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ABSTRACT
!is paper investigates the task scheduling problem for the Earth observation Interferometric Synthetic Aperture Radar 

(InSAR) satellite system. !e mission time window generation method is introduced, and the constraint satisfaction model for 
task scheduling in the InSAR satellite system is constructed. To address the mission allocation issue between the chief satellite and 
deputy satellites, a mission con"ict detection and resolution mechanism is developed. Moreover, based on the single-objective 
student psychology-based optimization (SPBO) algorithm, a modi#ed non-dominated sorting SPBO (NSSPBO) algorithm is 
proposed to tackle the multi-objective task scheduling problem for the InSAR satellite system. Numerical simulations are presented 
to demonstrate the e$ectiveness and superiority of the proposed NSSPBO algorithm.

Keywords: InSAR satellite; Task scheduling; Student psychology based optimization algorithm; Non-dominated sorting algorithm.
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INTRODUCTION

Earth observation satellites, equipped with onboard imaging instruments, have been employed in various tasks, including land 
resource distribution monitoring, natural disaster prevention and control, and military operations (Kim and Chang 2015; Zhao et al. 
2023). In recent years, with advancements in spacecra% formation technology and increasing demand of Earth observation tasks, 
Interferometric Synthetic Aperture Radar (InSAR) satellite formation-based high-precision Earth observation has emerged as an 
area of signi#cant concern (Chen et al. 2020; Li et al. 2023). !e observation range is expanded by multiple satellites and multiple 
playload capacities. However, in order to achieve global observation and make full use of satellite resources, an e$ective satellite 
management and control strategy must be implemented to meet the needs of all users while maximizing satellite performance. 
Additionally, constraints for the InSAR satellite-based Earth observation missions, such as system con#guration requirements, 
make these missions more challenging.

One critical issue in satellite resource management and control is the reasonable deployment of resources. !e process of 
matching resources with missions is referred to as the satellite task scheduling. !e number and timing of each satellite passing 
over ground observation targets are severely limited due to orbital and energy constraints. Furthermore, the functional capacity 
of the satellite payload and mission execution requirements are restricted and must be considered throughout the task scheduling 

Received: Oct.12, 2024 | Accepted: Nov. 9, 2024
Section editor: Luiz Martins-Filho 
Peer Review History: Single Blind Peer Review.

https://doi.org/10.1590/jatm.v17.1362
https://orcid.org/0000-0002-8103-7467
https://orcid.org/0009-0004-3695-0419
https://orcid.org/0000-0002-2656-4731
https://orcid.org/0009-0002-6584-7336
https://ror.org/01scyh794
mailto:yudan@nuaa.edu.cn
https://creativecommons.org/licenses/by/4.0/deed.en
https://orcid.org/0000-0002-7287-5979


J. Aerosp. Technol. Manag., v17, e0325, 2025

Jia Q, Lian W, Yu D, Sun Q2

procedure (Jiang et al. 2022). It has been shown that the satellite task scheduling problem is NP-hard (Wolfe and Sorensen 2000), 
and therefore solving the problem using deterministic algorithms, such as the branch and bound algorithm (Chu et al. 2017), 
cannot guarantee a feasible solution in real-time when the dimension of the scheduling problem is large.

As a result, heuristic algorithms, such as tabu search (Sarkheyli et al. 2013), simulated annealing (Wu et al. 2017), and genetic 
algorithms (Zhang and Xing 2022), have been widely used in satellite task scheduling problems. For example, a standard genetic 
algorithm is employed for the satellite imaging and data transmission scheduling problem, using an encoding and decoding 
strategy to match speci#c requests (Zhang and Xing 2022), and the method is tested on large-scale optimization instances. In 
Wu et al. (2022), the large-scale scheduling problem is decomposed into multiple sub-problems, and a meta-heuristic algorithm 
based on the ant colony optimization and tabu search is proposed. However, these methods consider only the optimization of a 
single objective function.

