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ABSTRACT
This paper presents the application of the unscented Kalman filter (UKF) for estimating the dynamic states of a maneuvering 

tank using a second-order Gauss-Markov process model. The proposed method is effective in capturing the oscillatory 
characteristics, damping effects, and the impact of uncertain disturbances on the tank’s dynamics, leading to improved estimation 
accuracy compared to traditional linear methods. Simulation results demonstrate that the UKF outperforms the extended Kalman 
filter (EKF) in accurately estimating the tank’s position, velocity, and acceleration, even in the presence of significant noise and 
disturbances. This study highlights the superiority of the UKF in handling nonlinear dynamics and its potential application in 
military vehicle tracking systems.
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INTRODUCTION

Tracking maneuvering targets is a significant challenge due to the unavoidable inaccuracies in sensor systems and the lack of 
awareness regarding of unforeseen external forces that may act on the target, making it impossible to model the target’s dynamic 
properties accurately. Today, there are many practical applications for tracking maneuvering targets using sensors such as sonar 
(Chen et al. 2017), radar tracking (Zhai et al. 2018), and using radar and image sensor (Chen et al. 2015). A previous study Van 
et al. (2024) suggested a missile guidance law to improve anti-tank-guided missiles’ performance against maneuvering tank targets. 
This guidance law assumes perfect knowledge of the target’s state information, which is often unrealistic because tanks use complex 
maneuvers with unpredictable trajectories and variable acceleration. In addition, the guidance law proposed by Van et al. (2024) 
requires comprehensive information about the target’s position, velocity, and acceleration. However, in practice, missile-integrated 
seekers usually measure only the target’s position. Therefore, accurately estimating the target’s position, velocity, and acceleration 
using modern filtering algorithms is crucial to providing the required input data for the missile guidance law.
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Additionally, tanks often operate in harsh environments, facing complex challenges such as rough terrain, environmental 
disturbances, and unexpected forces. Therefore, accurately estimating the dynamic states of tanks in real-time becomes a significant 
challenge, requiring the application of advanced and highly effective estimation techniques.

Tracking maneuvering targets is challenging and has led to the development of various advanced algorithms. These include 
modeling unpredictable motions (Li and Jilkov 2003), optimizing filters such as the unscented Kalman filter (UKF), unscented 
particle filter, and cubature Kalman filter for nonlinear scenarios (Jagan et al. 2021; Rao and Babu 2008, Zhang et al. 2019), and 
using neural networks with multi-model approaches like the interacting multiple models for improved tracking (Ebrahimi et al. 
2022; Visina et al. 2018). Combining these methods with machine learning enhances precision, especially for targets with complex, 
unpredictable movements (Sun et al. 2015).

Several studies have applied the extended Kalman filter (EKF) to solve the state estimation problem in nonlinear systems (Bellar 
2019; Gite and Deodhar 2022; Kaur and Kaur 2016). However, EKF relies on linear approximations of nonlinear equations using a 
first-order Taylor expansion, which can lead to significant errors in highly nonlinear systems. The EKF requires the calculation of the 
Jacobian matrix for the state transition and measurement functions. This process can be complicated, especially for large nonlinear 
systems or those with complex structures. Calculating the Jacobian matrix is also prone to errors if these nonlinear functions 
have a complex form (Masooleh et al. 2022). In contrast, the UKF does not require linearization or Jacobian calculations, making 
it both simpler and more accurate for nonlinear systems. The UKF uses sigma points to approximate probability distributions, 
enhancing its ability to handle sudden changes and complex noise. As a result, the UKF is generally more effective than the EKF 
in applications involving high nonlinearity and complex environments (Wan and Merwe 2000).

However, existing research has not explored the use of optimal filters for tracking military vehicles or maneuvering tanks. Visina 
et al. (2018) presented advanced filtering algorithms designed to track moving targets with aggressive maneuvers. It introduces a 
novel model that detects sharp turns quickly by employing a turn-rate white noise model with a non-zero mean, distinguishing 
it from traditional Wiener models. Nonetheless, the application of advanced filters, such as the UKF and its variants, for tracking 
maneuvering tanks on the ground using a second-order Gauss-Markov process seems to be insufficiently investigated or not 
thoroughly explored in the current literature.

However, current UKF research mainly focuses on civilian vehicles (Ponsa et al. 2005), and no studies have applied it to the 
state estimation of tank motion. To fully capture the complex dynamics of tanks, including damping, natural frequency, and 
unpredictable disturbances from unknown forces, a more accurate model is needed to illustrate tank movement.

