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ABSTRACT
This study addresses the finite-time formation control issues associated with time-delay multi-agent systems. To tackle the 

challenges of finite-time stability in delay systems, Artstein’s transformation is utilized. A distributed finite-time consensus algorithm 
is developed, incorporating an event-triggered control scheme and a corresponding triggering function to minimize unnecessary 
energy consumption and reduce the frequency of controller updates. The validity of the proposed approach is rigorously established 
through Lyapunov stability theory and finite-time stability theory, ensuring the absence of Zeno behavior. Furthermore, building 
upon the finite-time consensus algorithm, a finite-time formation control algorithm is formulated, enabling a group of agents to 
follow a designated leader while maintaining a specified formation shape. By employing feedback linearization, the unmanned 
aerial vehicle model is transformed into a precise linearized model. Finally, the application of this framework to formation control 
is presented, demonstrating the effectiveness of the proposed results.
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INTRODUCTION

In recent decades, the consensus of multi-agent systems has attracted considerable interest within both academic and industrial 
research communities. This field primarily focuses on the cooperative control of interconnected agents to establish and maintain 
a predetermined configuration. Agents operating in formation are capable of executing complex missions, including disaster 
monitoring, target encirclement, and military surveillance (Amirkhani and Barshooi 2022). Given the wide range of applications, 
numerous studies have been conducted to develop and implement formation control algorithms for various types of unmanned 
vehicles (Ahmed et al. 2022; Gargalakos 2024; Ni et al. 2021; Yakıcı et al. 2024). Several formation control strategies are available, 
including such as leader-follower, behavior-based, and virtual rigid body approaches, which encompass two distinct control 
frameworks: the centralized structure and the distributed structure. Notably, the consensus-based control method has emerged 
as the predominant strategy due to its simplicity and reliability in implementation. This approach has led to a wealth of significant 
research contributions, further advancing the field and providing valuable insights for future developments (Mikaberidze et al. 
2024; Zhang et al. 2022).
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Based on the consensus algorithm, many research results can be found for formation control (Dou et al. 2022; Huang et al. 
2021a). It is noteworthy that consensus-based algorithm are expected to reach a goal when time approaches infinity. Achieving 
finite-time consensus is significant in practical systems, especially in high-speed systems (Luo et al. 2024; Wang et al. 2023). As a 
result, the convergence rate has become a critical performance metric for assessing the effectiveness of formation control protocols. 
This aspect is gaining increasing attention within the field. In contrast to asymptotic convergence algorithms, finite-time control 
protocols offer significant advantages, including faster convergence speeds and enhanced disturbance rejection capabilities (Liu 
et al. 2022). These improvements make finite-time approaches particularly appealing for practical applications in formation 
control. Numerous finite-time formation control algorithms have been developed to address the challenges in this area (Huang 
et al. 2021b; Shou et al. 2022). These algorithms are specifically designed to enhance convergence speed and robustness, making 
them suitable for a variety of applications in formation control.

It is essential to acknowledge that the finite-time formation control algorithms previously discussed employ continuous-
time control methodologies. This strategy necessitates that the controller perpetually refresh its control inputs, potentially 
resulting in considerable energy expenditure. Such frequent updates are particularly impractical for unmanned vehicles, which 
typically rely on embedded microprocessors and have limited energy resources (Wang et al. 2022; Znidi and Nouri 2024). To 
address this issue, event-triggered control has emerged as a promising alternative. This control paradigm minimizes the need 
for continuous updates, thereby optimizing energy consumption while maintaining effective control performance (Gong et al. 
2023; Yang et al. 2021). Inspired by the event-triggered strategy, researchers have progressively directed their attention towards 
the implementation of event-triggered schemes in the context of formation control (An et al. 2023; Hou and Lu 2022; Wen 
et al. 2023; Yang et al. 2020). These developments underscore the potential of event-triggered control strategies to improve the 
efficacy of formation control systems.

In the aforementioned studies on event-triggered formation control (Li et al. 2024; Xie et al. 2024), it is posited that each 
vehicle operates without accounting for the time delays associated with information transmission and processing, which appears 
unrealistic in practical use. To tackle this issue, various methodologies have been investigated for spacecraft (Liu et al. 2017) and 
unmanned underwater vehicles (UUVs) (Xu et al. 2023). The research in Liu et al. (2017) involved the formulation of control 
protocols that utilize rapid terminal sliding manifolds and switching functions. However, these protocols only considered time 
delays within the sliding mode, which may render them impractical in real-world applications. Building on the work in Xu et al. 
(2023), the research presented in Romero et al. (2023) introduced a finite-time protocol specifically designed for non-holonomic 
robots encountering time delays. This approach requires significantly large control parameters to ensure stability. In practical 
situations, such large parameters may exceed the actuator’s capabilities and jeopardize stability. To the best of our knowledge, a 
limited body of research exists on finite-time event-triggered formation control schemes that account for time delays.

The primary contribution of this paper can be articulated as follows: 1) The application of integral transformation is utilized 
to tackle the finite-time stability issues inherent in delay systems; 2) The event-triggered control scheme is employed to reduce the 
necessity for constant updates to the controller. In this approach, the controller is updated only when a triggering event occurs, 
significantly reducing energy expenditure; 3) A more precise estimation of finite settling time is obtained through a careful 
construction of the Lyapunov function. Through the application of feedback linearization, the model of an unmanned aerial 
vehicle (UAV) is converted into a precise linearized representation. This approach is employed in the context of UAV formation 
control to illustrate the efficacy of the outcomes.

Preliminaries

Lemma 1 (Nie et al. 2023)
Consider an undirected graph G that represents n followers, which is connected, and where the leader is adjacent to at least 

one follower. The Laplacian matrix L of this graph is symmetric, and the matrix L + H is both positive definite and symmetric, 
where H = diag [a10, a20, . . . ,an0], where ai0 denotes the weight between the leader and ith agent.

Lemma 2 (Lai et al. 2024)
For 
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Lemma 3 (Wang et al. 2017)
Consider the system  and U is an open neighborhood, including the origin.  V(x): U → R is positive 

definite and continuously differentiable. It follows from  that the origin is a finite-time stable 
equilibrium. The finite settling time satisfies T ≤ (V(x0))1-α /c(1 – α), where c > 0 and 0 < α < 1.

