control are presented.
It is shown that both classical compensation and MRAC are capable of tracking the output of the non-linear model of the system.
In addition, MRAC is shown to be tolerant of parameter variations and motor winding faults. In summary, MRAC is used to
overcome system challenges such as parameter variations, disturbances, and sensor failures. The results show the effectiveness
of the proposed control.

The development of suborbital rockets represents a fascinating challenge full of possibilities, propelling science and space
exploration to new horizons. In this context, the motivation for this research arises, with the aim of designing an efficient
altitude controller for solid-fuel suborbital rockets, guaranteeing the desired stability and performance in the face of the
uncertainties inherent in the process. These uncertainties, arising from various sources such as modeling, environmental
conditions, payload, engine behavior, and structural integrity, highlight the complexity of the challenge. The implementation
of adaptive control systems is crucial to strengthening the rocket’s ability to cope with unforeseen situations during flight.
Through mathematical and computational modeling, this study explores adaptive control strategies, including direct
and indirect MRAC and direct and indirect model reference neuro-adaptive control (MRNAC), as addressed by Lavretsky and
Wise (2024). The detailed analysis of these controllers aims to identify their advantages and limitations in order to select
the most suitable approach for altitude control, with a view to guaranteeing the stability and performance required for
successful suborbital rocket missions.

According to Anavatti et al. (2015), driven by the need for highly efficient flight control systems, especially for experimental
aircraft such as the X-15, the aeronautical industry saw a significant increase in interest in adaptive controls during the 1950s.
In 1951, researchers reached an important milestone by successfully developing a self-optimizing controller for combustion
engines, demonstrating its effectiveness in subsequent flight tests. Between 1957 and 1961, there were investigations into the use
of dynamic programming in adaptive controls. In 1958, the Model Reference Adaptive System (MRAS) concept was introduced
to solve flight control challenges, while in 1965 Lyapunov’s theory was applied to address stability issues in MRAS. The following
decades, from the 1970s to the 1980s, saw significant advances in the area of self-tuning regulators, with the introduction of
gain programming to solve problems in flight control systems. From 1980 onwards, process control systems experienced major
advances, leading to the commercial implementation of adaptive controls. In the early 1990s, the focus shifted to the robustness
of adaptive controllers, seeking to make them more resilient in the face of uncertainties and variations in the system. Figure 1
describes the timeline of the evolution of robust neuro-adaptive control throughout history, together with the contributions of
the main research to the present day.

The introduction of adaptive control was mainly motivated by the need to develop controllers capable of adjusting to variations
in system dynamics and disturbance characteristics, as discussed by Astrom and Wittenmark (2013). In addition, according to
the authors, adaptive techniques have the potential to automatically tune controllers. According to Landau et al. (2011), adaptive
control encompasses a set of techniques that provide a systematic approach for automatically tuning controllers in real time in
order to achieve or maintain a desired level of control system performance when the parameters of the plant’s dynamic model
are unknown and/or change over time.

The general objective of this research is to develop a methodology to design a robust neuro-adaptive controller by reference
model, using a neural network with radial basis functions (RBF), for the altitude control of a solid fuel suborbital rocket. The specific
objectives are to obtain a mathematical model for the rocket based on its design characteristics and atmospheric conditions, to
develop methods for designing adaptive controllers using direct and indirect approaches, to develop control algorithms for future
applications and to validate the controller using simulations, including a comparison of robustness and stability between direct

and indirect neuro-adaptive control techniques.
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Figure 1. Neuro-adaptive robust control timeline.

®

[



Carvalho CDR, Fonseca Neto JV

Direct MRNAC
The aim of developing the direct MRNAC (DMRNAC) for the solid-fuel suborbital rocket model stems from the need to cancel

out unstructured (non-parametric) time-varying uncertainties that cannot be measured or determined precisely and which can

significantly alter the vehicle’s trajectory during flight. These uncertainties include unmodeled dynamics of the real system, wind
forces, and variations of parameters such as propellant mass, air density, drag force, etc.

An ANN-RBF is implemented to approximate the dynamics of a complex time-varying uncertainty and estimate its parameters,
so that later the adaptation mechanism cancels it out, making the system converge to the ideal reference model.

Due to the approximation of the uncertainty by the neural network, a residual error €(x) is generated. The strategy is to implement
a neural network with a sufficient number of neurons (nuclei) to make the residual error smaller quickly, thereby guaranteeing the
accuracy of the approximation. Because of €(x), it is not possible to obtain the derivative of the negative semi-definite Lyapunov
candidate function V' <0, i.e., according to Khalil (2002), the stability of the system over time cannot be guaranteed. For this, an
escape modification term is used in the adaptation law.

In the closed loop, in order to guarantee zero error in the permanent regime, a control regulator signal (correction signal)

is implemented to recover the system’s performance. Figure 2 illustrates the architecture diagram of the DMRNAC controller.

