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ABSTRACT
Internet of things (IoT) devices are widely used in various fields, with their growing diversity and complexity posing challenges 

for traditional security measures. Device fingerprint identification can enhance network security and reliability by verifying device 
features. However, traditional device fingerprint identification methods usually rely on a single mode of traffic characteristics. 
In the face of changing network environments and diversified device types, it is often difficult to ensure efficient identification 
performance and robustness. To address the above challenges, this paper proposes a multi-modal traffic classification method for 
device identification in IoT networks to address the challenges in accuracy and robustness posed by traditional single-modal traffic 
feature approaches. The method combines various traffic features, such as packet size, transmission interval, flow duration, packet 
rate, byte rate, and protocol number. It includes four modules: data collection, preprocessing, model training, and fingerprint 
identification. Network traffic data are collected using deep packet inspection and capture tools, and features are standardized. 
The bidirectional encoder representations from transformers (BERT) model is applied for sensitive text feature extraction, while 
the convolutional neural network (CNN) model aids in device identification. Experimental results demonstrate high accuracy 
and robustness across different network environments and device types.
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INTRODUCTION

Today, due to the rapid expansion of internet of things (IoT) devices, both the number of connected devices and the number 
of nodes in the network have increased significantly, making device management and data monitoring more difficult. Additionally, 
cybersecurity threats are increasingly diverse, with attackers using camouflage devices, virtualization technologies, or other 
sophisticated means to launch attacks, making it difficult to fully cover existing security measures. By collecting and analyzing 
device characteristics and generating unique identifiers, device fingerprint identification technology can accurately identify and 
verify devices, effectively improving the network’s ability to perceive abnormal behaviors, and providing reliable security for 
complex network environments. In this context, device fingerprint recognition technology has been widely used.

Existing device fingerprint recognition technology is mainly divided into two categories: hardware fingerprint recognition 
technology and software fingerprint recognition technology. Hardware fingerprint identification depends on the physical characteristics 
of the device, such as the unique hard disk serial number, MAC address, and CPU ID. In contrast, software fingerprinting focuses 
on the characteristics of the software environment of the device, such as the operating system version, browser type, time zone 
settings, etc. This software-level information can be obtained through network requests or system scanning.
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However, there are two challenges to this approach:
• Single mode: existing device fingerprint recognition technology relies on a single recognition mode, either through hardware 
features or software features to identify the device. When the device hardware is replaced or the software is updated, the original 
fingerprint information may change. As a result, the device cannot be effectively identified. Additionally, attackers can circumvent 
identification by tampering with software information or using forged hardware features. Therefore, existing device fingerprint 
recognition technology is difficult to cope with device configuration changes or malicious camouflage.
• Accuracy: existing methods usually rely on hardware, software, or behavioral characteristics, and these characteristics may 
be affected by environmental changes or differences in user behavior. The user’s operating habits and behavior patterns 
may also change, leading to misjudgments in fingerprint recognition. Furthermore, software fingerprints can be easily modified 
or camouflaged, and attackers can bypass the identification by changing the operating system or browser configuration. Therefore, 
faced with the ever-changing network environment and complex attack modes, the existing methods often cannot maintain 
sufficient accuracy and stability.

In view of the shortcomings of existing fingerprint identification methods, this paper proposes a device fingerprint 
identification method based on multi-modal network traffic characteristics. The method first collects device feature data from 
multiple dimensions through multi-modal fusion, including network traffic, hardware information, software configuration, 
and user behavior. Bidirectional encoder representations from transformers (BERT)’s bidirectional coding capabilities are then used 
to capture contextual dependencies in data streams, extract global timing patterns, and identify device characteristics over long 
connections or complex interactions. Subsequently, a convolutional neural network (CNN) is used to extract local features from 
the data and identify subtle change patterns in the traffic through the convolutional layer, such as packet size and transmission 
rate fluctuations. Finally, by combining the global and local features extracted by BERT and CNN, the fingerprint information of 
the device is generated through a unified classification model.

