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ABSTRACT
The study aims to analyze the existing computer vision techniques for commercial drone detection to identify their advantages, 

disadvantages, and determine the best approaches in different application scenarios. The research methodology used synthesis 
methods to explore and propose combinations of techniques based on an analysis of the methodology and results of other works 
in the literature. It employed algorithms and sensor data analysis to assess the effectiveness of detection methods, and deduction 
to formulate hypotheses and conclusions based on data and theories. The main research results include the development of 
computer vision methods for detecting commercial drones, identifying their visual detectability at different altitudes, analyzing 
different object detection methods, and evaluating the applicability of these methods for commercial applications. In addition, 
the study identified the advantages and disadvantages of applying computer vision to commercial drone detection and offered 
recommendations for further research and practical implementation. The practical value of this study is to improve the detection 
systems of commercial drones, thereby enhancing the safety and efficiency of their use.
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INTRODUCTION

Nowadays, research on the application of computer vision to the detection of commercial unmanned aerial vehicles (UAVs) 
is proving to be highly relevant and important due to several key factors (Mykhalevskiy et al. 2024; Yermolenko et al. 2024). 
With the increasing number of commercial UAVs in various industries such as transport, agriculture, surveying, and environmental 
monitoring, there is a need for effective detection systems (Cazzato et al. 2020; Chen et al. 2023). This is necessitated not only by 
the increased security and control over the use of such devices but also by the protection of data privacy, especially in areas where 
sensitive information is present. Research in this area is also stimulated by the active development of the drone technology market itself. 
The constant development of new models and types requires appropriate tools and technologies for their detection and monitoring.

The research problem includes several aspects, including ambiguity in the choice of optimal drone detection methods, 
limitations in the performance of existing algorithms when processing large amounts of data, difficulties in adapting algorithms 
to different survey conditions and customer requirements, and problems of defense against cyber-attacks and hacking of detection 
systems (Perry and Guo 2021). Other issues include the need to address ethical and legal considerations in the use of computer 
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vision technology for UAV detection, and the need to improve the performance and accuracy of detection systems to effectively 
monitor the growing number of commercial drones in various industries and domains.

Kozachenko (2021) addressed the model of complex application of measures to detect small UAVs, the problems of radio-
electronic suppression of the UAV navigation system, as well as the features of radio-electronic suppression of the UAV navigation 
system based on the reception of satellite navigation system signals, and the problems of radio-electronic suppression of UAV 
control and data transmission radio lines. However, it is necessary to analyze how effective the proposed methods are in real 
conditions and whether they apply to different types of UAVs.

According to Zhao et al. (2022), the field of computer vision is sufficiently developed to detect and track intruding UAVs. They 
propose a DUT Anti-UAV dataset that includes extensive material for training detection and tracking algorithms. However, the 
dataset’s effectiveness and its applicability in real surveillance environments require further study. Pawełczyk and Wojtyra (2020) 
note the significant increase in the number of drone incidents and the need for drone detection systems running on low-performance 
hardware. However, the performance and reliability of such systems under different operating conditions should be investigated in more 
detail. Leira et al. (2020) study an object detection, recognition, and tracking system for UAVs applied in a maritime object tracking 
system. It is important to extend the research to other applications of this system and evaluate its performance in different scenarios.

Bazeltsev (2020) states that over the last 10 years, the field of UAVs has expanded rapidly. They are used in various environments such 
as reconnaissance, surveying, rescue operations, and mapping. UAVs are maneuverable in the air, can be operated by remote control, 
and can reach high altitudes and distances. Many UAVs are equipped with an inbuilt camera, such as an action camera, which allows the 
drone to take photos and videos from various angles. However, there are some disadvantages: drone control can be quite complicated. 
Even when applying the latest advances in software, the pilot must be very careful, as losing control of the drone could mean losing the 
UAV itself. His study did not address the aspect related to technical limitations and potential risks that may arise when using drones.

The study aims to investigate and evaluate existing computer vision techniques for commercial drone detection, with a focus 
on identifying the most effective approaches for UAV detection across various contexts. By considering the current limitations 
and challenges discussed in the literature, the study seeks to assess the performance and applicability of these techniques in real-
world scenarios, providing a comprehensive understanding of the strengths and weaknesses of different methods.