Lemma 4 (Moulay et al. 2008)
Consider the system , x(t) ∈Rn, u(t) ∈Rm, A ∈Rn×n, Bi ∈Rn×m, and 

τi > 0. By using Leibniz’s formula, one has  . 
One has  is finite-time stabilizable by u(t) = k(t) f (y(t)) 
with  k(t) bounded, f: Rn → Rm continuous such that f(0) = 0 and there exists α  of class K such that ∥f(y)∥m ≤ α(∥y∥n), then 

 is finite-time stabilizable by .

Design of finite-time event-triggered control algorithm

Definition 1
Finite-time consensus is attained if, for any given initial conditions, there exists a finite time T such that 

 and , and  if t ≥ T, where 
i = 1, 2, ... , n.

Consider a continuous-time dynamics model of n agents with a leader. All agents are assumed to be moving in m-dimensional 
space. The dynamics is specified by:

	 � (1)

where ri, vi, and ui are defined as elements of Rm, representing the position, velocity, and control input, respectively. Additionally, 
τi signifies the constant input delay.

The leader is labeled as 0, which is specified by:

	 � (2)

Taking into account the time-delays associated with information transfer and processing, the information received by the 
i-th agent regarding the leader is subject to a lag, denoted as τi. As a result, at any given time t, the control input for each agent 
is based on the states observed at t - τi. This allows all follower agents to effectively monitor the delayed information from the 
leader. As demonstrated in Artstein (1982) and Zhou et al. (2025), state tracking errors are defined as εri = ri(t) – r0(t – τi), 
εvi = vi(t) – v0(t – τi). Subsequently, Artstein’s transformation are applied to convert the time-delay system described by Eqs. 1 
and 2 into a system devoid of delays:

	 � (3)

Define pi = y1i + τi y2i, qi = y2i, it follows that:

	 � (4)

https://creativecommons.org/licenses/by/4.0/deed.en


J. Aerosp. Technol. Manag., v17, e0925, 2025

Zhang H, Zhou D4

To enhance the practicality of the algorithm, a distributed finite-time observer are choosed (Zhang et al. 2018):

	 � (5)

where α, β > 0, 0 <u < 1, v > 1, pi is the estimate for agent i, p0 = r0.
An novel finite-time consensus algorithm is developed as

	 � (6)

where k1, k2 denote positive constants, ti
k is the latest event-triggered time for agent i, α1 ∈(0,1),  

is the signum function.
Define the combinational measurement state . Define the 

measurement errors .
The triggering function is given by:

	 � (7)

where ξ ∈(0,1). The triggering events are generated by:

	 � (8)

By using the control algorithm (6) for system (1), one has:

	 � (9)

Theorem 1
Consider the multi-agent system (1) with connected graph and the leader is a neighbor of at least one follower. 

If 

 then the event-triggered algorithm (6) solves the finite-time consensus problem under the triggering function (7).

Proof. The proof process is divided into three parts: 1) proving that the system is asymptotically stable; 2) constructing a new 
Lyapunov function to prove finite-time stability and estimating the stability time; 3) using Artstein’s transformation to prove that 
the delayed system is finite-time stable.

Choose the Lyapunov function

	 � (10)

where . It follows that:
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	 � (11)

It follows  that  and V1(t) is non-increasing. According to LaSalle’s invariance theorem, it can be concluded 

that as t → ∞, (ET, GT)T will converge to the set {(ET,GT )T |V̇1(t) ≡ 0}. Clearly, the system (9) is globally asymptotically stable.

Next, the stability of (0T
mn,0T

mn)T  as a finite-time-stable equilibrium will be proven. According to the findings presented in 

Zhao et al. (2016), a Lyapunov function has been developed to estimate the stability time:

	 � (12)

Young’s inequality: if  , then  are positive. It follows Young’s 

inequality that:

	 � (13)

	

1.  Eq. (14) should be 

 𝑉𝑉𝑉𝑉1(𝑡𝑡𝑡𝑡)
3+𝛼𝛼𝛼𝛼1

2(1+𝛼𝛼𝛼𝛼1) ≥ � 𝑘𝑘𝑘𝑘1
𝛼𝛼𝛼𝛼1+1

∑ ∑ |𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝛼𝛼𝛼𝛼1+1𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 �

3+𝛼𝛼𝛼𝛼1
2(1+𝛼𝛼𝛼𝛼1) + ( 1

2𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼𝛼𝛼1
2(1+𝛼𝛼𝛼𝛼1)‖𝐺𝐺𝐺𝐺‖

3+𝛼𝛼𝛼𝛼1
1+𝛼𝛼𝛼𝛼1 

                             ≥ � 𝑘𝑘𝑘𝑘1
𝛼𝛼𝛼𝛼1+1

�
3+𝛼𝛼𝛼𝛼1

2(1+𝛼𝛼𝛼𝛼1) ‖𝐸𝐸𝐸𝐸‖
3+𝛼𝛼𝛼𝛼1
2 + ( 1

2𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼𝛼𝛼1
2(1+𝛼𝛼𝛼𝛼1)‖𝐺𝐺𝐺𝐺‖

3+𝛼𝛼𝛼𝛼1
1+𝛼𝛼𝛼𝛼1             

     

2. Eq. (19) is missing a 𝑉̇𝑉𝑉𝑉2(𝑡𝑡𝑡𝑡) at the beginning of the formula 

� (14)

	

1.  In theorem 1, there is a \xi missing after If. It should be 𝜉𝜉 < 1 /√𝑚𝑚1−𝛼𝛼2

2.  𝑉𝑉1(𝑡𝑡)
3+𝛼𝛼1

2(1+𝛼𝛼1) ≥ ( 𝑘𝑘1
𝛼𝛼1+1 ∑ ∑ |𝑒𝑒𝑖𝑖𝑖𝑖|𝛼𝛼1+1𝑚𝑚

𝑙𝑙=1
𝑛𝑛
𝑖𝑖=1 )

3+𝛼𝛼1
2(1+𝛼𝛼1) + ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1

                             ≥ ( 𝑘𝑘1
𝛼𝛼1+1)

3+𝛼𝛼1
2(1+𝛼𝛼1) ‖𝐸𝐸‖

3+𝛼𝛼1
2 + ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1            

    (14)

3. 