This paper’s main contributions:
• A multi-modal traffic feature combination is constructed by combining data packet size, flow duration, protocol number, etc., 
to realize multi-dimensional identification of device fingerprints and enhance the model’s adaptability to complex network 
environments.
• By combining the strengths of BERT and CNN, this approach simultaneously captures global timing information and local 
device features, yielding more comprehensive and accurate recognition results. BERT’s advanced context modeling complements 
CNN’s local feature extraction, enhancing device fingerprinting with improved accuracy and robustness. This method addresses 
classification challenges arising from similar device behaviors, optimizing both real-time performance and classification precision.
• This paper proposes a device fingerprint recognition method based on multi-modal network traffic characteristics. This method 
fully utilizes of the complementarity of multi-modal information and can integrate features from different sources. By combining 
the context modeling capability of BERT and the local feature extraction advantage of CNN, it can accurately capture the complex 
timing relationships and dependencies between devices in the industrial internet and extract small and detailed changes from 
network traffic. Thus, high precision and high robustness of device identification can be achieved.

Related works
Liang et al. (2022) proposed a classification and identification method for encrypted traffic based on a self-attention hybrid pooling 

CNN (AHPCNN). In this method, by improving the pooling layer of the CNN, the average pooling layer and the maximum pooling 
layer are combined in parallel to form a two-layer synchronous pooling model. Self-attention module is embedded to enhance the 
model’s dependence on encrypted traffic characteristics, thus capturing both the overall and local characteristics of network encrypted 
traffic, so as to classify encrypted traffic more accurately. According to the experimental results, the model improves the accuracy of 
identifying encrypted traffic and the F1 score. Liu et al. (2020) proposed a method of fusing byte-level encoding with an improved 
pre-training task for the application of the pre-training model BERT in encrypted traffic classification. This method improves the 
model’s ability to model the semantic diversity and coherent order of encrypted traffic through the design of a novel vocabulary and a 
new self-supervised pre-training task. Jian et al. (2020) proposed a multidimensional RF fingerprint extraction method based on deep 
learning. By expanding the observed dimension of signal features and combining multiple difference intervals, the recognition rate of 
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RF fingerprints is improved, and the accuracy of device recognition is significantly enhanced. Li et al. (2024) proposed a flow-based 
adversarial learning network intrusion detection method, which leverages the advantages of Generative Adversarial Networks (GANs) 
to capture normal network traffic patterns through adversarial training, thereby enhancing detection capabilities against unknown 
attacks. Chen et al. (2016) explored the traffic identification and separation techniques for network infrastructure devices, studying 
the threat analysis and detection methods for the traffic of these devices based on the intelligent algorithm models. Li et al. (2023) 
proposed a real-time recognition scheme for IoT devices based on feature vector splitting, which improves recognition accuracy and 
reduces the time and storage occupation of training models. The above research provides effective methods and theoretical support 
for encrypted stream classification, device identification, and threat detection in the field of network security.

In comparison to the aforementioned studies, this paper presents several innovative and optimized aspects that distinguish it from 
the current literature. Firstly, it innovatively combines numerical features with sensitive textual features, leveraging the BERT model to 
process the latter and fusing multi-modal features into a unified feature vector. This approach ensures a more comprehensive capture of 
device behavioral characteristics, thereby enhancing the accuracy and robustness of device identification. Secondly, the paper introduces a 
novel device recognition methodology that comprehensively harnesses multiple traffic features. By pre-training the BERT model to extract 
sensitive text features and dynamically weighting and fusing them with numerical features, this method significantly boosts the model’s 
capability to discern devices. This dynamic fusion strategy not only leverages the strengths of both numerical and textual modalities but 
also optimizes their combined representation for improved recognition performance. Furthermore, the utilization of the BERT model 
for extracting sensitive text features and integrating them with traffic numerical features through weighted fusion results in a more 
comprehensive feature representation. This enriched representation, when coupled with a CNN model tailored for multi-modal features, 
leverages the CNN’s robust feature extraction capabilities to further elevate the accuracy and robustness of device recognition. The CNN’s 
ability to effectively process and analyze the fused multi-modal features ensures that intricate patterns within the data are captured and 
utilized for accurate device identification. Lastly, the combination of dynamic weighted fusion, the BERT pre-training model, and the 
real-time feature extraction and recognition capabilities of the CNN model presents a solution that guarantees both high efficiency and 
accuracy in real-time device recognition. This approach optimizes the training process and overall performance of the model, making 
it a suitable candidate for practical applications requiring rapid and reliable device identification. In summary, this paper contributes 
significantly to the field by introducing a comprehensive, multi-modal, and dynamically adaptive approach to device recognition.