A priority-based algorithm for agile Earth observation satellite scheduling, with total priority maximization, is proposed in 
Xu et al. (2016). A satellite task scheduling model based on the graph structures is constructed, and a node mid-degree ranking 
strategy is utilized to obtain the mission execution plan in Wang et al. (2016). A periodic task scheduling model with constraint 
satisfaction is established (Chen et al. 2017), and a decomposition-based multi-objective evolutionary algorithm with Pareto 
adaptive approximation is applied to minimize energy consumption. Non-dominated sorting and decomposition-based multi-
objective optimization algorithms are used to solve the satellite management and control scheduling problem with various 
optimization objectives in Song et al. (2019) and Du et al. (2019), respectively. However, few studies have focused on scenarios 
in which missions con"ict.

Motivated by the above-mentioned discussions, this paper investigates task scheduling for Earth observation using InSAR 
satellites. !e student psychology-based optimization (SPBO) algorithm is a heuristic approach that has been shown to have 
potential in satellite task scheduling (Das et al. 2020). In this paper, a novel modi#ed non-dominated sorting SPBO (NSSPBO) 
algorithm, with a con"ict detection and elimination strategy, is proposed to address the task scheduling problem of InSAR satellites 
for Earth observation missions. !e main contributions are summarized as follows:
• A construct a constraint satisfaction model is constructed to maximize the objective function of the observation mission 

sequence, while considering constraints such as resource capacity, mission demand, and the data transmission.
• Based on the single-objective SPBO algorithm and the non-dominated sorting algorithm, a novel NSSPBO algorithm-based 

multi-objective task scheduling technique for InSAR satellite systems is proposed. Additionally, a heuristic con"ict detection 
and elimination strategy is employed to e$ectively resolve mission con"icts.
!is paper is organized as follows. Firstly, the task scheduling problem for the InSAR satellite formation and the mission 

window generation method are introduced. Secondly, various constraints are analyzed and a constraint satisfaction model is 
proposed. !en, the NSSPBO-based task scheduling strategy with con"ict detection and elimination is presented. In addition, 
simulation experiments and comparisons are provided. Finally, the concluding remark is given.

Preliminaries
Introduction to the InSAR satellite Earth observation system

As depicted in Fig. 1, the InSAR satellite system consists of a chief satellite and a deputy satellite. !e satellite formation’s 
observation range is composed of multiple observation strips. !e length of each observation strip is determined by the observation 
time, while the amplitude width is governed by the internal and external angles of the imaging.

!e InSAR satellite observation mission scenario is illustrated in Fig. 2. !e observation strip is observed by di$erent beam 
positions of the InSAR satellites. As the satellite can only select one load beam position for observation at a time and its total 
energy is restricted, a suitable beam position for observation should be selected when the satellite passes over the observation strip.

Once passing over the ground target, the InSAR satellite images the target within the observation range, and stores the acquired 
imaging data information in the onboard storage unit. !e InSAR satellite formation can only observe one strip at a time, and 
the satellite can only perceive the ground target if it passes through the sub-satellite point and the ground target is within the 
rectangular strip region. When the InSAR satellite approaches the communication range of the ground station, it communicates 
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with the ground station and transmits the stored data information to the ground station. !erefore, when the InSAR satellite 
executes an imaging mission on the target, the time period is referred to as the “observation mission time window,” while the time 
period for satellite data transmission is referred to as the “data transmission mission time window.”

!e fundamental problem with InSAR satellite task scheduling involves generating the mission time window, in which the 
global land attributes must be processed while planning constraints are taken into account. !e mission preprocessing operation 
is shown in Fig. 3.

Considering the strict regression orbit of the InSAR satellite, the global grid matrix of the SAR beam position can be established 
using the following steps:
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Source: Elaborated by the authors.

Figure 1. Schematic diagram of the formation satellite mapping.
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Figure 2. Example of mission scenario.
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Figure 3. Mission preprocessing operation "ow chart.
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Step 1: calculate the use of di$erent beam positions of the satellite load in each latitude zone according to the available load 
beam positions in di$erent latitude zones;

Step 2: traverse the global grid matrix and read the latitude zone where the sub-satellite point is located at the current time;
Step 3: set the attribute of the unavailable load beam position in the latitude zone at the current time in the grid matrix to zero;
Step 4: traverse the number of satellite load beam positions, search for all the observation times in the global grid matrix that 

use the current load beam position number, and collect all the observation times into the observation time set;
Step 5: consider the maximum working time constraint of the satellite load. !e mission segment composed of the continuous 

observation time is saved into the mission time window set;
Step 6: calculate the priority of the observation mission a%er generating the mission time window set. Traverse the mission 

segment in the mission set, check the number of key observation areas in the global grid matrix, and calculate the priority of the 
corresponding mission segment.