         𝑉𝑉1(𝑡𝑡)
3+𝛼𝛼1

2(1+𝛼𝛼1) ≤ 2
1−𝛼𝛼1

2(1+𝛼𝛼1) ( 𝑘𝑘1
𝛼𝛼1+1 ∑ ∑ |𝑒𝑒𝑖𝑖𝑖𝑖|𝛼𝛼1+1𝑚𝑚

𝑙𝑙=1
𝑛𝑛
𝑖𝑖=1 )

3+𝛼𝛼1
2(1+𝛼𝛼1) + 1

2 ( 1
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

)
3+𝛼𝛼1

2(1+𝛼𝛼1)‖𝐺𝐺‖
3+𝛼𝛼1
1+𝛼𝛼1

                    ≤ 2
1−𝛼𝛼1

2(1+𝛼𝛼1) (𝑘𝑘1√3𝑛𝑛1−𝛼𝛼1

𝛼𝛼1 + 1 )

3+𝛼𝛼1
2(1+𝛼𝛼1)

‖𝐸𝐸‖
3+𝛼𝛼1

2 + 1
2 ( 1

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1

(17)

4.                  𝑉̇𝑉2(𝑡𝑡) ≤ −𝑘𝑘2(1 − 𝜉𝜉√𝑚𝑚1−𝛼𝛼2) 3+𝛼𝛼1
2(1+𝛼𝛼1) ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

1−𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖2 + 𝜌𝜌

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
‖𝐺𝐺‖2

−𝑘𝑘1𝜌𝜌‖𝐸𝐸‖𝛼𝛼1+1 + 𝑘𝑘2𝜌𝜌√𝑚𝑚𝑚𝑚3−𝛼𝛼2‖𝐸𝐸‖‖𝐺𝐺‖𝛼𝛼2 + 𝑘𝑘2𝜌𝜌𝜌𝜌√31−𝛼𝛼2√𝑛𝑛3−𝛼𝛼2‖𝐸𝐸‖‖𝐺𝐺‖𝛼𝛼2

≤ −𝜌𝜌 (𝑘𝑘1 − 𝑘𝑘2√3𝑛𝑛3−𝛼𝛼2 (1 + 𝜉𝜉
𝑚𝑚) 𝛼𝛼1𝑐𝑐−1+𝛼𝛼1

𝛼𝛼1

1 + 𝛼𝛼1
) ∥𝐸𝐸∥𝛼𝛼1+1

− (𝑘𝑘2 (1 − 𝜉𝜉√31−𝛼𝛼2) 3 + 𝛼𝛼1
2(1 + 𝛼𝛼1) ( 1

2𝜆𝜆min
)

1−𝛼𝛼1
2(1+𝛼𝛼1)

) ∥𝐺𝐺∥2

+ ( 𝜌𝜌
𝜆𝜆min

+ 𝑘𝑘2𝜌𝜌√3𝑛𝑛3−𝛼𝛼2 (1 + 𝜉𝜉
𝑚𝑚) 𝛼𝛼1𝑐𝑐−1+𝛼𝛼1

𝛼𝛼1

1 + 𝛼𝛼1
) ∥𝐺𝐺∥2 = −𝜄𝜄1∥𝐸𝐸∥𝛼𝛼1+1 − 𝜄𝜄2∥𝐺𝐺∥2

≤ − (𝜄𝜄1
3+𝛼𝛼1

2(1+𝛼𝛼1)∥𝐸𝐸∥
3+𝛼𝛼1

2 + 𝜄𝜄2

3+𝛼𝛼1
2(1+𝛼𝛼1)∥𝐺𝐺∥

3+𝛼𝛼1
1+𝛼𝛼1)

2(1+𝛼𝛼1)
3+𝛼𝛼1

≤ −𝜄𝜄3𝑉𝑉2(𝑡𝑡)
2(1+𝛼𝛼1)

3+𝛼𝛼1

(19)

5.                   ‖𝑘𝑘1𝜑𝜑𝑖𝑖
𝑒𝑒‖ = 𝑘𝑘1 ‖𝑠𝑠𝑠𝑠𝑠𝑠 (𝑒𝑒𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ))
𝛼𝛼1 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒𝑖𝑖(𝑡𝑡))𝛼𝛼1‖ ≤ 𝑘𝑘121−𝛼𝛼13

1−𝛼𝛼1
2 ‖𝑒𝑒𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ) − 𝑒𝑒𝑖𝑖(𝑡𝑡)‖𝛼𝛼1

= 𝑘𝑘121−𝛼𝛼13
1−𝛼𝛼1

2 ‖∫ 𝑔𝑔𝑖𝑖(𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡𝑘𝑘
𝑖𝑖

‖
𝛼𝛼1

≤ 𝑘𝑘121−𝛼𝛼13
1−𝛼𝛼1

2 ‖𝑔𝑔𝑖𝑖(𝑡𝑡)‖𝛼𝛼1(𝑡𝑡 − 𝑡𝑡𝑘𝑘
𝑖𝑖 )𝛼𝛼1

   (21)

where λmax, λmin denotes the maximum and minimum eigenvalues of L + H, respectively.

Substituting (13) and (14) into Eq. 12 yields:

	 � (15)

If c is in the interval , then we have V2 (t) is radially unbounded 

and positive definite. Set ,  

 then V2 (t) is an effective Lyapunov function.
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Similarly, based on Young’s inequality, we can obtain:

	 � (16)

	

1.  In theorem 1, there is a \xi missing after If. It should be 𝜉𝜉 < 1 /√𝑚𝑚1−𝛼𝛼2

2.  𝑉𝑉1(𝑡𝑡)
3+𝛼𝛼1

2(1+𝛼𝛼1) ≥ ( 𝑘𝑘1
𝛼𝛼1+1 ∑ ∑ |𝑒𝑒𝑖𝑖𝑖𝑖|𝛼𝛼1+1𝑚𝑚

𝑙𝑙=1
𝑛𝑛
𝑖𝑖=1 )

3+𝛼𝛼1
2(1+𝛼𝛼1) + ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1

                             ≥ ( 𝑘𝑘1
𝛼𝛼1+1)

3+𝛼𝛼1
2(1+𝛼𝛼1) ‖𝐸𝐸‖

3+𝛼𝛼1
2 + ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1            

    (14)

3. 