METHODOLOGY

Figure 1 shows the device identification process based on multi-modal traffic classification. Specifically, first, network 
communication flow information between IoT devices is collected using relevant techniques and tools. Then, the collected initial 
data are cleaned, and a suitable standardization and splicing method is selected for stream integration of data traffic as well as text 

Source: Elaborated by the authors.

Figure 1. Device identification process via multi-modal traffic classification.

M
ax

po
ol

1
 la

ye
r

M
ax

po
ol

2
 la

ye
r 

(4
x4

)

C
on

v_
1

 la
ye

r 
+ 

re
lu

Numerical features

Sensitive text

Bert

Sensitive text features

Conv 1 Conv 2

C
on

v_
2

 la
ye

r 
+ 

re
lu

Fl
at

te
n

Distributed 
IOT device 1

Distributed 
IOT device 2

Distributed 
IOT device n

Fe
at

ur
e 

fu
si

on

https://creativecommons.org/licenses/by/4.0/deed.en


J. Aerosp. Technol. Manag., v17, e1625, 2025

Ma Y, Wang Y, Xi Z, He C4

stream information. Then, multi-modal feature data are then extracted from the integrated stream, making full use of numerical 
features and sensitive text features to improve the accuracy of device fingerprinting, The BERT model is used to efficiently learn 
the semantics and contextual relationships of the text and output them as a feature vector, which is then fused with multi-modal 
features to form a unified feature vector. After that, a CNN model is designed for the specification of the feature vectors, and 
supervised training is carried out. The processed and fused data are used for model training to ensure that it meets the requirements 
of device recognition based on multi-modal traffic classification. Finally, for the trained model, real-time collected network traffic 
is used as input, and the recognition results are returned to each IoT device terminal for device identification and verification.

Data acquisition and processing
The data collection part uses Wireshark and Tcpdump to collect network communication traffic information of all network traffic 

data between IoT devices. Specifically, the collected raw data contain the following main features: stream duration, stream packet 
rate, stream interval, stream byte rate, download/upload ratio, protocol number, User-Agent/JA3 hash, DHCP, and DNS text data.

Data cleansing
For raw data, the number and length of data packets with numerical features and text features differ to some extent. First, the 

data packets are divided respectively. After partitioning, redundant data and noise data are cleared by comparing the quintuples 
of data packets (source IP address, destination IP address, source port, destination port, and protocol type). If identical records 
are found, one of them is kept and delete the rest of the duplicate records are deleted.

If the value of abnormal data, such as stream duration, stream packet rate, and other characteristics, exceeds the reasonable 
range, the standard deviation method is used to identify abnormal data and eliminate this portion of the data. For missing data 
records, features whose values are out of the reasonable range are directly deleted. The standard deviation method is applied for 
anomalous data identification to reject this part of the data. Records with missing data are rejected directly.

Data format normalization
The packet timestamp format generated by the communication between different devices may differ. This paper chooses ISO 

8601 format as the conversion benchmark and converts all timestamps to this format uniformly.
Data from different sources also have certain differences in data types, and in this paper, the floating-point type is chosen 

as the benchmark for processing all data for conversion. For text data, the first five fields (source IP, destination IP, source port, 
destination port, protocol type) in each packet are selected for splicing and stream integration.

Text feature extraction based on the BERT model
To effectively capture the semantic and contextual information in the text, this paper adopts the BERT pre-trained language 

model to encode the sensitive textual data, which is then converted into high-dimensional feature vectors. The specific process 
is shown in Fig. 2.

Source: Elaborated by the authors.