To address these limitations, the present study proposes the use of a second-order Gauss-Markov model to describe tank 
dynamics combined with the UKF to estimate the tank’s state as it moves along the x-axis. This second-order Gauss-Markov 
model is more detailed and provides a better simulation of the dynamic factors of the tank, including damping effects, natural 
frequency, and inertial delays. As a result, the model more accurately reflects the real behavior of tanks in combat environments, 
especially when facing unpredictable disturbances and forces. The tank’s movement model along the x-axis ensures simplicity 
while remaining practical, representing the typical behavior of maneuverable combat vehicles like tanks. This research contributes 
to applying advanced estimation techniques for combat vehicles in military environments.

Tank dynamic mathematical model

Tank motion model in the horizontal plane
Since the tank’s motion is confined to ground movements (forward, backward, and lateral), the coordinate system used in the 

two-dimensional horizontal plane model is illustrated in Fig. 1. In the Cartesian coordinate system, tank motion can be divided 
into two main components: alongtrack acceleration and crosstrack acceleration. Accelerations in the non-rotating Cartesian 
reference frame can be expressed as Sreeja and Hablani (2016).

	 sin cos ( ) ( )Tx Tz Tx t T Tz t Tt a a a x V Vx a zθ θ= + = +  �  (1)

	 cos sin ( ) ( )Tx Tz Tx t T Tz t Tt a a a z V Vz a xθ θ= − = −  � (2)
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In this context, the acceleration components Txa  and Tza  of the tank are determined along the x and z-axes of the tank’s body. 
These components are modeled using a Gauss-Markov process, which can be either first-order or second-order, with parameters 
selected based on the results from anti-tank missile tests (Gibbs 2011). The angle θ represents the direction of the target’s velocity. 
For evasive maneuvers, the tank’s heading angle θ is measured relative to the z-axis, as illustrated. The tank’s velocity TV  moves in 
the direction specified by θ, with Txa being the acceleration along this direction and being the acceleration in the perpendicular 
direction. Therefore, when the tank moves along the x-axis, the angle θ will be 90 degrees.

The dynamics of the maneuvering tank are modeled using a second-order Gauss-Markov process, which provideds a more 
accurate representation of the tank’s acceleration. This model in the paper specifically focuses on the tank’s behavior along the 
x-axis within the horizontal plane, corresponding to the munition’s trajectory plane.

The dynamic model of the tank using a second-order Gauss-Markov process
This study focuses on the alongtrack acceleration, representing the tank’s movement along the x-axis. This acceleration is 

modeled using a second-order Gauss-Markov process, which effectively captures the oscillatory behavior of the tank’s dynamics. 
Accordingly, the accelerations are characterized by Markov processes with transfer functions, as described by the following equation 
(Gibbs 2011; Sreeja and Hablani 2016).

	
2 2

1

( )
2 n n

s
H s

s s
τ

ζω ω

+
=

+ +
� (3)

Using the inverse Laplace transform method, the transfer function can be converted from the frequency domain to the 
continuous time domain. In this case, the tank’s dynamic model along the x-axis can be described by a second-order Gauss-
Markov model, with the continuous differential equation for acceleration Txa  expressed as follows:

	 2 (( ) ( )) 12 ) (( )Tx n Tx n Txa a at t t W t W tζω ω
τ

+ + = +  � (4)

where Txa  is the tank’s acceleration at time, W  is the input noise at time, ζ  is the damping coefficient, describing the degree 
of oscillation damping in the system, nω  is the natural frequency, determining the natural oscillation rate of the system, andτ
is the time constant, describing the system’s delay.

This differential equation indicates that the tank’s acceleration is influenced not only by its current state but also by input 
noise and dynamic parameters such as damping and natural frequency. The second-order Gauss-Markov process captures the 
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Source: Elaborated by the authors.

Figure 1. The ground horizontal plane coordinate system of the tank.
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relationship between successive acceleration states, enabling an accurate modeling of the tank’s dynamic response to forces and 
disturbances in combat environments. The general solution of the differential Eq. 4 is:

	 , ,( ) ( ) ( )Tx Tx h Tx pa t a t a t= + � (5)

Here, , ( )Tx ha t  is the homogeneous solution and , ( )Tx pa t  is the particular solution. The homogeneous solution of a second-order 
differential equation in the continuous time domain, obtained by setting the right-hand side of the Eq. 4 to zero, is:

	 ( ), 1 2( ) cos( ) sin( )nt
Tx h d da t e C t C tζω ω ω−= + � (6)

where 21d nω ω ζ= −  is the damped natural frequency and 1C  and 2C  are constants determined by the initial conditions.
The derivative of the homogeneous solution in the continuous time domain is:

	 ( ), 1 2 1 2( ) cos( ) sin( ) sin( ) cos( )nt
Tx h n d d d d d da t e C t C t C t C tζω ζω ω ω ω ω ω ω−  = − + − +  � (7)