         𝑉𝑉1(𝑡𝑡)
3+𝛼𝛼1

2(1+𝛼𝛼1) ≤ 2
1−𝛼𝛼1

2(1+𝛼𝛼1) ( 𝑘𝑘1
𝛼𝛼1+1 ∑ ∑ |𝑒𝑒𝑖𝑖𝑖𝑖|𝛼𝛼1+1𝑚𝑚

𝑙𝑙=1
𝑛𝑛
𝑖𝑖=1 )

3+𝛼𝛼1
2(1+𝛼𝛼1) + 1

2 ( 1
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

)
3+𝛼𝛼1

2(1+𝛼𝛼1)‖𝐺𝐺‖
3+𝛼𝛼1
1+𝛼𝛼1

                    ≤ 2
1−𝛼𝛼1

2(1+𝛼𝛼1) (𝑘𝑘1√3𝑛𝑛1−𝛼𝛼1

𝛼𝛼1 + 1 )

3+𝛼𝛼1
2(1+𝛼𝛼1)

‖𝐸𝐸‖
3+𝛼𝛼1

2 + 1
2 ( 1

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1

(17)

4.                  𝑉̇𝑉2(𝑡𝑡) ≤ −𝑘𝑘2(1 − 𝜉𝜉√𝑚𝑚1−𝛼𝛼2) 3+𝛼𝛼1
2(1+𝛼𝛼1) ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

1−𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖2 + 𝜌𝜌

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
‖𝐺𝐺‖2

−𝑘𝑘1𝜌𝜌‖𝐸𝐸‖𝛼𝛼1+1 + 𝑘𝑘2𝜌𝜌√𝑚𝑚𝑚𝑚3−𝛼𝛼2‖𝐸𝐸‖‖𝐺𝐺‖𝛼𝛼2 + 𝑘𝑘2𝜌𝜌𝜌𝜌√31−𝛼𝛼2√𝑛𝑛3−𝛼𝛼2‖𝐸𝐸‖‖𝐺𝐺‖𝛼𝛼2

≤ −𝜌𝜌 (𝑘𝑘1 − 𝑘𝑘2√3𝑛𝑛3−𝛼𝛼2 (1 + 𝜉𝜉
𝑚𝑚) 𝛼𝛼1𝑐𝑐−1+𝛼𝛼1

𝛼𝛼1

1 + 𝛼𝛼1
) ∥𝐸𝐸∥𝛼𝛼1+1

− (𝑘𝑘2 (1 − 𝜉𝜉√31−𝛼𝛼2) 3 + 𝛼𝛼1
2(1 + 𝛼𝛼1) ( 1

2𝜆𝜆min
)

1−𝛼𝛼1
2(1+𝛼𝛼1)

) ∥𝐺𝐺∥2

+ ( 𝜌𝜌
𝜆𝜆min

+ 𝑘𝑘2𝜌𝜌√3𝑛𝑛3−𝛼𝛼2 (1 + 𝜉𝜉
𝑚𝑚) 𝛼𝛼1𝑐𝑐−1+𝛼𝛼1

𝛼𝛼1

1 + 𝛼𝛼1
) ∥𝐺𝐺∥2 = −𝜄𝜄1∥𝐸𝐸∥𝛼𝛼1+1 − 𝜄𝜄2∥𝐺𝐺∥2

≤ − (𝜄𝜄1
3+𝛼𝛼1

2(1+𝛼𝛼1)∥𝐸𝐸∥
3+𝛼𝛼1

2 + 𝜄𝜄2

3+𝛼𝛼1
2(1+𝛼𝛼1)∥𝐺𝐺∥

3+𝛼𝛼1
1+𝛼𝛼1)

2(1+𝛼𝛼1)
3+𝛼𝛼1

≤ −𝜄𝜄3𝑉𝑉2(𝑡𝑡)
2(1+𝛼𝛼1)

3+𝛼𝛼1

(19)

5.                   ‖𝑘𝑘1𝜑𝜑𝑖𝑖
𝑒𝑒‖ = 𝑘𝑘1 ‖𝑠𝑠𝑠𝑠𝑠𝑠 (𝑒𝑒𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ))
𝛼𝛼1 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒𝑖𝑖(𝑡𝑡))𝛼𝛼1‖ ≤ 𝑘𝑘121−𝛼𝛼13

1−𝛼𝛼1
2 ‖𝑒𝑒𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ) − 𝑒𝑒𝑖𝑖(𝑡𝑡)‖𝛼𝛼1

= 𝑘𝑘121−𝛼𝛼13
1−𝛼𝛼1

2 ‖∫ 𝑔𝑔𝑖𝑖(𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡𝑘𝑘
𝑖𝑖

‖
𝛼𝛼1

≤ 𝑘𝑘121−𝛼𝛼13
1−𝛼𝛼1

2 ‖𝑔𝑔𝑖𝑖(𝑡𝑡)‖𝛼𝛼1(𝑡𝑡 − 𝑡𝑡𝑘𝑘
𝑖𝑖 )𝛼𝛼1

   (21)

� (17)
	

1.  In theorem 1, there is a \xi missing after If. It should be 𝜉𝜉 < 1 /√𝑚𝑚1−𝛼𝛼2

2.  𝑉𝑉1(𝑡𝑡)
3+𝛼𝛼1

2(1+𝛼𝛼1) ≥ ( 𝑘𝑘1
𝛼𝛼1+1 ∑ ∑ |𝑒𝑒𝑖𝑖𝑖𝑖|𝛼𝛼1+1𝑚𝑚

𝑙𝑙=1
𝑛𝑛
𝑖𝑖=1 )

3+𝛼𝛼1
2(1+𝛼𝛼1) + ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1

                             ≥ ( 𝑘𝑘1
𝛼𝛼1+1)

3+𝛼𝛼1
2(1+𝛼𝛼1) ‖𝐸𝐸‖

3+𝛼𝛼1
2 + ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1            

    (14)

3. 

         𝑉𝑉1(𝑡𝑡)
3+𝛼𝛼1

2(1+𝛼𝛼1) ≤ 2
1−𝛼𝛼1

2(1+𝛼𝛼1) ( 𝑘𝑘1
𝛼𝛼1+1 ∑ ∑ |𝑒𝑒𝑖𝑖𝑖𝑖|𝛼𝛼1+1𝑚𝑚

𝑙𝑙=1
𝑛𝑛
𝑖𝑖=1 )

3+𝛼𝛼1
2(1+𝛼𝛼1) + 1

2 ( 1
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

)
3+𝛼𝛼1

2(1+𝛼𝛼1)‖𝐺𝐺‖
3+𝛼𝛼1
1+𝛼𝛼1

                    ≤ 2
1−𝛼𝛼1

2(1+𝛼𝛼1) (𝑘𝑘1√3𝑛𝑛1−𝛼𝛼1

𝛼𝛼1 + 1 )

3+𝛼𝛼1
2(1+𝛼𝛼1)

‖𝐸𝐸‖
3+𝛼𝛼1

2 + 1
2 ( 1

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1

(17)

4.                  𝑉̇𝑉2(𝑡𝑡) ≤ −𝑘𝑘2(1 − 𝜉𝜉√𝑚𝑚1−𝛼𝛼2) 3+𝛼𝛼1
2(1+𝛼𝛼1) ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