Figure 2. Text feature extraction process.
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E [SEP]
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Text conversion and pre-processing
The input sensitive textual data is disambiguated and encoded using the BERT disambiguator and converted into the input 

format required by the model. First, each textual data is disambiguated and converted into a series of lexical identifiers. These 
identifiers are then encoded to adapt them to the input requirements of the BERT model. To ensure the consistency and validity 
of the input data, the text data are truncated and padded to a fixed length. For example, for each input text, its length is truncated 
to 512 vocabulary units and padded where necessary to ensure that all input texts have the same length.

BERT model structure
The transformer architecture consists of an encoder-decoder structure, in which the encoder is primarily composed of a self-

concerned layer, and a feedforward neural network, and their respective normalized layers. These components are connected by 
a residual structure to ensure that the input information is transmitted completely to the next layer. The self-attention layer is the 
core of the encoder. The input embedding vector is multiplied with a randomly generated matrix of dimension (64, 512) in the 
self-attention layer to obtain three new vectors: Q-query, K-key, and V-value, which are then used in the attention computation:

                                                               

ttention max
T

K

QKA ( Q K V )= Soft ( )*V
d

, , × V  (1)
  

where dK is the dimension of the K-vector and Softmax is the normalized exponential function:
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i
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eó
eI

=

(Z) =
Ó
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To extract information about different spatial semantics, BERT uses a multi-head attention mechanism that combines attention 
values computed using multiple initialization matrices W multiplied by the input embedding, and then performs another linear 
change to obtain the final output.

                                                   1 2 3 ...MultiHead( Q K V )= Concat( head head head )*W, , , , , × W  (3)

where head1 is obtained from Eq. 3 is a randomly generated initialization matrix.

BERT model inputs
The input to the BERT model includes label embedding, segment embedding, and position embedding. Token embedding 

represents word embedding, where each sensitive text data is preceded by a CLS identifier as the start identifier and ended by a 
SEP token as the end identifier. Segment embedding represents the segment identifier; when the model performs a relationship 
prediction task, it merges two text data into the model for training, and this vector differentiates between the two data. Position 
embedding represents temporal information for each word.

Model training
The three embedding vectors (word embedding, segment embedding, and position embedding) obtained in the previous step 

are fed into a bidirectional multi-layer transformer encoder for processing. The corresponding feature word vectors are output using 
the transformer-encoder’s multi-head attention mechanism. At this point, the first vector of the output layer is the word vector 
corresponding to the CLS flag bit, which can be directly input into a multi-layer perceptron for classification, i.e., the sensitive 
text feature vector to be acquired. To ensure that the two different types of features can be effectively fused, feature merging and 
weighted averaging are used. The stream feature vector after weighted processing Fflow can be expressed as:
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Fflow = 0.2 × xduration + 0.2 × xpackage_rate + 0.2 × xinterval + 0.2 × xbyte_rate + 0.2 × xdownload/upload_radio + 0.2 × xprotocol_number (4)

Finally, the word feature vectors are concatenated with the weighted stream feature vectors to form a composite feature vector:

                                                                                   Fcombined = [Fword, Fflow]  (5)

In this way, the fused feature vectors contain not only the semantic information in the textual data but also retain the key 
features in the numerical data, forming a unified and comprehensive feature representation.

CNN model based data training
In this paper, a CNN model containing double convolutional layers, a pooling layer, a dropout layer, and a fully connected 

layer is designed. This model can effectively extract and fuse text and streaming data features, process and fuse the completed 
data for model training, and optimize the training process using methods such as cross-validation and grid search to ensure the 
accuracy and robustness of the model.

For the stream features in the initial data, the temporal patterns of the stream features are first extracted by a one-dimensional 
(1D) convolutional layer. Sixty-four 3 × 1 convolution kernels are used for the convolution operation, and the activation function 
is chosen to be the rectified linear unit (ReLU) to enhance the expression ability of the features. as shown in Eq. 6:

                                          

MaxPooling1D
F Conv1D activation MaxPooling1D

Features

(2)
' = Flatten (64,3, 'relu') (2)

(Flow )

 
 =  
    

(2)
(2)( )

)(
 (6)

Next, a pooling window of size 2 is used for down-sampling through a 1D maximum pooling layer to reduce the dimension 
and computation of features while preserving important features. Finally, the pooled features are flattened into 1D vectors using 
a flattening layer. The processed fusion features are fused with the stream features to form a new feature matrix that is further 
processed using a 2D CNN, as shown in Eq. 7:

                                                                                        C CONCAT C F= ( , ')(C,F')  (7)

For the fused feature matrix CCC, a 2D convolutional layer is used to further extract higher-order features. First, 64 3 × 3 
convolution kernels are used for the convolution operation, and the activation function is selected as ReLU to capture local 
spatial relations and enhance feature expression. Then, a 2D maximum pooling layer is used for down-sampling, with a 
pooling window of size 2 × 2 to reduce feature dimensions and computation while retaining important features. Finally, 
the pooled features are flattened into 1D vectors using a flattening layer for further feature extraction and classification, 
as shown in Eq. 8:

                                                             

MaxPooling1D
C 64

Conv2D
activation

(2,2)
' = Flatten ,(3,3),

(C)
='relu'

 
 
   
      

(2,2)
(3,3),

(C)  (8)

where Conv2D(64,(3,3)) denotes the use of 64 3 × 3 convolutional kernels with 2 × 2 pooling layers for down-sampling.
After feature extraction is completed, the fully connected layer is used to map the feature vector to a higher feature space and 

further extract the advanced features.

https://creativecommons.org/licenses/by/4.0/deed.en


J. Aerosp. Technol. Manag., v17, e1625, 2025

A Multi-Modal Traffic Classification-Based Device Identification Method 7

The output dimension of the fully connected layer is 128, and the activation function is selected as ReLU. To prevent overfitting, 
the dropout layer randomly drops some neurons with a 50% probability, enhancing the generalization ability of the model, as 
shown in Eq. 9:

                                                                       
( )

Dropout
DenseH

128 activation

(0.5)
' = ReLU

, ='relu' (C')

 
 
  
    

(0.5)

(C')
 (9)

    

where dense (128) denotes a fully connected layer that maps feature vectors to 128 dimensions, and dropout (0.5) denotes randomly 
dropping some neurons with a 50% probability.

Finally, multi-class classification is performed using the Softmax activation function, which maps the feature vectors to the 
probability distributions of the device categories. The final output dimension is the number of device classes, with the probability 
of each class calculated by the Softmax function, as shown in Eq. 10.

                                                      
( )( )classes,activationDense numO = SoftMax (H')(H')  (10)

METODOLOGY

Experimental environment
In the process of processing the dataset, the Windows 10 operating system is used. The system’s operating hardware environment 

includes 16 GB of random access memory (RAM), an AMD Ryzen 5 6600 H processor with Radeon Graphics, and a 1TB SSD. 
The deep learning framework used for the experiment is Pytorch, with the main packages being Numpy, Pandas, Pytorch, Keras, 
Sklearn, and Matplotlib. The specific experiment configuration is shown in Table 1.

Table 1. Experimental configuration.

Form Name In detail

Software

CPU AMD Ryzen 5 6600 H

GPUs NVIDIA GeForce RTX 4050 GPUs

(of a computer) run RAM 16 GB

Hardware

Program multilingualism Python 3.6

Count flat-roofed building Pytorch 1.10.2

Flux artifact Scapy and SplitCap 2.1

Source: Elaborated by the authors.

Experimental dataset
The dataset used in the experimental study of the method proposed in this paper is primarily the IoT-Sentinel dataset, which 

contains the information about all devices, as shown in Table 2. The IoT-Sentinel dataset includes information about 31 representative 
IoT devices that are commonly used in the market, including smart lighting, door sensors, security cameras, smart sockets, and 
health monitoring devices. Similarly, the researchers captured traffic through Tcpdump software at the gateway, and repeated the 
setup process for each device 20 times after the traffic was captured vis filtering rules set based on the device’s physical address, 
and stored it locally in a daily pcap file. The physical address of each device is included in the dataset at the time of capture and 
storage, so it is easy to distinguish the traffic of each device from the dataset and extract the feature set for experiments respectively.
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Experimental evaluation indicators
Accuracy, precision, recall and F1 (the mean of precision and recall) were used to evaluate the classification performance of 

the model. The calculation formulas are shown in Eqs. 11–14:

                                                                             

TP TNaccuracy
TP FP FN TN

+=
+ + +Accuracy =  (11)

                                                                                      

TPprecision
TP FP

=
+

Precision =  (12)

Table 2. IoT-sentinel dataset.