Step 7: generate the observation mission matrix to be planned.
!e observation mission matrix is shown in Table 1.

Table 1. Observation mission matrix.

Number 1 2 3 4 5 6 7

Properties Observation start time Observation end time Satellite resource Load wave position Revenue Priority Orbit

Source: Elaborated by the authors.

InSAR satellite task scheduling modelling
In this paper, a multi-objective constraint satisfaction model for satellite formation task scheduling, which includes objective 

functions and operational constraints, is proposed. !e following assumptions are made:
• !e observation missions obtained a%er preprocessing are all regional targets.
• Data transmission in the ideal situation is considered, i.e., the time required to establish a link between the satellite and the 

ground station is neglected, and the satellite-to-ground data transmission rate is only determined by the imaging time and 
the size of the imaging region.

• Once an observation mission is started, it cannot be interrupted.
Mathematics notations
S: satellite resource set;
N: number of satellite resources;
Task: observation mission set;
M: number of observation missions;
Sta: ground satellite station resource set;
B: beam position set;
D: data transmission mission set;
twsi: start time of observation mission i;
twei: end time of observation mission i;
dwsi: start time of data transmission mission i;
dwei: end time of data transmission mission i;
ben"ti: bene#ts when executing observation mission i;
priorityi: priority of observation mission i;
Timesmax

start: maximum satellite imaging times per orbit;
timeon

max: maximum satellite imaging duration per orbit;
timeson

max: maximum switching times of beam position per orbit;
satstart: satellite restart interval;
saton: maximum imaging duration of a single satellite;
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sensorrestart: sensor restart interval;
Beamtrans: beam position switching time interval of sensor.

Decision variables
De#ne the following decision variables that are used for the multi-objective optimization problem:
b
is, i ∈Task, s ∈S, b ∈B: xb

is = 1, if the satellite S will observe the mission i through the beam position b, and xb
is = 0 indicates that 

the mission i is not observed through the beam position b;
yi,j, i,j ∈Task: yi,j = 1 indicates that mission i and mission j are executed using the same satellite, where mission i is executed 

before mission j, and yi,j = 0 indicates that mission i and j are executed using di$erent satellites;
zista, i ∈D, sta ∈Sta: the data transmission mission i from ground satellite station sta is executed if zista = 1, and otherwise, zista = 0.
!e decision variables xb

is and yi,j are used to determine whether the satellite observes a speci#c mission and whether it 
continuously observes a certain two missions, respectively.

Objective functions
!e total bene#ts of satellite observation mission f1 and total priority of satellite observation mission f2 are de#ned as follows, 

respectively:

  (1)

  (2)

!e priority of the mission is determined by the key areas included in the observation zone. !e mission bene#ts as well 
as the importance of observation missions, are taken into account, and the objective of satellite task scheduling is to design an 
observation sequence that maximizes the above multi-objective functions.

Operational constraints
To accommodate real-world application requirements, the following constraints are considered in this paper:

• Mission uniqueness constraints:

  (3)

According to Eq. 3, each imaging mission can only be executed at most once throughout the planning period, ensuring that 
each mission’s imaging time window [twsi, twei] is unique.
• Mission time window constraints:

  (4)

Equation 4 indicates that when two missions are observed by di$erent satellites, time windows of two missions cannot con"ict.
From Eq. 5, when beam positions of two missions are inconsistent and observed by the same satellite, the time interval between 

two missions must satisfy the beam position switching requirement:

  (5)

Equation 6 indicates that when beam positions of two missions are consistent and observed by the same satellite, the time 
interval between two missions must meet the sensor restart time requirement:

  (6)
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• Satellite resource constraints: 

  (7)

Equation 7 indicates the total number of satellite imaging times cannot exceed the maximum number of satellite imaging 
times allocated for each orbit. Moreover,

  (8)

which implies that the imaging time of satellite per orbit shall not exceed the maximum imaging duration of each orbit.
• Data transmission constraints:

  (9)

Equation 9 indicates that the imaging mission and the data transmission mission cannot be executed at the same time, and 
only one of the imaging missions or data transmission missions can be selected for execution.