1−𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖2 + 𝜌𝜌

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
‖𝐺𝐺‖2

−𝑘𝑘1𝜌𝜌‖𝐸𝐸‖𝛼𝛼1+1 + 𝑘𝑘2𝜌𝜌√𝑚𝑚𝑚𝑚3−𝛼𝛼2‖𝐸𝐸‖‖𝐺𝐺‖𝛼𝛼2 + 𝑘𝑘2𝜌𝜌𝜌𝜌√31−𝛼𝛼2√𝑛𝑛3−𝛼𝛼2‖𝐸𝐸‖‖𝐺𝐺‖𝛼𝛼2

≤ −𝜌𝜌 (𝑘𝑘1 − 𝑘𝑘2√3𝑛𝑛3−𝛼𝛼2 (1 + 𝜉𝜉
𝑚𝑚) 𝛼𝛼1𝑐𝑐−1+𝛼𝛼1

𝛼𝛼1

1 + 𝛼𝛼1
) ∥𝐸𝐸∥𝛼𝛼1+1

− (𝑘𝑘2 (1 − 𝜉𝜉√31−𝛼𝛼2) 3 + 𝛼𝛼1
2(1 + 𝛼𝛼1) ( 1

2𝜆𝜆min
)

1−𝛼𝛼1
2(1+𝛼𝛼1)

) ∥𝐺𝐺∥2

+ ( 𝜌𝜌
𝜆𝜆min

+ 𝑘𝑘2𝜌𝜌√3𝑛𝑛3−𝛼𝛼2 (1 + 𝜉𝜉
𝑚𝑚) 𝛼𝛼1𝑐𝑐−1+𝛼𝛼1

𝛼𝛼1

1 + 𝛼𝛼1
) ∥𝐺𝐺∥2 = −𝜄𝜄1∥𝐸𝐸∥𝛼𝛼1+1 − 𝜄𝜄2∥𝐺𝐺∥2

≤ − (𝜄𝜄1
3+𝛼𝛼1

2(1+𝛼𝛼1)∥𝐸𝐸∥
3+𝛼𝛼1

2 + 𝜄𝜄2

3+𝛼𝛼1
2(1+𝛼𝛼1)∥𝐺𝐺∥

3+𝛼𝛼1
1+𝛼𝛼1)

2(1+𝛼𝛼1)
3+𝛼𝛼1

≤ −𝜄𝜄3𝑉𝑉2(𝑡𝑡)
2(1+𝛼𝛼1)

3+𝛼𝛼1

(19)

5.                   ‖𝑘𝑘1𝜑𝜑𝑖𝑖
𝑒𝑒‖ = 𝑘𝑘1 ‖𝑠𝑠𝑠𝑠𝑠𝑠 (𝑒𝑒𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ))
𝛼𝛼1 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒𝑖𝑖(𝑡𝑡))𝛼𝛼1‖ ≤ 𝑘𝑘121−𝛼𝛼13

1−𝛼𝛼1
2 ‖𝑒𝑒𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ) − 𝑒𝑒𝑖𝑖(𝑡𝑡)‖𝛼𝛼1

= 𝑘𝑘121−𝛼𝛼13
1−𝛼𝛼1

2 ‖∫ 𝑔𝑔𝑖𝑖(𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡𝑘𝑘
𝑖𝑖

‖
𝛼𝛼1

≤ 𝑘𝑘121−𝛼𝛼13
1−𝛼𝛼1

2 ‖𝑔𝑔𝑖𝑖(𝑡𝑡)‖𝛼𝛼1(𝑡𝑡 − 𝑡𝑡𝑘𝑘
𝑖𝑖 )𝛼𝛼1

   (21)

Furthermore, one has:

	 � (18)

where , .

Taking the derivative of V2 (t) yields:

	

	

1.  In theorem 1, there is a \xi missing after If. It should be 𝜉𝜉 < 1 /√𝑚𝑚1−𝛼𝛼2

2.  𝑉𝑉1(𝑡𝑡)
3+𝛼𝛼1

2(1+𝛼𝛼1) ≥ ( 𝑘𝑘1
𝛼𝛼1+1 ∑ ∑ |𝑒𝑒𝑖𝑖𝑖𝑖|𝛼𝛼1+1𝑚𝑚

𝑙𝑙=1
𝑛𝑛
𝑖𝑖=1 )

3+𝛼𝛼1
2(1+𝛼𝛼1) + ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1

                             ≥ ( 𝑘𝑘1
𝛼𝛼1+1)

3+𝛼𝛼1
2(1+𝛼𝛼1) ‖𝐸𝐸‖

3+𝛼𝛼1
2 + ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1            

    (14)

3. 

         𝑉𝑉1(𝑡𝑡)
3+𝛼𝛼1

2(1+𝛼𝛼1) ≤ 2
1−𝛼𝛼1

2(1+𝛼𝛼1) ( 𝑘𝑘1
𝛼𝛼1+1 ∑ ∑ |𝑒𝑒𝑖𝑖𝑖𝑖|𝛼𝛼1+1𝑚𝑚

𝑙𝑙=1
𝑛𝑛
𝑖𝑖=1 )

3+𝛼𝛼1
2(1+𝛼𝛼1) + 1

2 ( 1
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

)
3+𝛼𝛼1

2(1+𝛼𝛼1)‖𝐺𝐺‖
3+𝛼𝛼1
1+𝛼𝛼1

                    ≤ 2
1−𝛼𝛼1

2(1+𝛼𝛼1) (𝑘𝑘1√3𝑛𝑛1−𝛼𝛼1

𝛼𝛼1 + 1 )

3+𝛼𝛼1
2(1+𝛼𝛼1)

‖𝐸𝐸‖
3+𝛼𝛼1

2 + 1
2 ( 1

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

3+𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖

3+𝛼𝛼1
1+𝛼𝛼1

(17)

4.                  𝑉̇𝑉2(𝑡𝑡) ≤ −𝑘𝑘2(1 − 𝜉𝜉√𝑚𝑚1−𝛼𝛼2) 3+𝛼𝛼1
2(1+𝛼𝛼1) ( 1

2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
)