Reference Model

> X (t)= A x.[t)+ B r{t) X (E) —

Uncertainty

System

M
r‘[t]——> K2 u(t) —»é——E{c} Ax(t) + Blu(t) + A(x[t]]ﬂ—x[t]——>®
Q- DR

Neural Network RBF Adaptation Mechanism

AA

Wex(t) W= re(x)gtPa

Source: Elaborated by the authors.
Figure 2. DMRNAC controller architecture.

Linearization of the nonlinear model

According to Hodel and Baginski (1995), a non-linear model that includes the elevation angle and the roll angle is proposed
in their study, the approximate equations of rocket dynamics were derived, and the rocket dynamics is modeled according to
Egs. 1 and 2:

b = L eos(8) — g — Lpofcos(d) — 220D o jrcos(gy, g
m m
be = Zsin(8) — Zfofsin(@) — 2 2gin(g), ®
m m g
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where m is the mass of the rocket, v is the speed of the rocket, g is the acceleration due to gravity, T is the thrust force, 6 is the
lift angle, ¢ is the roll angle, & is the deflection angle of the motor nozzle, and ¢, and c, are aerodynamic constants given by Eq. 3:
Cd pS

1 = Cy = 5 (3)

For the nominal trajectory studied, the elevation angle of the launch pad is 82°, the elevation angle 6 = 8° is considered to be
the angle between the initial launch direction and the vertical, in this case 90° - 82° = 8°, and to simplify the model the roll angle
can be ¢ = 0°. In this case, the modified differential equation for the z component (altitude) is given by Eq. 4:

m

= 1 cos(8) — g —
0 mcos() g

c cosin(f
—l|v|2 _ 27()|v|2, (4)
According to Wie et al. (2008), to add the 8 angle of deflection of the motor nozzle, divide the thrust by cos(3). In this case,

the term u(t) = 1/cos(d) is the system’s control input. The model equation results in Eq. 5:

Ty = T2
T cos(6) ¢ o  cosin(f) , ®)
Tog=——"Uu—g— —x; — ——=;
m m m
The non-linear model given by Eq.5 is linearized by Taylor series expansion, according to Ogata (2010), at the operating point
(%, =2,595m, x, = 1,136 m/s), equivalent to the position and final velocity of the propelled phase of the suborbital rocket (¢ = 4s).
The values refer to the operating point at the end of the propelled phase, which for the model in question lasts approximately 4 s
of propellant burn. The control will only act in the propelled phase, the reference trajectory is a set of points to be followed, and
the operating point (x,, x,) is the end point of the reference trajectory, which the rocket will follow as a target before entering its
ballistic (unpropelled) phase.
The linear model of the system to be controlled is given by Eq. 6:

{jj = [8 —0.1190} {2] i {37331} !
[1 0] Bj

The controllability and observability requirements for the system were met, as discussed by Lavretsky and Wise (2024).

4

Problem formulation

According to Singh and Pal (2019), the MRAC method is an approach used in the design of an adaptive controller that
modifies the parameters of the controller so that the output of the real system tracks the output of a reference model under the
same reference input.

In line with the robust adaptive control formulations and structures found in the literature, such as Arabi et al. (2019),
Glushchenko and Lastochkin (2022), and Gruenwald et al. (2017), this study addresses the following structure and mathematical
modeling for a DMRNAC controller.

As discussed by Lavretsky and Wise (2024), the dynamic system with uncertainty is considered according to Eq. 7:

&= Az + Blu+ A(x)], x(0) = xo, (7)

where x € R" is the system state, u € R™ is the control input, B € R is the known control matrix. Furthermore, it is assumed
that the pair (A, B) is controllable. In Eq. 7, the unknown vector function, which may be non-linear, A(x) : R"—R™, describes the

intrinsic uncertainty of the system.

J. Aerosp. Technol. Manag., v17, e0225, 2025
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The parameterization of the unstructured uncertainty A(x) is given by Eq. 8:
A(z) = W'O(z) +e(@), e(@)llz <&, ®)

where W7 is a vector of unknown weights, to be estimated by the parameter update law, ®(x) is a vector and includes RBF in its
elements, and ¢ : R®—>R™ is the residual error.

It should be noted that the residual error &(x) comes from the universal approximation theorem for RBF neural networks
(Lavretsky and Wise 2024), and by including more neurons in the neural network it is possible to reduce this error. In addition,
in second-order cases, as discussed in this research, or in high-order cases, it is necessary to include RBF for each x; to cover each
compact domain D;.