NSSPBO algorithm-based satellite task scheduling
!e satellite task scheduling problem is a multi-objective multi-constraint optimization problem and has been shown to 

be NP-hard. In this section, #rst, the SPBO algorithm is #rst brie"y reviewed, as it can be used for solving the single-objective 
optimization problems, and then a modi#ed NSSPBO algorithm for satellite task scheduling is proposed.

Student psychology-based optimization algorithm
!e SPBO algorithm was inspired by the students’ psychology to improve their academic performance and evolve into top 

students (Das et al. 2020). !e algorithm classi#es students into four categories based on their performance in class: best students, 
good students, ordinary students, and students who try to improve their grades randomly.

!e four types of students in SPBO are updated as follows:
• Best student. !e student with the highest total score in the test is considered the best student in the class. !e improvement 

of the best student is given as:

  (10)

where Xbest is the score obtained by the best student, Xi denotes the score obtained by a randomly selected student j, rand is a 
random number between 0 and 1, and k is a parameter which is designed as either 1 or 2.

• Good student. !is category of students may be considered as subject-wise good students, who try to exert more e$ort in a 
speci#c subject so that their overall performance can improve. !e performance of this type of student may be de#ned as:

  (11)

  (12)

where Xi and Xmean are the scores obtained by the ith good student and the average scores of the class in that speci#c subject, 
respectively. !e performance of the good student is updated as follows: randomly generate r1, r2 between (0, 1), if r1 < r2, then 
choose Eq. 11, otherwise, choose Eq. 12.
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• Ordinary student. !ese students are considered as students with ordinary grades. !e performance of these students may be 
represented by:

  (13)

where Xi is the score obtained by the ith student in this category.
• Student who tries to improve their grades randomly. Some students try to improve their overall performance by giving e$orts 

randomly to di$erent subjects. !e performance of this category of student may be represented by:

  (14)

where Xmax and Xmin are the subject’s maximum and minimum score limits, respectively.
 !e SPBO algorithm starts by initializing the population and selecting the convergence criterion. !e algorithm then 

evaluates the initial performance of the class, and at each iteration, the algorithm checks the category of students, updates the 
performance of each student, and evaluates the performance of the class. If the new performance is better than the old performance, 
then the old performance is replaced, otherwise, the old performance is preserved. A%er convergence, the performance of the 
best student is regarded as the optimum solution.

Remark
!e performance of the SPBO algorithm has been demonstrated in Das et al. (2020), where it was compared to ten other state-of-

the-art optimization algorithms on two benchmark problems. However, the standard SPBO algorithm is designed to solve continuous 
optimization problems, whereas satellite task scheduling is a discrete problem with multiple constraints. Furthermore, the proportions 
of students in each of the four categories are not speci#ed in the original algorithm. Moreover, only Eq. 12 and Eq. 14 are global 
searching strategies, whereas the other strategies are local searching strategies, which may lead to the convergence to a local optimum.

NSSPBO algorithm for satellite task scheduling
To tackle the problems with the SPBO algorithm, this paper proposes an NSSPBO algorithm for solving the InSAR satellite 

task scheduling problem with multiple optimization objectives and various constraints. !e integer coding strategy is proposed, 
and the performance improvement strategies for the four categories are modi#ed. !e con"ict mission detection and correction 
strategy is designed to address the constraints in the task scheduling problem.

Coding
According to the sequence information of satellites and observation targets, the coding method of multi-satellite observation 

mission sequence is designed as follows. Denote the number of observation missions as M, and the number of satellite resources 
as N. Denote an integer sequence Seq = {T1, T2, ... , TM} with a length of M as the observation sequence, where Ti = 0 represents 
that observation mission Ti is not executed, and Ti = s represents that observation mission Ti is executed by satellite s.

Without loss of generality, assume that the number of observation missions M = 10 and the number of satellites N = 4. One 
example of the initial mission sequence code is shown in Fig. 4. !e mission sequence is related to the bene#t of the observation 
mission and the priority of the mission execution. Ti is a random integer in the range [0,N]. For example, in Fig. 4, T1 = 2 indicates 
that mission T1 is observed by satellite 2, while T8 = 0 indicates that mission T8 is not executed. !e above encoding method is 
utilized to generate ST integer sequences as the initialization population Seq in NSSPBO algorithm, where ST is the number of 
students in the class.