1−𝛼𝛼1
2(1+𝛼𝛼1)‖𝐺𝐺‖2 + 𝜌𝜌

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
‖𝐺𝐺‖2

−𝑘𝑘1𝜌𝜌‖𝐸𝐸‖𝛼𝛼1+1 + 𝑘𝑘2𝜌𝜌√𝑚𝑚𝑚𝑚3−𝛼𝛼2‖𝐸𝐸‖‖𝐺𝐺‖𝛼𝛼2 + 𝑘𝑘2𝜌𝜌𝜌𝜌√31−𝛼𝛼2√𝑛𝑛3−𝛼𝛼2‖𝐸𝐸‖‖𝐺𝐺‖𝛼𝛼2

≤ −𝜌𝜌 (𝑘𝑘1 − 𝑘𝑘2√3𝑛𝑛3−𝛼𝛼2 (1 + 𝜉𝜉
𝑚𝑚) 𝛼𝛼1𝑐𝑐−1+𝛼𝛼1

𝛼𝛼1

1 + 𝛼𝛼1
) ∥𝐸𝐸∥𝛼𝛼1+1

− (𝑘𝑘2 (1 − 𝜉𝜉√31−𝛼𝛼2) 3 + 𝛼𝛼1
2(1 + 𝛼𝛼1) ( 1

2𝜆𝜆min
)

1−𝛼𝛼1
2(1+𝛼𝛼1)

) ∥𝐺𝐺∥2

+ ( 𝜌𝜌
𝜆𝜆min

+ 𝑘𝑘2𝜌𝜌√3𝑛𝑛3−𝛼𝛼2 (1 + 𝜉𝜉
𝑚𝑚) 𝛼𝛼1𝑐𝑐−1+𝛼𝛼1

𝛼𝛼1

1 + 𝛼𝛼1
) ∥𝐺𝐺∥2 = −𝜄𝜄1∥𝐸𝐸∥𝛼𝛼1+1 − 𝜄𝜄2∥𝐺𝐺∥2

≤ − (𝜄𝜄1
3+𝛼𝛼1

2(1+𝛼𝛼1)∥𝐸𝐸∥
3+𝛼𝛼1

2 + 𝜄𝜄2

3+𝛼𝛼1
2(1+𝛼𝛼1)∥𝐺𝐺∥

3+𝛼𝛼1
1+𝛼𝛼1)

2(1+𝛼𝛼1)
3+𝛼𝛼1

≤ −𝜄𝜄3𝑉𝑉2(𝑡𝑡)
2(1+𝛼𝛼1)

3+𝛼𝛼1

(19)

5.                   ‖𝑘𝑘1𝜑𝜑𝑖𝑖
𝑒𝑒‖ = 𝑘𝑘1 ‖𝑠𝑠𝑠𝑠𝑠𝑠 (𝑒𝑒𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ))
𝛼𝛼1 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒𝑖𝑖(𝑡𝑡))𝛼𝛼1‖ ≤ 𝑘𝑘121−𝛼𝛼13

1−𝛼𝛼1
2 ‖𝑒𝑒𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ) − 𝑒𝑒𝑖𝑖(𝑡𝑡)‖𝛼𝛼1

= 𝑘𝑘121−𝛼𝛼13
1−𝛼𝛼1

2 ‖∫ 𝑔𝑔𝑖𝑖(𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡𝑘𝑘
𝑖𝑖

‖
𝛼𝛼1

≤ 𝑘𝑘121−𝛼𝛼13
1−𝛼𝛼1

2 ‖𝑔𝑔𝑖𝑖(𝑡𝑡)‖𝛼𝛼1(𝑡𝑡 − 𝑡𝑡𝑘𝑘
𝑖𝑖 )𝛼𝛼1

   (21)

� (19)

where 

.

It follows from Lemma 3 that the system (9) can be stabilized within a finite time, with the upper bound for the stability time being:
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1−𝛼𝛼2
2 ‖𝑔𝑔𝑖𝑖(𝑡𝑡)‖𝛼𝛼2

   (23)

7.                         𝑢𝑢𝑖𝑖 = −𝑘𝑘1𝑠𝑠𝑠𝑠𝑠𝑠 (∑ 𝑎𝑎𝑖𝑖𝑖𝑖 ((𝑝𝑝𝑖𝑖(𝑡𝑡𝑘𝑘
𝑖𝑖 ) − 𝑝𝑝𝑗𝑗(𝑡𝑡𝑘𝑘

𝑖𝑖 ) − 𝑥𝑥𝑖𝑖𝑖𝑖)𝑁𝑁
𝑗𝑗=1 + 𝑎𝑎𝑖𝑖0(𝑝𝑝𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ) − 𝑥𝑥𝑖𝑖))
𝛼𝛼1

−𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠 (∑ 𝑎𝑎𝑖𝑖𝑖𝑖 (𝑞𝑞𝑖𝑖(𝑡𝑡𝑘𝑘
𝑖𝑖 ) − 𝑞𝑞𝑗𝑗(𝑡𝑡𝑘𝑘

𝑖𝑖 ))
𝑁𝑁

𝑗𝑗=1
+ 𝑎𝑎𝑖𝑖0𝑞𝑞𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ))

𝛼𝛼2

+ 𝑝̈̂𝑝𝑖𝑖(𝑡𝑡𝑘𝑘
𝑖𝑖 )

       (25)

Then, we have:

	 � (24)

We can conclude that time-delay system does not exhibit Zeno behavior before consensus is achieved. This completes the proof.
In practical scenarios, the topology may undergo changes as a result of factors such as communication distance, physical 

device malfunctions, or other contributing circumstances. To tackle this problem, switching topologies G = {Go |o = 1,2,...,c}, c 
∈N+. σ(t): [0, +∞) → k denoting switching signal were introduced. Without loss of generality, G is time invariant for [ti

k, ti
k+1). Next, 

the results on switching topologies are given.
Corollary 1 – Assume that each topology is connected and the leader is a neighbor of at least one follower. If 

, , then 

the event-triggered algorithm (6) solves the finite-time consensus problem of time-delay multi-agent system (1) (2) under the 
triggering function (7).

Example 1: to assess the efficacy of the proposed algorithm, a numerical simulation are presented. The topology is shown in 
Fig. 1. All agents are assumed to be moving in 1-dimensional space.
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Source: Elaborated by the authors.

Figure 1. The undirected communication topology.