Discretizing the time domain into steps t=kΔt, the solution at time step k is:

	 ( ), 1 2[ ] cos( ) sin( )nk t
Tx h d da k e C k t C k tζω ω ω− ∆= ∆ + ∆ � (8)

At time step k−1:

	 ( )( 1)
, 1 2[ 1] cos( ( 1) ) sin( ( 1) )n k t

Tx h d da k e C k t C k tζω ω ω− − ∆− = − ∆ + − ∆ � (9)

The relationship between , [ ]Tx ha k  and , [ 1]Tx ha k −  is derived using exponential properties to relate successive terms via nk te ζω− ∆ , 
trigonometric identities to simplify cosine and sine terms for adjacent steps, discretization to evaluate the continuous solution 
at t k t= ∆  and ( 1)t k t= − ∆ , and linear combination to incorporate terms from the solution and its derivative at step 1k − .

	 ,
, ( 1)

2 1

[ 1]cos( )
[ ]

cos( ( 1) ) sin( ( 1) ))( sin( )
n

n

Tx h dt
Tx h k t

d d d

a k t
a k e

e C k t C k t t
ζω

ζω

ω

ω ω ω
− ∆

− − ∆

− ∆ + 
=   − ∆ − − ∆ ∆ 

� (10)

Applying Eq. 7 to the discrete-time domain at ( 1)t k t= − ∆ , the derivative of the homogeneous solution at step 1k −  is:

	
( )

]

( 1)
, 1 2

1 2

[ 1] cos( ( 1) ) sin( ( 1) )

sin( ( 1) ) cos( ( 1) )

n k t
Tx h n d d

d d d d

a k e C k t C k t

C k t C k t

ζω ζω ω ω

ω ω ω ω

− − ∆ − = − − ∆ + − ∆
− − ∆ + − ∆


� (11)

Using the expression from Eq. 9 in Eq. 11, , [ 1]Tx ha k −  is expressed as follows:

	 ( 1)
, , 1 2( )[ 1] [ 1] sin( ( 1) ) cos( ( 1) )n k t

Tx h n Tx h d d da k a k e C k t C k tζωζω ω ω ω− − ∆− = − − + − − ∆ + − ∆ � (12)

Since the target’s acceleration is relatively small, the term , [ 1]Tx ha k −  can be neglected to simplify the expression. From Eq. 12, 
we have:

	 ,( 1)
1 2

[ 1]
sin( ( 1) ) cos( ( 1) )( )n n Tx hk t

d d
d

a k
e C k t C k tζω ζω

ω ω
ω

− − ∆ −
− − ∆ + − ∆ ≈ � (13)
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Substituting Eq. 13 into the expression for , [ ]Tx ha k , we have:

	 � (14)

The formula for the homogeneous solution , [ ]Tx ha k  provides a comprehensive description of the state of a second-order 
oscillatory system in discrete space, capturing key dynamic behaviors. It describes periodic oscillations with the frequency dω , 
the effect of energy decay through the damping factor n te ζω− ∆ , and the dependency on the previous state , [ 1]Tx ha k − .

Since ( )W t  is the derivative of white noise, it remains a random process. To simplify the problem, we can assume the right-hand 
side of the Eq. 4 is ( )W t , white noise with variance 2

wσ . To derive the particular solution , ( )Tx pa t , the following mathematical 
techniques are utilized. First, the Green’s function method is applied to represent the response of the second-order oscillatory 
system to the input noise W(t) in the continuous time domain. The Green’s function, given by 1( ) sin( )nt

d
d

G t e tζω ω
ω

−= , is used 
to convolve with the noise W(t), forming the continuous particular solution:

	 , 0
( ) ( ) ( )

t

Tx pa t G t W dτ τ τ= −∫ � (15)

Next, the discrete-time domain transformation technique is applied, where the continuous domain is sampled at discrete 
points t k t= ∆ . The Green’s function in the discrete domain is expressed as:

	 1[ ] sin( )nk t
d

d

G k e k tζω ω
ω

− ∆= ∆ � (16)

The convolution in the continuous domain is replaced by a discrete summation:

	 ,
0

[ ] [ ] [ ]
k

Tx p
i

a k G k i W i t
=

= − ∆∑ � (17)

Subsequently, the statistical properties of white noise [ ]W k are employed, where [ [ ]] 0W k =E  and 2 2[ [ ] ] wW k σ=E , to 
simplify the energy of the signal passing through the Green’s function. Energy analysis indicates that the white noise decays with 
a factor nk te ζω− ∆ determined by the system’s dynamic parameters. Finally, the energy approximation technique is applied, resulting 
in the simplified form of the particular solution:

	 2
, [ ] 1 n t

Tx p w ka k e ζωσ η− ∆≈ − � (18)

where [ ]kη  is a normalized random variable, i.e., ~ (0,1)kη N , with a mean of 0 and a variance of 1.
Combining Eqs. 14 and 18, we obtain the expression representing the tank’s acceleration in the discrete domain as follows:

	 � (19)

Nonlinear state transition function and measurement function
The nonlinear state transition function for the system is crucial for capturing the dynamics of a maneuvering tank, which are 

influenced by complex physical forces. The tank’s acceleration Txa  at each discrete time step is modeled by a second-order Gauss-
Markov process, accounting for the natural damping and oscillatory behavior of the system. The state vector kx at time step k  
includes the position kx , velocity kx , and acceleration kx  along the x-axis. The state transition function ( , )k kf x w  describes 
how these states evolve over time, influenced by the previous states and the process noise kw .

The position 1kx +  at time step 1k +  is given by:

	
2

1 0.5k k k kx x x t x t+ = + ⋅∆ + ⋅ ⋅∆ 
� (20)
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The velocity 1kx + at time step 1k +  is given by:

	 1k k kx x x t+ = + ⋅∆   � (21)

The acceleration 1kx +  at time step 1k +  is given by:

	 2
1 cos( ) sin( ) 1n nt tn

k d d k w k
d

x e t t x eζω ζωζω
ω ω σ η

ω
− ∆ − ∆

+

 
= ∆ + ∆ + − 

 
  � (22)

The discrete-time state transition equation for the system is given by:

	 1k k kA+ = +x x w � (23)

From Eq. 20 to Eq.23, the state transition matrix A is defined as:

	

21 0.5
0 1

0 0 cos( ) sin( )n t n
d d

d

t t
A t

e t tζω ζω
ω ω

ω
− ∆

 
 

∆ ⋅∆ 
 = ∆ 
  

∆ + ∆  
   

� (24)

In this matrix, the first row updates the position kx  based on the current velocity kx  and acceleration kx , the second row 
updates the velocity kx  considering the current acceleration kx , the third row represents the evolution of the acceleration kx  at 
the next time step, is also governed by the constants: time constant τ , damping coefficient ζ , natural frequency nω , and time 
step t∆ .

The process noise kw  is defined as:

	
2

0
0

1 n

k

t
w ke ζωσ η− ∆

 
 

=  
 

−  

w � (25)

kw represents the external process noise affecting the acceleration, with a standard deviation wσ , indicating the system’s random 
oscillations. The noise intensity is also influenced by the constants: time constantτ , damping coefficientζ , natural frequency 
ωn, and time step Δt.

The measurement function ( , )k kh x v relates the system’s state to the observed measurements. For this system, where only the 
position kx  is measured, the function is given by:

	 [ ]( ) 1 0 0k k k k k= + = +z h x v x v � (26)

where kz  is the measurement vector at time step k and kv  is the measurement noise, which is assumed to be Gaussian with 
zero mean and covariance R .

This function maps the state vector to the measured output, specifically focusing on the position kx , while accounting for 
measurement noise. Together, the state transition and measurement functions provide the foundation for estimating the tank’s state 
in a discrete-time nonlinear system, enabling accurate tracking and prediction. The random variables kw  and kv  are assumed to 
be process noise and measurement noise, respectively, independent of each other, white noise in nature, and normally distributed 
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with zero mean and specified variance: ~ (0, )kw QN and ~ (0, )kv RN , with ( ),  0i jE w v = . These are fundamental assumptions 
in Kalman filter theory, ensuring the effectiveness of estimates when applied to systems with random noise.

Application of Kalman filters for target state estimation 
This section examines the specific filtering techniques used to estimate the state of the maneuvering tank, focusing on the 

EKF and UKF. The core principles and implementation details of each filter are discussed, building on the state transition and 
measurement models described in the section “Nonlinear state transition function and measurement function”.

Application of the EKF
The EKF is an extension of the classical Kalman filter, tailored to handle the nonlinearities in the state transition and 

measurement functions. It approximates these nonlinearities by linearizing the functions around the current estimate using a 
first-order Taylor expansion.

Linearization
The EKF linearizes the nonlinear state transition function ( , )k kf x w  and measurement function ( )kh x  described in the 

section “Nonlinear state transition function and measurement function”. Linearization is performed by computing the Jacobian 
matrices at each time step:

	 

( ) |
k

k
k

k

∂
=

∂ x

f x
F

x
� (27)

	


( )
|

k

k
k

k

∂
=

∂ x

h x
H

x
� (28)

where  kF  is the Jacobian of the state transition function and kH is the Jacobian of the measurement function. These matrices 
represent the linear approximations of the system around the current state estimate.