The vector O(x) is given by Eq. 9:

(“)(I) = [0] (.ZU])J ...,en(ﬁﬂ]), 9,7,_;,_] (1'2)7 ey 192n(x2), 1]T (9)

Therefore, the system is represented by Eq. 10:
& = Az + Blu+ W7"0(z) + £(z)] (10)

RBF neural network

For some control problems, an artificial neural network (ANN) can be trained to remember how to regulate a system by
repeatedly providing examples of how to perform such a task. After this learning, the neural network can be used to retrieve the
control input for each value of the detected output (Levine 2011).

According to Lavretsky and Wise (2024), an RBF neural network feedforward is a mapping from R” to R™, according to Eq. 11:

91;513'
 Jean(-lle — cilPw) B @
NN(z) =Wy : +b=[W0T b} 9&:5) = Ww'e(x), (11)
eap(le—ealfw)] %
O(z)

where W= [VVE b]T e RDxm is the vector of weights, ¢ € R"is the center of the i-th receptive field, b € R™ is the bias of the neural
network, and ©(x) = [0(x) ... 0, (x) 1]T € R""' is the regressor vector, whose components are the basis (activation) functions, given
by 0,(x) = exp(-||x - ¢, ||*'w,), and the unit function. The terms w, to w, are the widths of the RBF and form a symmetric positive

definite matrix, w, is calculated by Eq. 12:

The standard deviation ¢ of all components of the isotropic Gaussian RBF is set to:

dmax
\V2n 7

where # is the number of centers and d, . is the maximum distance between the chosen centers. This formula ensures that the

o= (13)

individual RBFs are neither too sharp nor too flat, avoiding both extreme conditions (Lavretsky and Wise 2024).

J. Aerosp. Technol. Manag., v17, e0225, 2025



Modelling and Neuro-Adaptive Robust Control Algorithms for Solid Fuel Rockets

Radial basis function networks offer a simple architecture, robust generalization, good noise tolerance, and online learning.
In addition, from a generalization point of view, RBF networks must react effectively to patterns not used during training (Heidari
et al. 2023).

Neuro-adaptive control law
According to Gruenwald et al. (2018), when the actuator dynamics are not present, this problem is solved by considering the
control law given by Eq. 14:
U= Up + Uq, (14)
where u, and u_ are the nominal and adaptive control laws, respectively. Therefore, the nominal control law is given by Eq. 15:

Uy, = — Ko+ Kor, (15)

where K, € R™"and K, € R™" are the nominal feedback and feedforward gains, respectively, so that in closed loop, Egs. 16 and

17 are obtained:
A, =A—-BKj, (16)
B,, = BK>. (17)

The (A, B) pair of the system is controllable, so the state feedback gain K is calculated by pole allocation or by linear quadratic
regulator (LQR). The direct-feedback gain K, is calculated according to Eq. 18:

K,=—(C(A-BK,)'B)™! (18)
IfA =A-BK, and B, = BK,, then the reference model of the system is described by Eq. 19:
T = AmZm + Bmr (19)

If the uncertainty can be parameterized as A(x) = W'®(x), then the adaptive control signal that cancels it is approximated by

an ANN-RBE according to Eq. 11. The adaptive control signal u, is represented by Eq. 20:
Uy = —/WT@(x)A (20)
Substituting Eqgs. 15 and 20 in Eq. 14, Eq. 21 is obtained:
u=—Kz+ Kor — WTO(2) 1)

System error dynamics
According to Dogan et al. (2020), the system error is given by Eq. 22:

€= — T, (22)

and the dynamics of the error is given by Eq. 23:

J. Aerosp. Technol. Manag., v17, e0225, 2025
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€= — Tpm. (23)
Substituting Eqs. 10, 19, and 21 in Eq. 23, Eq. 24 is obtained:
¢ = Ame — BWTO(z) + Be(x), (24)

where W is the weight update error matrix, represented by Eq. 25:

—_— o~

W=Ww-Ww (25)
Adaptation law
As presented by Yucelen and Calise (2010), an adaptation law must be chosen to bring the system error asymptotically to zero.
A generic equation is written for the dynamics of weight estimation given by Eq. 26:

W = Ifa(), T'>0, (26)

where I' € R* is the constant and positive learning rate and f,(.) is a generic adaptation function.

The dynamics of the weight update error is represented by Eq. 27:
W=W-Ww. (27)
It should be noted that, assuming that the vector of real uncertainty weights A(x) are time invariant parameters, the

variation of W is zero. Therefore, replacing Eq. 26 in Eq. 27, and taking the vector of real weights W as a constant, Eq. 28

is obtained:
W =T/() (28)

According to Gruenwald et al. (2017), using the system error and the weight update error, it is possible to construct a candidate