We choose α1 = 0.5, k1 = 6, k2 = 5.5, ξ =  0.25, τi = 0.1. The initial positions and velocities are randomly generated in the 
interval [–5,5]. With the event-triggered algorithm (3) and triggering function (4), the trajectories are shown in Figs. 2 and 3. The 
measurement errors  and thresholds  are shown in Fig. 4.
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Figure 2. Position trajectory.
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Figure 3. Velocity trajectory.

https://creativecommons.org/licenses/by/4.0/deed.en


J. Aerosp. Technol. Manag., v17, e0925, 2025

Event-Triggered Finite-Time Consensus Scheme for Time-Delay Multi-Agent Systems with Settling Time Estimation and its Application 9

||βψr
1||+||γψV

1||

ξ||γqα1||

||βψr
2||+||γψV

2||

ξ||γqα2||

||βψr
3||+||γψV

3||

ξ||γqα3||

||βψr
4||+||γψV

4||

ξ||γqα4||

4

2

0

5

0

4

2

0

10

5

0

ag
en

t 
1

ag
en

t 
2

ag
en

t 
3

ag
en

t 
4

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Source: Elaborated by the authors.

Figure 4. Combinational measurement errors and thresholds.

Figures 2 and 3 show that consensus is achieved in finite time. The combinational measurement errors and thresholds indicate 
the asynchronous event sequences from Fig. 4. When an agent is triggered at its triggering time, its measurement error is set to 0 
due to the status update. Each agent’s controller only updates at its triggering time, reducing energy consumption.

Design of finite-time formation control algorithm
Before proceeding, the definition of finite-time formation control is first provided.

Definition 2
The finite-time formation control problem is considered resolved when the states of the agents meet specific criteria: 

,  and . Where T 
denotes a finite time, xi denotes the position vector between agent i and leader, , i = 1, 2, ... ,n.

For convenience, a model transformation is performed for comprehension. A Cartesian coordinate is shown in Fig. 5, 
where r0 is the position of formation center and is represented by Oc, O is the origin, ri,  denote the positions of agent i, j, 
respectively. The position vector between agent i and leader is xi. Then, we can transform  into 

.

Oc

Xj

Xi

i

j

O

ri

rj

r0

Source: Elaborated by the authors.

Figure 5. Cartesian coordinate.
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From Artstein’s transformation (3) (4), a distributed finite-time formation control algorithm is defined as

	

6.                   𝜗𝜗1 ((𝑡𝑡𝑘𝑘+1
𝑖𝑖 − 𝑡𝑡𝑘𝑘

𝑖𝑖 )𝛼𝛼1 + (𝑡𝑡𝑘𝑘+1
𝑖𝑖 − 𝑡𝑡𝑘𝑘

𝑖𝑖 )𝛼𝛼2 + (𝑡𝑡𝑘𝑘+1
𝑖𝑖 − 𝑡𝑡𝑘𝑘

𝑖𝑖 )) ≥ 21−𝛼𝛼13
1−𝛼𝛼1

2 ‖𝑔𝑔𝑖𝑖(𝑡𝑡)‖𝛼𝛼1(𝑡𝑡𝑘𝑘+1
𝑖𝑖 − 𝑡𝑡𝑘𝑘

𝑖𝑖 )𝛼𝛼1

+ ‖ 𝑑𝑑
𝑑𝑑𝑑𝑑 𝐩̈̂𝐩𝑖𝑖‖ (𝑡𝑡𝑘𝑘+1

𝑖𝑖 − 𝑡𝑡𝑘𝑘
𝑖𝑖 ) + 𝑘𝑘221−𝛼𝛼23

1−𝛼𝛼2
2 ‖𝑔𝑔𝑖𝑖(𝑡𝑡)‖𝛼𝛼2(𝑡𝑡𝑘𝑘+1

𝑖𝑖 − 𝑡𝑡𝑘𝑘
𝑖𝑖 )𝛼𝛼2 ≥ 𝑘𝑘2𝜉𝜉3

1−𝛼𝛼2
2 ‖𝑔𝑔𝑖𝑖(𝑡𝑡)‖𝛼𝛼2

   (23)

7.                         𝑢𝑢𝑖𝑖 = −𝑘𝑘1𝑠𝑠𝑠𝑠𝑠𝑠 (∑ 𝑎𝑎𝑖𝑖𝑖𝑖 ((𝑝𝑝𝑖𝑖(𝑡𝑡𝑘𝑘
𝑖𝑖 ) − 𝑝𝑝𝑗𝑗(𝑡𝑡𝑘𝑘

𝑖𝑖 ) − 𝑥𝑥𝑖𝑖𝑖𝑖)𝑁𝑁
𝑗𝑗=1 + 𝑎𝑎𝑖𝑖0(𝑝𝑝𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ) − 𝑥𝑥𝑖𝑖))
𝛼𝛼1

−𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠 (∑ 𝑎𝑎𝑖𝑖𝑖𝑖 (𝑞𝑞𝑖𝑖(𝑡𝑡𝑘𝑘
𝑖𝑖 ) − 𝑞𝑞𝑗𝑗(𝑡𝑡𝑘𝑘

𝑖𝑖 ))
𝑁𝑁

𝑗𝑗=1
+ 𝑎𝑎𝑖𝑖0𝑞𝑞𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ))

𝛼𝛼2

+ 𝑝̈̂𝑝𝑖𝑖(𝑡𝑡𝑘𝑘
𝑖𝑖 )

       (25)

� (25)
	

6.                   𝜗𝜗1 ((𝑡𝑡𝑘𝑘+1
𝑖𝑖 − 𝑡𝑡𝑘𝑘

𝑖𝑖 )𝛼𝛼1 + (𝑡𝑡𝑘𝑘+1
𝑖𝑖 − 𝑡𝑡𝑘𝑘

𝑖𝑖 )𝛼𝛼2 + (𝑡𝑡𝑘𝑘+1
𝑖𝑖 − 𝑡𝑡𝑘𝑘

𝑖𝑖 )) ≥ 21−𝛼𝛼13
1−𝛼𝛼1

2 ‖𝑔𝑔𝑖𝑖(𝑡𝑡)‖𝛼𝛼1(𝑡𝑡𝑘𝑘+1
𝑖𝑖 − 𝑡𝑡𝑘𝑘

𝑖𝑖 )𝛼𝛼1

+ ‖ 𝑑𝑑
𝑑𝑑𝑑𝑑 𝐩̈̂𝐩𝑖𝑖‖ (𝑡𝑡𝑘𝑘+1

𝑖𝑖 − 𝑡𝑡𝑘𝑘
𝑖𝑖 ) + 𝑘𝑘221−𝛼𝛼23

1−𝛼𝛼2
2 ‖𝑔𝑔𝑖𝑖(𝑡𝑡)‖𝛼𝛼2(𝑡𝑡𝑘𝑘+1

𝑖𝑖 − 𝑡𝑡𝑘𝑘
𝑖𝑖 )𝛼𝛼2 ≥ 𝑘𝑘2𝜉𝜉3

1−𝛼𝛼2
2 ‖𝑔𝑔𝑖𝑖(𝑡𝑡)‖𝛼𝛼2

   (23)