EKF algorithm
The EKF algorithm proceeds in two main steps: prediction and update.

Prediction step
Using the linearized model, the predicted state and covariance are calculated as:

	 1|ˆ ˆ( )k k k+ =x f x � (29) 

	 1|k k k k k+ = +P F P F Q• � (30)

Update step
The Kalman gain, updated state estimate, and updated error covariance are computed as follows:

	 ( ) 1

1| 1|k k k k k k k k

−

+ += +K P H H P H R• • � (31)

	 ( )1 1| 1|ˆ ˆ ˆ( )k k k k k k k+ + += + −x x K z h x � (32)

	 ( )1 1|k k k k k+ += −P I K H P � (33)

The EKF is efficient for moderately nonlinear systems but may struggle with strong nonlinearities, as the linearization process 
can introduce approximation errors.
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Application of the UKF 
The UKF is a nonlinear filtering algorithm designed to estimate the state of a dynamic system. It approximates the state 

distribution by generating a set of sigma points around the mean state estimate. These sigma points are propagated through the 
nonlinear system dynamics, allowing the UKF to capture the mean and covariance of the state distribution more accurately than 
linearization-based methods like the EKF.

Sigma points and weights calculation
The UKF represents the state distribution using a set of carefully chosen sample points, known as sigma points, generated 

around the current state estimate. These sigma points are then propagated through the nonlinear functions to accurately estimate 
the mean and covariance of the predicted state.
•	  Generate sigma points: the sigma points χ are generated as follows:

	 0 ˆ kχ = x � (34)

	 ˆ ˆ, , 1, ,i k k i L k k i Lχ γ χ γ+= + = − = …x P x P � (35)

where Lγ λ= + is a scaling factor, 2 ( )L Lλ α κ= + − is a parameter that determines the spread of the sigma points around 
the mean, L is the dimensionality of the state vector.

 - α is a small positive constant (typically 31 10−× ), and κ is a secondary scaling parameter, often set to 0.
•	 Weights for sigma points: each sigma point is assigned a weight for the calculation of the mean and covariance. The weights 

are computed as follows:
 Weight for the mean

	 (0)
mW

L
λ
λ

=
+

� (36)

 Weight for the covariance

	 (0) 2(1 )cW
L
λ α β
λ

= + − +
+

� (37)

Here, β is a parameter that incorporates prior knowledge of the distribution of the state. For Gaussian distributions, 
2β =  is typically used.

 Weights for other sigma points

	 ( ) ( ) 1 , for 1, , 2
2( )

i i
m cW W i L

L λ
= = = …

+
� (38)

The UKF algorithm involves two main steps: prediction and update.

Prediction step
•	 Propagation of sigma points: the sigma points are propagated through the nonlinear state transition function:

	
( ) ( )

1| ( )i i
k k kχ χ+ = f � (39)

•	  Mean and covariance estimation: the predicted state mean and covariance are computed using the propagated sigma points:
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	 
2

( ) ( )
1| 1|

0

L
i i

k k m k k
i

W χ+ +
=

= ∑x � (40)

	 ( ) ( )
2

( ) ( ) ( )
1| 1|1| 1| 1|

0

L
i i i

k k k kk k c k k k k
i

W χ χ+ ++ + +
=

= − − +∑P x x Q
•T

� (41)

Update step
•	  Transformation of sigma points through measurement function: the sigma points are transformed through the nonlinear 

measurement function:
	 ( ) ( )

1 1|( )i i
k k kχ+ +=Z h � (42)

•	 Measurement mean and covariance: the predicted measurement mean and covariance are calculated:

	
2

( ) ( )
1 1

0

L
i i

k m k
i

W+ +
=

= ∑z Z � (43)

	 ( )( )1

2
( ) ( ) ( )

1 11 1
0

k

L
i i i

k kz c k k
i

W
+

+ ++ +
=

= − − +∑P Z z Z z R 
•T

� (44)

•	 Cross covariance and Kalman gain: the cross covariance between the state and measurement is computed, and the Kalman 
gain is obtained:

	 ( )( )1

2
( ) ( ) ( )

1| 11| 1
0

k

L
i i i

k k kxz c k k k
i

W χ
+

+ ++ +
=

= − −∑P x Z z
•T

� (45)

	
1 1

1
k kk xz z+ +

−=K P P � (46)

•	 State and covariance update: the state estimate and covariance are updated using the Kalman gain:

	   ( )1 1| 11k k k kk k+ + ++= + −x x K z z � (47)

	
11 1| k

T
k k k k z k++ += −P P K P K � (48)

The UKF is particularly effective in providing accurate estimates for highly nonlinear systems, outperforming 
the EKF by directly addressing the nonlinearities in the state transition and measurement processes without relying 
on linearization.