Lyapunov function described by Eq. 29:
V(e,W) = e’ Pe + trW' T 'W. (29)
It can be seen that V (0,0) =0 and V (e,W) > 0 for all (e,ﬁ/') # (0, 0), and its derivative is given by Eq. 30:
Vie,W) = 2¢T Pé + 24 WIT Y. (30)
Substituting Eqs. 24 and 28 in Eq. 30, Eq. 31 is obtained:
V(e,W) = 2T PAne + 2trW7T [fu(.) — &(x)e PB] (31)
From Eq. 31, it can be seen that if a generic adaptation function such as that described by Eq. 32:

fa() = ®(x)e" PB, (32)

J. Aerosp. Technol. Manag., v17, e0225, 2025
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The term [f,(.) - ®(x)e" PB] will be zero, so the derivative of the candidate Lyapunov function is negative semidefinite, according
to Eq. 33:

V(e,W) = —c"Re. (33)

According to Arabi et al. (2020), P € R is the solution of the Lyapunov equation, given by Eq. 34:

0=A"

P+ PA, +R. (34)

Therefore, substituting Eq. 32 into Eq. 26, the adaptation law is given by Eq. 35:

.

W =Td(x)e’ PB. (35)

o-madification
Because of the term Be(x) in Eq. 24, it is not possible to reach V' <0. In this case, it is necessary to use an escape modification;
in this work, the -modification is used. This approach is valid both when W is constant and when W(¢) is time-varying.

According to Lavretsky and Wise (2024), the adaptation law with the 6-modification is given by Eq. 36:

W=r [0@e PE - olV], T >0, (36)

where T e R* is a constant and positive learning rate and —oW is the o-modification term, which guarantees the stability of the
system over time.

The o-modification term in Eq. 36 is used to damp possible oscillations in the control signal that could be induced in the case
of high-gain adaptation (Fravolini et al. 2015).

According to Orlowski et al. (2022), the o-modification does not guarantee, in general, that the state reaches an arbitrarily
small neighborhood of the origin (for sufficiently small ¢) and remains there indefinitely, even in a delay-free context.

In Stepanyan and Kalmanje (2010), a complete performance analysis is presented, including asymptotic and transient analysis
of the modified MRAC (M-MRAC) architecture with c-modification.

Stability

So, according to Khalil (2002), if V (e, W) < 0, there is a stable system according to Lyapunov, but the asymptotic stability of
the system must be verified.

In the theory of ordinary differential equations, Barbalat’s lemma is a mathematical result about the asymptotic properties of
functions and their derivatives. When used correctly for dynamic systems, it can lead to the solution of many asymptotic stability
problems, including compartmental epidemiological models. In general terms, it is the convergence to zero of a sufficiently well-
behaved function whose integral is bounded (Zeraick Monteiro and Rodrigues Mazorche 2023). Barbalat’s lemma is a useful
technique for assessing the instability of non-autonomous systems. For non-autonomous systems with piecewise continuous
dynamics, an extended adaptation of the lemma was presented by Su and Huang (2011).

According to Slotine and Li (1991) and as demonstrated by Lu et al. (2020), it is stated that:

o If Ve VT/) is lower bounded and V (e I/T/) =—e Re <0, then V (e, W) approaches a finite limit when ¢ - oo.

e Moreover, if V (e, W) is bounded, then V (e, W) is a uniformly continuous function of time.

e Then, by Barbalat’s Lemma, as discussed by Lavretsky and Wise (2024), proved and exemplified by Hou et al. (2010), it
follows thatlim,_ V(e,W)=0,as long as the matrix R is positive definite, and therefore the error e converges asymptotically
to zero.

Therefore, the state x(¢) of the system with uncertainties will approach the desired ideal state x,, (¢) (Eq. 37):

lim [z(t) — zm(t)] = 0. (37)

t—00
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Command regulator signal

According to Yucelen and Johnson (2013), a command regulator signal is proposed to recover the steady-state performance
of a closed-loop controlled system using adaptive methods. The methodology proposed by the authors guarantees both
transient and steady-state performance in the closed loop, and can shape the transient response by adjusting the trajectory of
the reference with the command regulator.

According to Yucelen and Johnson (2013), the control architecture by command regulator signal for the adaptive control

problem with time-varying non-parametric uncertainty is given by Eq. 38:
ry, =1+ Gu, (38)
where r,eR"is the total reference command, r € R™ is the command given uniformly continuous and limited, and Gv € R is the

command regulator signal, with G € R™ being the matrix of the command regulator signal added to the total reference signal,

defined by Eq. 39, and v e R" is the output of the command regulator:
G=K,"(B"B)'B". (39)
The dynamic system of the control regulator is given by Eqs. 40 and 41:
U =AU+, U0)=0 teR", (40)
v= AU+ (A, — A,)e, (41)

where ¥ eR" is the command regulator state vector and A € R* is the command regulator gain. Therefore, substituting Egs. 15

and 20 in Eq. 14 and adding the correction signal given by Eq. 38, the total control law is given by Eq. 42:
u=—Kjx+ Ky(r + Gv) — WT@(QU). (42)
Substituting the new reference command from Eq. 38 into Eq. 19 results in Eq. 43:
Em = AmZm + Bmr + B(BTB)™' BT, (43)
Therefore, the new reference model is represented by Eq. 44:
Tm = AmTm + Bpr + Qu, (44)
where () is the command regulator signal matrix added to the reference model, given by Eq. 45:
Q= B(BTB)_lBT. (45)

After implementing the dynamic system of the command regulator to recover system performance and adding the 6-modification

term, the diagram of the complete control loop architecture is represented by Fig. 3.
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Figure 3. DMRNAC control architecture with command regulator and c-modification.