Serial number Equipment name MAC address Type of communication

1 Aria 20:f8:5e:ca:91:52 WiFi

2 D-Link Cam b0:c5:54:25:5b:0e WiFi

3 D-Link Day Cam b0:c5:54:1c:71:85 WiFi/Ethernet

4 D-Link Door Sensor 1c:5f:2b:aa:fd:4e Z-Wave

5 D-Link Home Hub 1c:5f:2b:aa:fd:4e WiFi/Ethernet/Z-Wave

6 D-Link Sensor 90:8d:78:a8:e1:43 WiFi

7 D-Link Siren 90:8d:78:dd:0d:60 WiFi

8 D-Link Switch 90:8d:78:a9:3d:6f WiFi

9 D-Link Water Sensor 6c:72:20:c5:17:5a WiFi

10 EdimaxCam1 74:da:38:80:7a:08 WiFi/Ethernet

11 EdimaxCam2 74:da:38:80:79:fc WiFi/Ethernet

12 EdimaxPlug1101W 74:da:38:4a:76:49 WiFi

13 EdimaxPlug2101W 74:da:38:23:22:7b WiFi

14 EdnetCam1 3c:49:37:03:17:db WiFi/Ethernet

15 EdnetCam2 3c:49:37:03:17:f0 WiFi/Ethernet

16 Ednet Gateway ac:cf:23:62:3c:6e WiFi/Other

17 Home Matic Plug 00:1a:22:05:c4:2e Other

18 Hue Bridge 00:17:88:24:76:ff ZigBee/Ethernet

19 Hue Switch 00:17:88:24:76:ff ZigBee

20 iKettle2 5c:cf:7f:06:d9:02 WiFi

21 Lightify 84:18:26:7b:5f:6b WiFi/ZigBee

22 MAX Gateway 00:1a:22:03:cb:be Ethernet

23 Smarter Coffee 5c:cf:7f:07:ae:fb WiFi

24 TP-LinkPlugHS100 5c:cf:bf:00:fc:a3 WiFi

25 TP-LinkPlugHS110 50:c7:bf:00:c7:03 WiFi

26 WeMo Insight Switch 94:10:3e:41:c2:05 WiFi

27 WeMo Insight Switch2 94:10:3e:42:80:69 WiFi

28 WeMo Link 94:10:3e:cd:37:65 WiFi/ZigBee

29 WeMo Switch 94:10:3e:35:01:c1 WiFi

30 WeMo Switch2 94:10:3e:34:0c:b5 WiFi

31 Withings 00:24:e4:24:80:2a WiFi

Source: Elaborated by the authors.
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                                                                                       TPrecall
TP FN

=
+

Recall =  (13)

                                                                                 F1 = 2 x Precision x Recall
Precision + Recall (14)

where true positive (TP) indicates the number of predictions and the number of facts classified, FP (false positive) represents the 
number of predictions for the classification and the number of facts for the classification, TN (true negative) indicates the number 
of predictions and the number of facts of the category, and FN (false negative) represents the number of predictions that do not 
belong to the class and the number of facts that belong to the class.

Analysis of experimental results
To reduce error, this paper performs a preliminary processing on the IoT-Sentinel dataset by excluding the traffic of IoT 

devices with fewer than 500 traffic records. Multi-classification experiments were conducted on the IoT-Sentinel dataset for 
category and model identification of specific IoT devices by using different deep learning models (e.g., CNN/MLP). By training 
and evaluating the network models, the classification results of different models for IoT device type identification based on the 
IoT-Sentinel dataset were obtained, as shown in Table 3. The confusion matrix drawn based on the IoT-Sentinel dataset and the 
receiver operating characteristic (ROC) curve graphs demonstrate the performance of this paper’s method in targeting the category 
and model recognition of specific IoT devices. The rows of the confusion matrix represent the real labels for IoT devices, and the 
columns represent the predictive labels for IoT devices identified by the model, as shown in Figs. 3 and 4.