Simulation setup
This section simulates the tank dynamics using a second-order Gauss-Markov process and compares the effectiveness 

of the UKF and the EKF in estimating the tank’s states through a single simulation. Additionally, it evaluates the estimation 
errors of both filters through Monte Carlo simulations. An overview of the simulation setup is provides, including the initial 
conditions and parameters of the tank’s kinematics and dynamics, as well as the configurations of the UKF and EKF used 
in the study. The simulation is conducted over a 20-second interval with a time step of 0.1 seconds. The tank’s true position, 
velocity, and acceleration are generated using the second-order Gauss-Markov process, and both UKF and EKF are applied 
to estimate these states based on noisy position measurements. The parameters used for the simulation programs are shown 
in Tables 1, 2, and 3.
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Table 1. Initial conditions and system parameters.

Category Parameters Symbol Values

Simulation setup

Simulation time T 20 s

Time step Δt 0.1 s

Number of Monte Carlo simulations N 1,000

System dynamics 
parameters

Damping coefficient ζ 0.7

Natural frequency ωn 1.256 rad/s

Time constant Τ 2.6 s

Magnitude of the process noise affecting the system σW 0.5

Initial state conditions

Initial position of the tank XT0 0 m

Initial velocity of the tank VT0 5 m/s

Initial acceleration of the tank aTx0 1 m/s²

Constraints on motion
Maximum allowable acceleration of the tank |aTx| max 2 m/s²

Maximum allowable velocity of the tank VTmax 25 m/s

Source: Elaborated by the authors.

Table 2. UKF parameters.

Parameter Symbol Value Description

State dimension L 3 Dimension of the state vector (position, velocity, 
acceleration)

Spread parameter α 10-3 Determines the spread of the sigma points

Centrality parameter κ 0 Affects the spread and centrality of the sigma 
points

Distribution parameter β 2 Used to incorporate prior knowledge about the 
distribution (2 for Gaussian)

Lambda λ α2(L+κ)–L Calculated parameter for scaling sigma points

Gamma γ √L + λ Scaling factor for sigma points

Initial covariance matrix Pukf 0.1* identity matrix (3 × 3) Initial uncertainty in the state estimate

Process noise covariance 
matrix Q Diagonal matrix with 

elements (0.01, 0.01, 0.1) Represents the process noise affecting the system

Measurement noise 
covariance matrix R 0.01 Represents the measurement noise affecting the 

observations

Source: Elaborated by the authors.

Table 3. EKF Parameters

Parameter Symbol Value Description

Initial covariance matrix Pukf 0.1* identity matrix (3 × 3) Initial uncertainty in the state estimate

Process noise covariance matrix Q Diagonal matrix with 
elements (0.01, 0.01, 0.1)

Represents the process noise affecting the 
system

Measurement noise covariance 
matrix R 0.01 Represents the measurement noise affecting 

the observations

Source: Elaborated by the authors.
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Initial conditions and parameters 
The tank’s true position, velocity, and acceleration are generated using a second-order Gauss-Markov process, as described in 

the section “Nonlinear state transition function and measurement function”.
This section outlines the configuration of the two filters – UKF and EKF – used to estimate the tank’s position, velocity, and acceleration.
The UKF and EKF are both initialized with identical initial state estimates of (0; 0; 0), representing the starting assumptions 

for position, velocity, and acceleration. This ensures a fair comparison between the two filters.

Simulation framework for comparing UKF and EKF in nonlinear target tracking
This section presents simulations conducted to evaluate the performance of different filtering techniques in estimating the 

tank’s dynamics. The analysis focuses on the following key aspects:
•	 Tank dynamics simulation using a second-order Gauss-Markov process: the tank’s position, velocity, and acceleration are 

simulated over time using a second-order Gauss-Markov process, incorporating complex dynamic factors such as damping, 
natural frequency, and the influence of random noise to realistically replicate operational conditions.

•	 Comparison of UKF and EKF Performance in estimating tank states: the performance of the UKF and the EKF is evaluated 
through a single simulation, focusing on their ability to estimate the tank’s states accurately in comparison to the true states 
generated by the simulation.

•	 Evaluation of UKF and EKF estimation errors through Monte Carlo simulations: this expands the analysis by comparing the 
accuracy of UKF and EKF across multiple simulations, providing a statistical perspective on their estimation errors.
By integrating these components, the section provides a comprehensive analysis of the tank’s behavior and the strengths and 

weaknesses of the UKF and EKF filters. The results highlight the effectiveness of the second-order Gauss-Markov process in 
simulating realistic tank dynamics while identifying the scenarios where each filtering approach performs optimally. This foundation 
supports further development and application of advanced state estimation techniques in nonlinear systems.