Seq 2 4 1 3 0 1 2 0 3 1

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Source: Elaborated by the authors.

Figure 4. Initial mission sequence code.
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NSSPBO performance improvement strategy
Since students’ current achievements will have an impact on their future learning attitudes and e$orts, which will a$ect the 

learning strategy that they will adopt, it is proposed to group students into four types based on their grade ranking in the class, 
and to rede#ne the psychological characteristics and grade updating strategies for each type of student.

 Suppose the mission sequence of student i is Seqi, and the corresponding rank of the sequence is ranki. According to the 
psychological characteristics of the four categories, the following performance improvement strategies are de#ned.
• If ranki ≤ ST ∙ 10%, sequence Seqi is the best student.

To characterize the self-adjustment behavior of best students, the mutation operator is introduced as:

  (15)

where Seq1
best represents the sequence of the best student Seqbest a%er self-adjustment, ⊗ denotes the mutation operation of students, 

and m is a random integer between [0,M]. !e process is illustrated in Fig. 5, which is summarized in Algorithm 1.

Algorithm 1. Mutation operation.

1. Randomly generate an integer m from 1 to M (total number of missions);

2. Randomly generate an integer s from 0 to N (total number of satellite resources);

3. Reassign the code at location m to s to get a new mission sequence. If s ≠ 0, then satellite s is the new 
execution satellite of mission m, and if s = 0, it indicates that mission m is not executed.

m
↓

Seqbest 2 4 1 3 0 1 2 0 3 1

↓

Seq1
best 2 4 1 3 0 1 4 0 3 1

Source: Elaborated by the authors.

Figure 5. Mutation operator operation.

!e crossover operator is introduced to characterize the behavior of best students when in"uenced by other students:

  (16)

where Seqi represents the sequence of the jth randomly selected student, and ⊗ represents the crossover operation when the 
student’s performance is a$ected by other students. !e process is illustrated in Fig. 6, and is summarized in Algorithm 2.

Algorithm 2. Crossover operation.

1. Randomly generate two integers C1 and C2 from 1 to M (total number of missions);

2. Select the sequence between c1 and c2 from Seq1
best and Seqi; 

3. Exchange the sequence between c1 and c2 from Seq1
best and Seqi to obtain a new sequence.

!erefore, the best student’s sequence adjustment is completed and a new sequence is obtained as:

  (17)
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• If ST ∙ 10% < ranki ≤ ST ∙ 50%, then Seqi is a good student.
c1
↓

c2
↓

Seq1
best 2 4 1 3 0 1 2 0 3 1

↓ ↓ ↓ ↓

Seqj 0 2 3 4 2 0 3 1 0 3

↓ ↓ ↓ ↓

Seqbestnew 2 4 1 4 2 0 3 0 3 1

Source: Elaborated by the authors.

Figure 6. Crossover operator operation.

!e self-adjustment operation of the good student is:

  (18)

where m is a random integer between [0,M].
 Good students make further self-adjustment in order to catch up with the best students, and the behavior is characterized 

via the permutation operation:

  (19)

where n1, n2 are random integers between [0,M]. !e process is illustrated in Fig. 7 and is summarized in Algorithm 3.
n1
↓

n2
↓

Seq 1
i 2 4 1 3 0 1 2 0 3 1

Seq 2
i 0 2 3 0 3 0 3 1 0 3

Source: Elaborated by the authors.

Figure 7. Permutation operator operation.

 Due to the mutation and permutation operations in the self-adjustment strategy for good students, the local searching 
ability has been improved to avoid falling into local optimal solutions.

Algorithm 3. Permutation operation.

1. Find all positions where the element from sequence Seqi
1 is nonzero to construct the planned mission set T1;

2. Randomly select the position n1 to be replaced from the mission set T1;

3. Determine whether the adjacent position of n1 exists. If there are two adjacent locations, randomly select one 
location as n2; if there is only one adjacent location, then the location is n2;

4. Replace the elements at positions n1 and n2 to obtain a new sequence.

Further, to characterize the behavior of good students that learning from the best students, the crossover operator operation is 
modi#ed. Di$erent from Eq. 16, the crossover operator operation consists of the sequence of good students Seqi and the sequence 
of a randomly selected best students Seqbest, and is given as:

  (20)
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!erefore, Eqs. 11 and 12 for updating the performance of good students are modi#ed as:

  (21)

  (22)

and the performance of the good student is updated by randomly generating r1 and r2 between (0, 1), and if r1 < r2, then 
choose Eq. 21, otherwise, choose Eq. 22.
• If ST ∙ 50% < ranki < ST ∙ 80%, then Seqi is an ordinary student. 