According to Fig.3, it can be seen that the device identification method based on traffic classification proposed in this paper 
suffers from different degrees of classification overlapping problems in the identification of a few specific device types. There 
are two main reasons for the proposed method’s misidentification: one is that some of these devices have similar functions, and 
therefore their device communication behaviors are similar. For example, 14% of the D-Link Switches in the IoT-Sentinel dataset 
are incorrectly identified as Hue Switches because they are all of the same device type, as Switch, and are incorrectly identified due 
to their similar device communication behaviors. The second reason is that most of these devices are from the same manufacturer 
or different models of the same device, so the devices will have similar characteristics because they share the same firmware. For 
example, the D-LinkSensor and D-LinkWaterSensor in the IoT-Sentinel dataset. The IoT devices in these groups have the same 
hardware and firmware, so in some cases, there is a degree of confusion in identifying them.

From the analysis in Fig. 4, the following detailed conclusions can be drawn: the overall classification performance of the 
ResNet model is good, with the area under the micro-average ROC curve (AUC) of the classifier being 0.89, which indicates that 
the classifier performs strongly overall. This means that the classifier is able to distinguish between positive and negative categories 
better in the overall classification task for different categories. Moreover, the performance difference between categories is evident, 
with a significant difference in classification performance across categories. The HueBridge category has the highest AUC of 

Table 3. Classification results of different models.

Relevant papers Model Accuracy Precision Recall F1

This text Multi-Modal TC-Device Identification 0.94 0.94 0.94 0.93

Chen et al. (2024)
IDS RF, DT, SVM ,kNN, ANN, Gaussian NB 0.91 0.95 0.87 0.91

Li et al. (2024) 
Flowgananomaly GAN 0.87 0.80 0.81 0.88

Wang et al. (2024)
NTC-based on federated
semi-supervised learning

Naive-Bayes Random-Forest 0.88 0.87 0.81 0.89

Li et al. (2023) NTC CNN 0.89 0.85 0.95 0.84

Source: Elaborated by the authors.

https://creativecommons.org/licenses/by/4.0/deed.en


J. Aerosp. Technol. Manag., v17, e1625, 2025

Ma Y, Wang Y, Xi Z, He C10

0.93, which indicates that the classifier performs very well in distinguishing this category. The D-LinkHomeHub category has the 
lowest AUC of 0.71, indicating that the classifier has more room for improvement in this category. Most of the other categories 
have AUC values between 0.75 and 0.84, indicating a more stable and better classification performance for these categories. 
The AUC of the micro-averaged ROC curve (0.89) is higher than that of the macro-averaged ROC curve (0.80), which suggests 
that the classifier performs better on categories with higher frequencies. Micro-averaging takes into account the number of samples 

Source: Elaborated by the authors.

Figure 3. Multi-classification confusion matrix. 

Source: Elaborated by the authors.

Figure 4. Multi-class ROC.

6.875 258 593 71 518 290 722 220 878 230

213 7.409 65 43 772 449 69 103 564 117

493 74 3.260 56 101 37 1.745 98 1.320 492

114 28 719 3.035 513 67 1.004 113 1.165 395

314 366 293 130 7.263 390 284 343 967 239

37 265 169 54 89 11.446 170 15 638 38

490 75 1.467 106 755 57 9.016 157 1.789 458

1.093 101 44 87 485 18 346 3.481 751 124

314 154 826 309 423 135 1.888 277 7.299 358

104 55 381 99 206 11 461 89 1.660 3.123

D-Li
nk

Hom
eH

ub

D-LinkHomeHub
10000

8000

6000

4000

2000

D-Li
nk

Se
ns

or

D-LinkSensor

D-Li
nk

Sir
en

D-LinkSiren

D-Li
nk

Sw
itc

h

D-LinkSwitch

D-Li
nk

W
ate

rS
en

so
r

D-LinkWaterSensor

Tr
ue

 L
ab

el

Hue
Brid

ge

HueBridge

Hue
Sw

itc
h

HueSwitch

W
eM

oIn
sig

thS
witc

h

WeMoInsigthSwitch

W
eM

oL
ink

WeMoLink

W
eM

oS
witc

h

WeMoSwitch

Micro-average ROC curve (area = 0.89)