Figure 2 presents a flowchart of the algorithm for evaluating the estimation error of UKF and EKF through Monte Carlo 
simulation, providing an overview of the entire simulation process. Since this flowchart already covers all the necessary information, 
detailed flowcharts for individual subprocesses, such as modeling the position, velocity, and acceleration of the tank according to 
a second-order Gauss-Markov process, or comparing UKF and EKF in estimating the tank dynamics through a single simulation 
with random states, will be omitted as they have already been integrated into this general flowchart.

RESULTS AND DISCUSSION

Simulation of tank dynamics using a second-order Gauss-Markov process
The purpose of the simulation of tank dynamics using a second-order Gauss-Markov process is to model the position, velocity, 

and acceleration of a tank over time, considering the effects of damping and random noise. This simulation provides insights 
into how the tank’s dynamics evolve under these influences, resulting in time-based plots of the tank’s position, velocity, and 
acceleration. These results are crucial for understanding the tank’s behavior in realistic operational conditions, helping to inform 
the design and testing of control and estimation algorithms. 

Figure 3 illustrates the tank dynamics simulated using a second-order Gauss-Markov process. The plots display the position, 
velocity, and acceleration of the tank over the 20-second simulation period. The second-order Gauss-Markov process successfully 
captures the oscillatory and damping behavior characteristic of the tank’s movement: (a) Position; (b) Velocity; (c) Acceleration.

The tank’s acceleration plot reveals the system’s characteristic oscillation, reflecting the impact of random variations in 
the second-order Gauss-Markov model. Each simulation generates a distinct motion scenario for the tank, highlighting the 
randomness of its movement under real-world conditions. These results are crucial as input data for evaluating the reliability of 
guidance algorithms and the accuracy of state estimation filters applied to the tank dynamics model. Furthermore, they confirm 
the model’s effectiveness in accurately simulating the tank’s motion, laying the groundwork for a detailed comparison between 
the UKF and EKF methods.
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Comparison of UKF and EKF in estimating tank dynamics through a single simulation
In this approach, a single simulation run is conducted to compare the performance of the UKF and the EKF in estimating 

the position, velocity, and acceleration of a moving tank. The tank’s dynamics are simulated using a second-order Gauss-Markov 
process, which includes nonlinearities and random noise.

Start

END

Initialize System Parameters
Set system parameters: T, ∆t, M, N, ζ, ω, τ, and σw. |aTx|max VTmax.

Set UKF parameters: L, α, κ. β, λ = α2(L+κ)–L, γ = √L + λ, weight mtrices Wm and Wc.
Define covariance matrices Q and R. Error Accumulation Arrays

Initialize Covariance Matrices and Initial States
Initialize PUKF = PEKF = 0.1∙I and xUKF,0 = xEKKF,0 = [0,0,0]T.

Update system model
Generate Wk~N (0,σ2

w). Update atx(k), Vtx(k), and xtx(k) with limits |aTx| max and VTmax.

Calculate the squared errors for position, velocity, and acceleration estimates of both UKF 
and EKF at each time step.

Compute Average Errors
Display Results

EKF: Predict
The predicted state x^k+1|k and covariance Pk+1|k 

are calculated acording to Eqs. (29) - (30)

EKF: Update 
The Kalman gain Kk, updated state estimate 
x^k+1|k, and updated error covariance Pk+1|k are 

computed acordingtoEqs. (31)-(33).

UKF: Predict
Propagation χ(i)

k+1|k acording to Eq(39) . The predicted 
state mean x^k+1|k and Pk+1|k covariance  are computed 

acording to Eqs (40) - (41).

UKF: Update 
Compute the steps from Eq. (42) to Eq.(48) to 

determine the Kalman gain Kk, the updated state x^k+1|k, 
and covariance Pk+1|k.

Initialize i == 1 for Monte Carlo Loop

Initialize k==2 for filters simulation loop

k = N

i = M

k=k+1

i=i+1

Source: Elaborated by the authors.

Figure 2. Algorithm flowchart for Monte Carlo simulation assessing the performance of UKF and EKF filters.

https://creativecommons.org/licenses/by/4.0/deed.en


J. Aerosp. Technol. Manag., v17, e0625, 2025

Application of the Unscented Kalman Filter for Tracking a Maneuvering Tank Modeled with a Second-Order Gauss-Markov Process: A 
Comparative Analysis with the Extended Kalman Filter 13

Purpose of the comparison
The main objective is to observe and compare the accuracy of the estimates from UKF and EKF in real time by directly 

comparing the estimated states (position, velocity, acceleration) of both filters with the actual values generated in the simulation. 
Conducting just one simulation run provides a quick and visual comparison of the performance of the two filters, although it 
does not offer comprehensive statistical insight.