Indirect MBRNAC
The indirect MRNAC (IMRNAC) represents a sophisticated and effective approach to controlling dynamic systems subject to

Source: Elaborated by the authors.

uncertainty and variation, distinguished by its ability to dynamically adjust its parameters based on the system’s actual response.
By employing the indirect methodology, the controller is based on identifying the dynamic model of the system, using
the response to the control signal to adjust the adaptive parameters. This approach excels in environments where the system’s

characteristics are subject to change, offering the flexibility needed to deal with uncertainties, non-linearities, and time variations.

Problem formulation
According to the adaptive control frameworks in Arabi and Yucelen (2019) and Arabi et al. (2018), the indirect method approach
consists of mathematically modeling the real system when its parameters are unknown, and a new state-space structure is set up in
order to parameterize the complete uncertainty, containing not only the external disturbances inherent in the process but also the
unknown parameters of the system. Therefore, all unknown parameters are estimated by the ANN-RBF and consequently canceled
out as uncertainties. Through this new state space structure, other constant matrices A and B are used in the reference model.
Considering the system of Eq. 5 and replacing the parameters with uncertainties

with the coefficients 0y, Oy O, and o » Eq. 46 is obtained:

1'1 = X2

) 1 .

9= — |Tcos(@)u— mg — c1 x5 — cysin(f) 23 (46)
m N—— ~~ =~ ——
X (e %1 a2 a3 (o7}

Assuming that none of the parameters of the real system is known, the system model can be represented by Eq. 47:

Ty = T
. 47
To = A (ozlu -y — 3x3 — awg) . (47)
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Note that a control law u can be chosen, which cancels out all the parameters with uncertainties present in the system (Eq. 48):

) + (a3 + aq)x2

(48)
(65)
It is therefore possible to represent the system in state space with the model in Eq. 49:

s/ T

& 0 1] [z 0 o :
L "4 (] [u+ |os/oa % (49)

T2 00 ) 1 \"j/ 2

¥ ay/ay z5

——
WoT (S (1‘)

Organizing the terms, the system in state space is represented by Eq. 50:

2=l ol [2] « [ wwoen

where W7 is the vector of initial weights and @ (x) is the vector of initial basis functions. The equation for the nominal control law
is the same as that described in Eq. 15, as are the calculations for the state feedback and direct supply gains, K| and K,,, respectively.

In addition, the reference model used is the same as that presented in Eq. 19. Therefore, the system is represented by Eq. 51:
& = Az + BA[u + W{ O,(z)). (51)
Substituting the total control input from Eq. 14 and adding the terms Bu, and —Bu, to Eq. 51, Eq. 52 is obtained:

& = Ax + BA[u, + uq + WOTGO(JJ)] + Bu,, — Bu,
= Az + Bu, +BA[u, — A uy, tug + Wi 6g()]
Amz+DBmr (I-A—1)u,

(52)

I—A1 Up
WTo(z)

&= Anx + Bynr + BAfu, + WTG(x)].

T
= A, x+ B,r+ BA | u, + { Wo ] [60(”')]

If the uncertainty A(x) is parameterized as W' ®(x), then the adaptive control signal, which cancels it, is approximated by an

ANN-RBE, according to Eq. 11. The adaptive control signal u, is represented by Eq. 53:
_ 1T
e = —WTO(2). (53)
The dynamics of the error between the states of the system is given by Eq. 54:

e=2— T,
é = Ame + BA [u, + WTO(z)]
—_——

—-WTo(z)

¢=Ane— BAWTO@) -+ W=W-W
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The adaptation law is given by Eq. 55:

—~

W =T0(z)e’ PB, T >0, (55)

where I € R* is a constant and positive learning rate and P € R7*" is the solution of the Lyapunov equation according to Eq. 34.