Micro-average ROC curve (area = 0.80)

ROC curve of class D-LinkWaterSensor (area = 0.83)

ROC curve of class D-LinkHomeHub (area = 0.71)

ROC curve of class D-LinkSensor (area = 0.84)
ROC curve of class D-LinkSiren (area = 0.75)
ROC curve of class D-LinkSwitch (area = 0.82)

ROC curve of class HueBridge (area = 0.93)
ROC curve of class HueSwitch (area = 0.82)

ROC curve of class WeMoInsightSwitch (area = 0.77)
ROC curve of class WeMoLink (area = 0.77)
ROC curve of class WeMoSwitch (area = 0.79)

   0.0              0.2              0.4             0.6              0.8              1.0

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

False positive rate

https://creativecommons.org/licenses/by/4.0/deed.en


J. Aerosp. Technol. Manag., v17, e1625, 2025

A Multi-Modal Traffic Classification-Based Device Identification Method 11

in each category, so categories with higher frequencies have a greater impact on the micro-averaging results. The macro-average 
ROC curve assigns the same weight to each category, so its AUC value reflects the overall performance of the classifier across all 
categories independent of the number of samples in the category.

Comparison of methods
Table 3 summarizes the advanced classification and recognition technologies and performance of IoT devices in recent years 

from the perspective of algorithms and experimental indicators. Twenty-three features in the first 12 packets of each device 
are selected as device fingerprints, including source and destination IP addresses, packet attributes, and protocol information. 
However, the IP address count refers to the number of devices with which each device communicates, which is affected by the 
environment. A random forest classification algorithm was used to detect 17 out of 27 device types with an accuracy of more than 
95%. The method adopted partial features of the IoT-Sentinel dataset, as well as three payload-related features, and used GB, DT, 
and k-NN classification algorithms to achieve an 81% recall rate per device and an average accuracy of 88%. However, it used a 
much smaller number of devices and samples.

Recall rates of up to 95% were achieved on the complete IoT-Sentinel dataset. In contrast, the proposed model selects part 
of its published dataset, and under the same amount of training data, the recall rate is only 1% lower, the average accuracy is 
higher, and the training cost is lower, demonstrating its high efficiency and advanced nature. Additionally, the lack of fine-grained 
(same type, same manufacturer, different models) comparison of IoT devices in the dataset was optimized in this paper. Furthermore, 
some attributes of its feature set are not sufficient to characterize IoT devices stably, such as stream size, average stream rate, etc. 
These features vary due to differences in device states, so the dataset and features selected in this paper are more comprehensive 
and representative. The BiLSTM model and CNN model were used to classify and identify data packets, but the prediction accuracy 
was low for devices with sparse traffic in idle states, such as sockets, door locks, and Tmall assistants.

To sum up, the classification and recognition model proposed in this paper has a higher average accuracy than existing similar 
technologies, increasing by 3 to 7%, which can classify and identify IoT devices more efficiently and in a more fine-grained manner, 
thus coping with the complex and dynamic IoT environment.

CONCLUSIONS

Facing the new challenges of network security brought by the surge in the number of IoT devices, the device identification method 
based on multi-modal traffic classification proposed in this paper performs well. It integrates multiple traffic features, consists of 
four modules, collects and processes data with the help of advanced tools, and combines BERT and CNN models for identification. 
The experimental results prove that it can achieve high accuracy and robustness in diverse network environments and device types.

Future work 
Future research can focus on integrating more diverse data sources and using dynamic feature selection to adapt to different 

network environments and device types. As the number of IoT devices grows, real-time performance and efficiency become 
critical, suggesting the use of edge or distributed computing to swiftly process traffic data without sacrificing accuracy. Model 
interpretability is also essential; improving transparency and developing explainable methods will help network administrators 
and security experts trust and effectively manage system decisions. Additionally, cross-domain adaptation and transfer learning 
can ensure the identification system remains accurate and robust in new network contexts. Finally, defending against increasingly 
sophisticated attacks – such as disguised traffic – will be key to enhancing the security of device identification systems.
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