7.                         𝑢𝑢𝑖𝑖 = −𝑘𝑘1𝑠𝑠𝑠𝑠𝑠𝑠 (∑ 𝑎𝑎𝑖𝑖𝑖𝑖 ((𝑝𝑝𝑖𝑖(𝑡𝑡𝑘𝑘
𝑖𝑖 ) − 𝑝𝑝𝑗𝑗(𝑡𝑡𝑘𝑘

𝑖𝑖 ) − 𝑥𝑥𝑖𝑖𝑖𝑖)𝑁𝑁
𝑗𝑗=1 + 𝑎𝑎𝑖𝑖0(𝑝𝑝𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ) − 𝑥𝑥𝑖𝑖))
𝛼𝛼1

−𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠 (∑ 𝑎𝑎𝑖𝑖𝑖𝑖 (𝑞𝑞𝑖𝑖(𝑡𝑡𝑘𝑘
𝑖𝑖 ) − 𝑞𝑞𝑗𝑗(𝑡𝑡𝑘𝑘

𝑖𝑖 ))
𝑁𝑁

𝑗𝑗=1
+ 𝑎𝑎𝑖𝑖0𝑞𝑞𝑖𝑖(𝑡𝑡𝑘𝑘

𝑖𝑖 ))

𝛼𝛼2

+ 𝑝̈̂𝑝𝑖𝑖(𝑡𝑡𝑘𝑘
𝑖𝑖 )

       (25)where xij ∈R3 is the expect position between agent i and j, xi ∈R3 is the expect position between agent i and the leader, xij = xi – xj.
Similarly, define . Define the measurement errors 

. The triggering function is given by

	 � (26)

Theorem 3

Consider the time-delay system (1) (2) with connected graph and the leader is a neighbor of at least one agent. If 

,  , 

then the event-triggered algorithm (25) solves the finite-time formation control problem under the triggering function (26).
Proof. We first prove that p̂i → p0, i = 1,2, ... , n, in finite time. Define ϕi = , it follows from (5) that:

	 � (27)

Choose the Lyapunov function candidate, . One has:

	 � (28)

From Lemma 3, there exists a finite time , such that ∥ϕ∥ =  0, ∀t ≥ T2. Note that ϕ = ((L + H) ⊗ I3)(p̂ – 1np0), 
. We can obtain that .

Then, the proof is similar to Theorem 1 and is hence omitted here. This completes the proof.
Similarly Corollary 1, the control algorithm (25) can be used for switching topologies.

Finite-time formation control for UAVs
In this section, the model of the UAV is first presented. The model is then transformed into an accurate linearized model by 

utilizing feedback linearization. Consider UAV systems composed of n UAVs and a leader (labeled as 0), where the leader is a 
neighbor of at least one UAV. The model of the UAV is defined as

	 � (29)
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where xi, yi, zi represent the position within an inertial coordinate system, while Vi denotes the velocity. The flight-path angle 
is indicated by θi, and the heading angle is represented by ψi. The acceleration due to gravity is denoted by g. Additionally, the 
components of overload along the trajectory coordinate axes are represented by ηxi, ηyi, ηzi, where the index i ranges from 0 to n.

Then, we have:
	 � (30)

where  φi = (xi, yi, zi, Vi, θi, ψi)
T, ηi = (ηxi, ηyi, ηzi)

T, f(φi) = 

Subsequent application of feedback linearization results in:

	 � (31)

where  ζi = (xi, yi, zi, ẋi, ẏi, żi)
T, .

The state feedback transformation can be specified by:

	 � (32)

A nonsingular smooth vector function is selected as ri = (xi, yi, zi)
T. Then, (29) can be expressed as the following delayed 

second-order system:

	 � (33)

By utilizing Theorem 3, the finite-time formation control algorithm can control multiple UAVs to maintain the formation shape.
Example 2: the switching communication topologies are shown in Fig. 6. Choose α1 = 0.5, k1 = 6, k2 = 5.5, ξ = 0.25, τi = 0.1. 

The simulation time is 200 s. The leader is specified by:

	 � (34)

Leader

UAV1 UAV1

UAV3 UAV3

UAV2 UAV2

UAV4 UAV4

Leader

Source: Elaborated by the authors.

Figure 6. The switching communication topologies.

The desired formation vectors are given by x1 = [-500 -50 -200]T, x2 = [-500 -50 200]T, x3 = [-1000 -100 -400)]T, 
x4 = [-1000 -100 400]T.

The initial conditions are established in accordance with the specifications outlined in Table 1.
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Table 1. The initial state of multiple UAVs.

State xi·(m) yi·(m) yi·(m) Vi·(m/s) θi·
∘ ·/∘

UAV1 500 300 300 170 5 9

UAV2 400 200 600 165 8 -3

UAV3 50 150 100 185 -4 5

UAV4 100 100 700 190 -6 2

Leader 1,000 500 300 180 0 0

Source: Elaborated by the authors.

The trajectories of the UAVs are illustrated in Fig. 7. This figure demonstrates that, when employing the event-triggered 
controller (25), all UAVs successfully follow the trajectory of the leader UAV within a finite time frame. The corresponding 
velocity, flight-path angle, and heading angle are depicted in Figs. 8–10, respectively. The simulation results indicate that the 
velocity, flight-path angle, and heading angle of all UAVs effectively align with those of the leader UAV. Additionally, all UAVs 
sustain the desired formation shape throughout the formation flight, thereby validating the efficacy of the proposed algorithm 
and the precision of the linearized model.
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Figure 7. Trajectory of UAVs.
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Figure 8. Velocity of UAVs.
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Figure 9. Flight-path angle of UAVs.
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Figure 10. Heading angle of UAVs.

CONCLUSION

In this study, the finite-time formation control problem of second-order time-delay multi-agent systems was investigated. 
To reduce the frequency of controller updates, a novel finite-time control algorithm was proposed by employing event-triggered 
control. Using some lemmas and finite-time stability theory, theoretical analysis was performed. It was also proven that Zeno 
behavior does not exhibit when employing the proposed triggering function. The finite-time formation control algorithm was 
designed based on the finite-time consensus algorithm. Using the feedback linearization technique, the model of the UAV was 
transformed into an accurate linearized model. Finally, the simulation of the UAV demonstrated that the proposed formation 
control algorithm effectively solves the finite-time formation control problem.
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