RESULTS AND DISCUSSION

This section presents a detailed analysis of the response of the controlled system and the reference model over time, providing
a visual comparison of the control’s performance. In addition, graphs illustrating the tracking error between the controlled system
and the reference model over time are displayed, allowing an accurate assessment of the control’s precision and the system’s ability
to follow the reference. The control signals generated by the adaptive controller are plotted on separate graphs, offering insights into
how the controller responds to changes in the system. Performance metrics such as mean absolute error (MAE), mean square error
(MSE), Root MSE (RMSE), coefficient of determination (R-squared), and mean absolute percentage error (MAPE) are presented in
tables or graphs, providing a quantitative assessment of the controller’s performance. In addition, the results of the robustness of the
controller in relation to uncertainties in the system are discussed, such as variations in system parameters or external disturbances,
by means of specific graphs or tables. Finally, a comparison is made between the direct and indirect methods, highlighting their
respective advantages and limitations in the context of adaptive control. The controllers and simulators developed in the study are
presented in Algorithms 1 and 2 for the direct method (DMRNAC), and Algorithms 3 and 4 for the indirect method (IMRNAC).

Algorithm 1 implements DMRNAC robust control using the Lyapunov rule. The main blocks include: Block 1 - Setup of initial
conditions with definitions of the dynamic system matrices and initial states; Block 2 — Design of the nominal controller with
calculation of gains by pole allocation, where K| is determined by Ackerman’s formula and K, by Eq. 18; Block 3 - Definition of
reference model matching conditions, where Am and Bm are calculated according to Egs. 16 and 17; Block 4 - Calculation of the
correction signal for performance recovery, using G and Q, according to Eqs. 39 and 45; Block 5 - Solving an algebraic Lyapunov
equation to obtain the P matrix, given by Eq. 34; and Block 6 — Parameterization of an ANN for estimation and cancellation of

system uncertainties, including the parameters W , width, ©, and others, according to Eqs. 12 and 13.

Algorithm 1 DMRNAC Controller

Block 1 - Setup (Initial Conditions)
A [0,1:0,—0.1190); B « [0;373.31]; C « [1,0]; D« 0;

X3 Xm3 Xmi = [0:0]; ¥  [0:0];
Block 2 - Nominal Controller Design
desired_poles « [—1=2];

K| « ackerman(A, B.desired_poles):
Ky « —(C*(A—BxK;)~' +B)~1;
Block 3 - Reference Model - Matching Conditions
Am — A—B*Ky; By «— BxK>;
Block 4 - Correction Signal (Performance Recovery)
G (Ka)~' # (BT +B)~' BT, Q « B+ (BT xB)~" +B";
Block 5 - Lyapunov Algebraic Equation
Otyap ¢ Inxn: P Al xP+PxAn +Qpyap
Block 6 - Arﬂﬂcial Neural Network - RbF
ne25 b5 W “02amsn)x1 T2
0+ 500; A« 5; ce2%b/(n—1);
Neurons’ Centers Vector
centers < 0y p:
centers(1) < —b;
foritol:n—1do
centers(i+ 1) « =b+ixc;
end for
dmax + 2xb;
width « 1/(2 d,,,,“/ 2 wl) } I8
0 < Ouns1)x1’
End of Algorithm 1
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Algorithm 2 implements the simulator for the DMRNAC control system in discrete time, where the system is exposed to a non-linear
uncertainty. Its main blocks include: Block 1 - Initialization of the simulation conditions with time and counter settings; Block 2 — Definition
of a non-linear uncertainty function A(x) as a function of the current state; Block 3 - Definition of the reference signal r according to the
current time; Block 4 - assembly of the regressor vector ® of the ANN using RBFs and the bias according to Eq. Block 5 - Calculation of
the correction signal for performance recovery with ¥ update and calculation of v according to Egs. Block 6 — Calculation of the control
signal u incorporating nominal control gains K, and K, reference signal r, correction signal Gv, and uncertainty estimate WTO(x) according
to Eq. 42, as well as updating x,, and applying the W adaptation law according to Eq. 55; and Block 7 — Updating the x state of the real
system, taking into account the A(x) uncertainty and calculating the y output, repeating the iterations until the final simulation time.

Algorithm 2 DMRNAC Simulator

Block 1 - Setup - Initial Simulator Conditions
ft < 20; dr +0.001;
forkto0:dr: fr do
Block 2 - Uncertainty
A(x)  14x(1) +x(2) + x(1)2 + sin(x(1)) + cos(x(1)) + sin(x(2)) + cos(x(2)):
Block 3 - Reference Signal
if k <10 then
r=1;
else
if k > 10 then

Block 4 - NNA Regressor Vector Assembly
forito1:ndo
O(i) + exp(—width = |x(1) — centers(i)|?);
(i +n) « exp(—width = |x(2) — centers(i)|?):
end for
O2*n+1)«1;
Block 5 - Correction Signal for Performance Recovery
Y Wtdis(=Ax(W=(x=2xm))); v AxV+(An—Axlyxn*(x—xm)):
Block 6 - Updates - Control Signal - Reference Model - Adaptation Law
U =Ky xx+Kox(r+Gsv)=W' x0O;  xp  Xpy +dt % (A # X + By #r + Qxv);
Xmi = Xni + A1 % (A % Xgi + Bm#r); W W +dt5(y% (@ (x—xp)T xPxB—0xW));
Block 7 - Real System with Uncertainty - Output Measurement
X x+dt=(Asx+ B (u+Ax))):
end for
End of Algorithm 2