Figure 4 presents a direct comparison between the UKF and EKF in estimating the tank’s position, velocity, and acceleration. 
The plots demonstrate that the UKF provides more accurate estimates compared to the EKF, particularly under nonlinear and 
noisy conditions. The UKF’s ability to handle nonlinear models without linearization results in lower estimation errors, which is 
clearly evident in the velocity and acceleration plots. In contrast, the EKF, which relies on linear approximations, shows greater 

(a) Position of the tank over time (Xaxis) (b) Velocity of the tank over time

(c) Acceleration of the tank over time
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Figure 3. Simulation of tank dynamics using a second-order Gauss-Markov process.
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Figure 4. Comparison of tank position, velocity, and acceleration estimates between UKF and EKF with actual values.
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deviations from the true values, especially during rapid changes in acceleration. These findings highlight the superiority of the 
UKF in handling the complex nonlinear dynamics of the tank.

Evaluation of estimation errors in UKF and EKF using Monte Carlo simulation
The tank system’s dynamic state is simulated using a second-order Gauss-Markov process, resulting in different outcomes for 

each simulation run. Therefore, the Monte Carlo method is applied with 1,000 simulation runs to calculate the average estimation 
errors for each state (position, velocity, acceleration) of the tank. This method provides a comprehensive view of the accuracy and 
reliability of the filters (UKF and EKF) when handling random variations in real-world conditions. 

This comparison evaluates the performance of the two filters in complex nonlinear systems and identifies the filter better 
suited for tracking maneuvering targets, such as a tank in combat scenarios.

Assume ˆ ( )i tx  represents the estimated target parameters (position, velocity, and acceleration) output by the UKF and EKF 
filters in the i-th run at time i. The Monte Carlo average of the estimation error at time t can be calculated as follows:

	
1

1( ) ( )
M

i
i

e t e t
M =

= ∑ � (49)

where M is the total number of trials (here, 1,000 runs), trueˆ( ) ( ) ( )i it t t= −e x x  is the estimation error for the i-th run at time t, 
and true ( )tx  is the true value of the target parameters at time t. The value ( )e t  reflects the average deviation from the true value 
over 1,000 runs at time t, providing insight into the effectiveness of the UKF and EKF in estimating the target state.

Figure 5 illustrates the estimation errors of the UKF and EKF across multiple Monte Carlo simulation runs. The plots show that, 
on average, the UKF consistently outperforms the EKF in terms of lower estimation errors for position, velocity, and acceleration. 
The histogram charts of the errors indicate that the UKF not only has a lower mean error but also exhibits less variability in its 
estimates compared to the EKF. This is particularly evident in scenarios with high levels of process noise, where the linearization 
approach of the EKF fails to accurately track the tank’s states. 

These results reinforce the advantage of the UKF in scenarios where the system dynamics are highly nonlinear and affected 
by significant uncertainties. The simulation results clearly demonstrate that the UKF outperforms the EKF in estimating the 
dynamic states of a maneuvering tank, particularly in environments with nonlinear dynamics and uncertain noise. The improved 
performance of the UKF is attributed to its ability to handle nonlinear models more effectively, as evidenced by lower estimation 
errors in both single simulations and Monte Carlo trials. 

These findings suggest that the UKF is a more suitable choice for applications involving complex nonlinear systems, such as 
military vehicle tracking, where accurate state estimation is crucial.
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Figure 5. Monte Carlo simulation result.
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CONCLUSION

This study has demonstrated the effectiveness of using a second-order Gauss-Markov process to model the dynamic states 
of a maneuvering tank, capturing the inherent oscillatory and damping characteristics of such systems. The UKF, applied to this 
advanced modeling framework, has proven superior to the EKF in estimating the tank’s position, velocity, and acceleration.

The UKF’s ability to handle nonlinearities without requiring linearization provided a significant advantage, as demonstrated 
by more accurate and stable estimates. The Monte Carlo simulations further reinforced the superiority of the UKF, showing lower 
estimation errors and less variability compared to the EKF.

These results underscore the importance of advanced modeling and estimation techniques for accurate state tracking in complex 
real-world applications. Future work could involve extending the study to more complex scenarios, such as multi-target tracking 
and the inclusion of more sophisticated tank maneuvers. Additionally, integrating the UKF with other sensor fusion techniques 
could further enhance tracking accuracy and performance.
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