!e permutation operator operation is used to represent the self-adjustment of ordinary students, and the crossover operator 
operation is used to represent the behavior of ordinary students a$ected by other students:

  (23)

where Seqj is the sequence of randomly selected student j.
• If ST ∙ 80% < ranki ≤ ST, then Seqi is the student who try to improve their grades randomly.

!e mutation operator operation is used to indicate the self-adjustment of students trying to improve randomly, and the crossover 
operator operation is used to indicate the operation that students trying to improve randomly learning from the best students:

  (24)

where Seqbest represents the sequence of the best students and w is a random integer in the range [0,M].

Con"ict detection and correction strategy
Missions in the mission sequence coding Seqi are subject to time window constraints and satellite resource constraints. !ere 

must be no time window con"icts between observation missions executed in Seqi. Furthermore, the accumulated working time 
of all observation missions carried out in Seqi must not exceed the maximum working time constraint. !e executing satellites of 
some observation missions may have been changed when the mission sequence Seqi is updated via the NSSPBO algorithm, and 
hence, con"ict mission detection is required to determine whether Seqi violates the above constraints. A solution that violates 
the constraints is referred to as an infeasible solution, and a correction strategy is proposed to address the infeasible solution. 
!e con"ict detection and correction strategy steps are given in Algorithm 4.

Algorithm 4. Con!ict detection and correction strategy.

Step 1. Collect all executed observation missions T = {t1, ... tn} in the mission sequence Seqi, where n is the number of missions in 
the set. If n < 2, no con"ict detection is required, skip to Step 5; otherwise, go to Step 2.
Step 2. Check if the next mission adjacent ti + 1 to the current mission ti exists. If ti + 1 exists, choose missions ti and ti + 1 from 
the mission set T, and go to Step 3; otherwise, skip to Step 5.
Step 3. Check if the satellite resources of missions ti and ti+1 are the same. If the coded numbers of ti and ti+1 in the Seqi are 
different, check if ti and ti+1 meet constraints of Eq. 4; if the coded numbers are the same, check if the beam positions of mission 
ti and ti+1 are the same; if the beam positions of ti and ti+1 are different, check if ti and ti+1 meet the constraints of Eq. 5; if 
the beam positions are the same, check if ti and ti+1 meet the constraints of Eq. 6; if missions ti and ti+1 meet the constraint 
conditions, let i = i + 1, and go to Step 2; otherwise, go to Step 4.
Step 4. Compare the priority of mission ti and ti+1 and correct the sequence Seqi as follows: if priorityi ≤ priorityi+1, assign 
the coded number in the corresponding position of mission ti to zero; if priorityi > priorityi+1 assign the coded number in the 
corresponding position of mission ti + 1 to zero; return to Step 1.
Step 5. Classify the observation missions in set T according to satellite resources, generate the observation sequence Seqi

 set of 
each satellite, and check the sequence of each satellite in turn. If the observation sequence of satellite Si is not empty, calculate 
the imaging times and imaging duration of satellite Si in the current orbit, and check whether the constraints of Eqs. 7 and 8 are 
met. If the constraint conditions are not met, go to Step 6; otherwise, go to Step 7.
Step 6. Compare the priority of all missions in the observation sequence of satellites and reserve the high-priority missions #rst. 
Assign the value of the mission with the lowest priority to 0 and return to Step 5. 
Step 7. The con"ict detection and correction of the current sequence Seqi are completed.
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Simulation analysis
To evaluate the e$ectiveness of the NSSPBO algorithm-based satellite task scheduling technique, numerical simulations are 

performed and compared to the NSGA-II (Wu et al. 2019) and SPEA2 (Zitzler et al. 2001) algorithms. MATLAB 2018b is used 
on a desktop computer running Windows 10 × 64, with a Core R7-9700H 2.4GHz CPU, and 16GB of memory. All algorithms are 
executed using the same system con#guration. !e orbit of the TerraSAR satellite is used, and the orbit parameters of the main 
satellite are shown in Table 2. !e satellite system has 167 orbital periods in a return period, and the return period is 11 days. !e 
planned start time is 2021/7/1 00:00:00 UTCG and the end time is 2021/7/12 00:00:00 UTCG.