Algorithm 3 implements IMRNAC robust control. Its main blocks include: Block 1 - Initial configuration of the system with
definition of the matrices and initial states; Block 2 — Definition of the actual system parameters and the initial vector W Block 3
- Design of the nominal controller, where K| and K, are calculated; Block 4 - Setting the reference model matching conditions
A, and B, are defined; Block 5 - Calculating the correction signal for performance recovery with G and €; Block 6 - Solving the
Lyapunov algebraic equation (Eq. 34); and Block 7 — Defining the parameters of the RBF neural network, including the number

of neurons, domain boundary, vector of centers, and width of neurons for estimating and compensating for uncertainties.

Algorithm 3 IMRNAC Controller

Block 1 - Setup (Initial Conditions)

A+ [0,1:0,01:B  [0:1]:C « [1,01:D « 0;

X; Xmi Xmi < [0:0]; W « [0;0];

Block 2 - Nominal Controller Design

al « 25497:a2 « 670.0230;a3 « 0.0031;a4 « 0.0004;

A+ 0.0146:Wp + [1/al:—al:=a2:-a3:—ad):
Block 3 - Nominal Controller Design
desired_poles « [-1=2];

K, « ackerman(A, B.desired_poles).

Ky ¢ =(C+(A=BsK))~' o B)~);

Block 4 - Reference Model - Matching Conditions
Am ¢~ A=B+Ky: By + B+K3:

Block 5 - Correction Signal (Performance Recovery)
G (K)™ '« (BT +B)" +BT; QB+ (BT +B)™ 48"
Block 6 - Lyap Algebraic Equati

Qyap < Inxn: P AL s P+PsAm+Qyap = 0:

Block 7 - Artificial Neural Network - RbF

ne25 b5 W0, 0005 T2

0« 500; A ¢ 5; c24b/(n=1);
Neurons' Centers Vector

centers « Oy p:

centers(1) « =b;
foritol:n~1do
centers(i+ 1) = =b+ivc:

end for
1
dmax 2% width < 1/(2+ (dmax/(247) 2 )2); © = 030ns1)x 1
End of Algorithm 3
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Algorithm 4 implements the IMRNAC control system simulator, where the system is exposed to a non-linear
uncertainty. Its main blocks include: Block 1 - Initial configuration of the simulation, with definition of the total time
and sampling interval; Block 2 - Definition of the non-linear uncertainty A(x), calculated using a regressor vector @,
and a vector of weights W Block 3 - Creation of the reference signal r; Block 4 — Assembly of the RBF regressor vector
0, where elements are calculated with RBF applied to the state x and the centers of the neurons; Block 5 - Calculation of
the correction signal, where the vector ¥ and the vector v are updated based on the difference between the state x and
the desired state x,; Block 6 — Calculating the control signal u, which includes the gains K, and K, the correction signal
Gv, and the uncertainty estimate provided by the neural network WT ©(x); and Block 7 — Updating the real system with
the uncertainty A(x), Where the state x is adjusted with the control u, and the output y is obtained from the matrix C,

until the end of the simulation.

Algorithm 4 IMRNAC Simulator

Block 1 - Setup - Initial Conditions of the Simulator
St 20; dr - 0.001;
forkto0:dr: ft do
Block 2 - Uncertainty
0 « (A=A 1:x(2)%:x(2)2);

A(x) 14+ x(1) 4 x(2) +x(1)2 +sin(x(1)) + cos(x(1)) + sin(x(2)) + cos(x(2)):
Block 3 - Reference Signal
if k< 10 then
r=1;
else
if k > 10 then
r=-1;
end if
end if
Block 4 - NNA Regressor Vector Assembly
Ol)« 1I;
foritol:ndo
O(i + 1) « exp(—width|x(1) —ccnwr.\(i)|3):0[i +n+ 1) « exp(—width|[x(2) —cunu-r.\(i)|2 )
end for
Block 5 - Correction Signal for Performance Recovery
WeWidts(—A*(WP—(x—=xm))): veAsW+(An—Axlyxn*(x—xm)):

Block 6 - Updates - Control SJ%nal - Reference Model - Adaptation Law
U =Ky 2x+ Ko (r+Gov)=WTO;  xpy ¢ xpu+dt(Am %X + B 21+ Qav);
Xoni = X+ (A % Xyni + By #1); W= Wt dt 5 (7% (@ (x—x)T PxB—0W));
Block 7 - Real System with Uncertainty - Output Measurement
Xé—x+dt=(Axx+B=*(u+A(x))):
end for
End of Algorithm 4

Regarding the controller tests, the following observations are made.