Table 2. Six elements of satellite orbit (D’Amico et al. 2004).

Parameter Symbol Value

Semimajor axis·km a 6883.510

Eccentricity e 0

Inclination/° i 97.4220

Right ascension/° Ω 104.2750

Argument of perigee/° ω -

Mean anomaly/° M0 360

Source: Adapted from D’Amico (2004).

!e satellite has a total of nine imaging beam positions, with minimum and maximum #eld angles of 27.402° and 45.520°, 
respectively. Table 3 shows the minimum and maximum #eld angles of view for each beam position. !e speci#c constraints 
during the task planning process are shown in Table 4. Mission windows are generated for each orbit, with various mission sizes 
chosen for the experiment. !e speci#c number of missions in each test scenario is shown in Table 5.

Table 3. Angle of view of imaging beam position (Fiedler et al. 2008).

ID 1 2 3 4 5 6 7 8 9

θmin(°) 27,402 29,652 31,850 33,956 35,931 37,808 39,522 41,115 42,520

θmax(°) 29,975 32,157 34,426 36,205 38,965 39,764 41,344 42,737 43,880

Source: Adapted from Fiedler (2008).

Table 4. Constraint conditions.

Variable Description Value

Timeon
max Maximum satellite imaging duration per orbit 960 s

Timestart
max Maximum satellite imaging times per orbit 10

saton Maximum imaging duration of a single satellite 80 s

satrestart Satellite restart interval 15 s

beamtrans Beam position switching time interval of sensor 15 s

Source: Elaborated by the authors.

Table 5. Mission test cases of di$erent sizes.

Test case 1 2 3 4

Number of missions 39 113 173 243

Source: Elaborated by the authors.

!e performance of satellite task scheduling algorithms based on NSSPBO, NSGA-II, and SPEA2 are compared in various test situations, 
and the hypervolume index (HV) (Zitzler and !iele 1999) is used to evaluate the performance of the three methods. HV is a commonly 
used metric for evaluating multi-objective solution sets, describing the volume of the algorithm’s non-dominated solution set and reference 
points. Higher HV indexes indicate that the convergence and diversity performance of the population are better for minimization problems. 
!e reference point for calculating HV is set to (1,1,1), which is dominated by the entire population. !e parameters of each algorithm are 
shown in Table 6, where No. represents the number of populations, and T represents the maximum number of iterations.
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Table 6. Algorithm parameter setting.

Algorithm No. T Parameter

NSSPBO 200 1,000 -

NSGA-II 200 1,000 proc = 0.9, prom = 0.1

SPEA2 200 1,000 proc = 0.9, prom = 0.1

Source: Elaborated by the authors.

!e HV index of three multi-objective optimization algorithms with di$erent mission sizes is shown in Fig. 8a-d, respectively. 
When the mission size is small, the #nal HV index of the three algorithms can converge to the same value, as shown in Fig. 8a, 
but the NSSPBO-based task scheduling technique converges faster than the other algorithms. !is demonstrates that when the 
mission size is modest, all three algorithms produce the same solution set, but task scheduling based on the NSSPBO algorithm 
o$ers a faster convergence rate. It can be seen from Fig. 8c, d that when the mission scale is massive, NSSPBO achieves a much 
higher HV index than other algorithms, while SPEA2 and NSGA-II have slightly di$erent HV indexes. !is also demonstrates 
that NSSPBO achieves faster convergence speed and higher convergence accuracy with large mission sizes. As a result, using the 
NSSPBO algorithm for task scheduling results in the best overall performance across a range of test sizes.
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Figure 8. Iterative graph of algorithm HV index. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.



J. Aerosp. Technol. Manag., v17, e0325, 2025

Jia Q, Lian W, Yu D, Sun Q14

Comparisons of solution set distributions on four mission tests are shown in Fig. 9a-d, with the black asterisk 
representing the NSSPBO solution set, the triangle representing the NSGA-II solution set, and the circle representing the 
SPEA2 solution set.