 Figure 4 describes the response of the closed-loop system with DMRNAC control for both states x, and x, that follow the
reference model, the control effort u(t) that presents limited oscillations, and the performance of the RBF neural network
W O(x) to estimate the uncertainty A(x). The errors between the states of the real system and the reference model (ex1
and exz) are limited and converge to zero, e o0 Oande o 0 (Fig. 5). The estimation error of the RBF network converges
to zero ey, > 0 (Fig. 6).

e The metrics used to measure the estimation error of the RBF network in DMRNAC control (Fig. 7) have satisfactory
results (Table 1).

e In DMRNAC control, for faster tracking of the reference signal, poles at [- 3 -2] are chosen resulting in the response
of Fig. 8.

 Figure 9 describes the response of the closed-loop system with IMRNAC control for both states x; and x, that follow the
reference model, the control effort u(t) that presents limited oscillations, and the performance of the RBF neural network
WwT O(x) to estimate the uncertainty A(x). The errors between the states of the real system and the reference model (e)Cl and
exz) are limited and converge to zero, € >0and ¢, > 0 (Fig. 10). The estimation error of the RBF network converges to zero

expr~> 0, but with oscillations when the reference signal changes (Fig. 11).
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Figure 4. Controlled system response (DMRNAC).
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Figure 5. Reference model tracking error (DMRNAC).
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Figure 6. RBF network estimation error (DMRNAC).
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Figure 7. RBF network performance metrics (DMRNAC).
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Table 1. Metrics for evaluating the RBF network in DMRNAC control.

Metrics Value
Mean Absolute Error (MAE) 0.00864
Mean Square Error (MSE) 0.00198
Root Mean Square Error (RMSE) 0.04459
Coefficient of Determination (R-squared) 0.99967
Mean Absolute Percentage Error (MAPE) 0.30919

Source: Elaborated by the authors.
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Figure 8. Faster reference signal tracking (DMRNAC).
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Figure 9. Controlled system response (IMRNAC).
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Figure 10. Reference model tracking error IMRNAC).
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Figure 11. RBF network estimation error (IMRNAC).

e The metrics used to measure the estimation error of the RBF network in IMRNAC control (Fig. 12), also showed satisfactory
results (Table 2).
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Figure 12. RBF network performance metrics IMRNAC).
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Table 2. Metrics for evaluating the RBF network in IMRNAC control.

Metrics Value
Mean Absolute Error (MAE) 0.48402
Mean Square Error (MSE) 0.54524
Root Mean Square Error (RMSE) 0.73841
Coefficient of Determination (R-squared) 0.7692
Mean Absolute Percentage Error (MAPE) 110.7971

Source: Elaborated by the authors.
e In IMRNAC control, for faster tracking of the reference signal, poles at [-4 -5] are chosen, resulting in the response in

Fig. 13.
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Figure 13. Faster reference signal tracking (IMRNAC).

e The IMRNAC control showed robustness in all tests, with non-linear sinusoidal and quadratic uncertainties, isolated
or summed.

e For all tests, both the DMRNAC and IMRNAC controls were stable, even in the presence of uncertainties.

e Based on Algorithms 1 and 2 an application with a graphical interface is developed, as shown in Fig. 14, for faster and more
practical simulations of the controller, with information such as the performance of both states when following the reference
model, the behavior of the control input and a comparison of the simulated uncertainty with the uncertainty estimated by the

RBF neural network.
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Figure 14. DMRNAC simulator graphical interface.

CONCLUSION

This article presents rocket modeling and a methodology for developing algorithms for the design of robust neuro-adaptive
controllers. The algorithms for the proposed controllers were evaluated in simulators that are based on mathematical models and
can be applied to a class of systems by changing the values of their matrices, configuration parameters, and the order of the models.

From the discussions presented, it can be concluded that this proposal offers a significant contribution to the aerospace sector,
specifically, in the field of adaptive control in the context of altitude control of solid fuel rockets. Throughout this research, the
modeling and design of controllers was based on an RBF neural network, meeting the specific requirements of this engineering
challenge. The results obtained showed that the two controllers developed, DMRNAC and IMRNAC, demonstrated stability and
robustness even in the presence of uncertainties.

The performance of the controllers in response to changes in the reference signal was evaluated, highlighting the ability to
track and regulate the controlled systems. In addition, the practical implementation of the controller and simulator developed
proved to be viable and promising for applications in real-world systems, offering a flexible and adaptable platform for future
research and development.

As a general conclusion, this research provides a solid basis for future investigations in the field of adaptive control,
paving the way for the continuous improvement of techniques and methodologies in this domain of control engineering

and aerospace engineering.
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