!e distribution of the solution set yields the same conclusions. !e #nal solution set of the three algorithms remains the same 
when the mission size is small; however, as the mission size increases, the NSSPBO-based task scheduling algorithm improves 
both the convergence of the algorithm and the diversity of the solution set. !e experimental results demonstrate that using the 
NSSPBO algorithm for task scheduling enhances the planning results.

To better test the performance of the three algorithms, a Monte Carlo simulation with 10 independent runs was performed. 
!e maximum number of iterations was still set to 1,000. !e average HV index for the three algorithms is compared in Table 7 
for nine mission scenarios with di$erent mission sizes. !e best results are in bold and underlined. !e table shows that when 
the mission size is modest, the convergence performance of the three algorithms in scenarios 1 and 2 is comparable (average 
HV index). Moreover, Fig. 8a demonstrates that the NSSPBO-based task scheduling algorithm converges faster. From the 
data in scenarios 3 through 9 in the table, it is clear that task scheduling using the NSSPBO algorithm outperforms that using 
NSGA-II and SPEA2, as compared to the mean HV index, the best HV index, and the worst HV index. Experimental results 
indicate that the NSSPBO algorithm has a faster convergence rate when solving the image scheduling problem with a small 
mission size and can improve the diversity of the solution set. 
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Figure 9. Solution set distribution of three algorithms on di$erent cases. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case .
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Table 7. Average HV index of three algorithms under di$erent mission scale scenarios.

Mission scenario Mission number Parameters NSSPBO NSGA-II SPEA2

Scenario 1 21

MEAN 8067 8067 8067

BEST 8067 8067 8067

WORST 8067 8067 8067

Scenario 2 39

MEAN 35989 35989 35989

BEST 35989 35989 35989

WORST 35989 35989 35989

Scenario 3 69

MEAN 3.21E+05 3.06E+05 3.03E+05

BEST 3.30E+05 3.24E+05 3.18E+05

WORST 3.03E+05 2.95E+05 2.83E+05

Scenario 4 88

MEAN 1.54E+05 1.50E+05 1.52E+05

BEST 1.82E+05 1.58E+05 1.58E+05

WORST 1.46E+05 1.46E+05 1.43E+05

Scenario 5 113

MEAN 2.15E+05 2.11E+05 2.13E+05

BEST 2.18E+05 2.15E+05 2.16E+05

WORST 2.13E+05 2.12E+05 2.03E+05

Scenario 6 126

MEAN 2.11E+05 2.04E+05 2.06E+05

BEST 2.12E+05 2.11E+05 2.10E+05

WORST 2.09E+05 1.87E+05 1.86E+05

Scenario 7 142

MEAN 2.98E+05 2.84E+05 2.88E+05

BEST 3.07E+05 2.95E+05 2.99E+05

WORST 2.81E+05 2.63E+05 2.73E+05

Scenario 8 151

MEAN 3.21E+05 3.06E+05 3.03E+05

BEST 3.30E+05 3.24E+05 3.18E+05

WORST 3.03E+05 2.94E+05 2.83E+05

Scenario 9 173

MEAN 3.83E+05 3.70E+05 3.71E+05

BEST 4.00E+05 3.91E+05 3.83E+05

WORST 3.65E+05 3.51E+05 3.62E+05

Source: Elaborated by the authors.

From the above experiments, it can be seen that the task scheduling algorithm based on NSSPBO, proposed in this paper, can 
e$ectively address the multi-satellite observation planning problem. In terms of solution e$ectiveness, the NSSPBO algorithm 
outperforms various classical algorithms in terms of planning bene#ts. !e proposed algorithm not only performs well in obtaining 
the optimal solution but it also outperforms other algorithms regarding the stability of results.

CONCLUSION

In this paper, the task scheduling problem of an InSAR satellite system was investigated. A task scheduling model was established 
based on actual observation constraints, and objective functions were designed to account for the observation bene#ts of satellites. 
!e NSSPBO algorithm was proposed to tackle task scheduling problems with multiple constraints and multiple objective functions. 
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!e e$ectiveness and superiority of the proposed NSSPBO-based task scheduling algorithm in solving multi-satellite and multi-
mission scheduling problems were demonstrated through simulation experiments. Extending the proposed method to the global 
observation task scheduling method based on the re-planning strategy will be investigated in future work.
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