METHODOLOGY

The methodology consists of nine sequential steps, each addressing a critical aspect of the research process. These steps include 
selecting performance indicators, conducting data analysis, synthesizing different algorithms, integrating data from various sensors, 
applying fusion methods, evaluating algorithm performance, analyzing trends and patterns, researching the visual detectability 
of drones, and formulating hypotheses and conclusions. A detailed description of each stage is provided below to ensure a clear 
understanding of the methodology and its application in the context of this study.

The simplified process flow (Fig. 1) summarizes the main steps in the methodology for the study of the use of computer vision 
to detect commercial drones.

Selecting Performance Indicators
The first step was to select appropriate performance indicators to evaluate the use of computer vision in commercial drone 

detection. The key metrics are accuracy, completeness, F-Score, detection rate, and the number of false positives and missed 
detections. These metrics enable a comprehensive quantitative evaluation of the performance of detection models, focusing on 
their accuracy and effectiveness under varying conditions.

Evaluation and Optimization of Drone Detection Methods
After collecting and analyzing the data, conclusions were drawn about the effectiveness of various drone detection methods. 

This stage allows us to evaluate which methods provide the best results in real-world conditions and helps to identify weaknesses 
in the applied approaches that require further optimization.
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Synthesis of Computer Vision Algorithms
In this stage of the research, a synthesis method was used to combine different computer vision algorithms to create a more 

efficient and reliable commercial drone detection system. By combining the strengths of several methods, better detection quality 
was achieved and a wider coverage of different scenarios and usage conditions was provided, which increased the system’s efficiency.

Combining Data from Sensors
The fusion method was also used to combine data from different sensors, such as video cameras, radars, and Light Detection 

and Ranging (LIDAR). This has resulted in a more comprehensive drone detection system that takes advantage of the strengths 
of each sensor to improve the accuracy and reliability of the system in different environments. Combining data from different 
sources makes the system more adaptable to varying conditions.

Application of the Fusion Method
The fusion method involves more than just integrating various input data into a model for classification and detection tasks. 

It also encompasses the combination of results from different models after they have processed the data. By using outputs from 
multiple models together, after they have completed their respective processes, we can enhance the stability and efficiency of the 

Source: Elaborated by the authors.

Figure 1. Main stages of the methodology for researching the use of computer vision to detect commercial drones.
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drone detection system. This approach helps reduce the number of false positives and improves the accuracy of target detection, 
as it leverages the strengths of different models and algorithms to provide a more robust final result. Thus, the fusion method not 
only integrates data but also merges the outcomes of different models to achieve more reliable and precise detections.

Assessment of Algorithm Efficiency
The study used an analytical approach to evaluate the effectiveness of different drone detection algorithms based on metrics 

such as accuracy, completeness, and detection rate. This stage allows comparing the effectiveness of different methods and choosing 
the most suitable one for specific application conditions, which is important for further optimization of the system.

Analysis of Trends and Patterns
Analytical methods were used to identify the main trends and patterns in the behavior of detected objects. This allows for a 

better understanding of the detection process and optimization of the overall system performance, particularly by adapting to 
typical drone behavioral patterns. Studying such trends helps to improve detection algorithms for specific conditions.

Analysis of Factors Affecting Drone Visual Detectability
The study also examined the visual detectability of drones at different heights and distances. For this purpose, data from various 

sources, such as video footage, sensors, and flight simulations, were used. This research allows for the improvement of visual 
detection methods by taking into account various factors that affect drone visibility, such as weather conditions and flight altitude.

Formulation of Hypotheses and Conclusions
The last step is to formulate hypotheses and conclusions based on data analysis and logical thinking. Using the deductive 

method, researchers formulate theoretical models that explain the effectiveness or ineffectiveness of specific drone detection 
methods. This stage provides general principles and patterns underlying the effectiveness of detection algorithms and suggests 
areas for further research and improvement of detection technologies.

RESULTS

Evolution of Computer Vision Techniques in Drone Detection
The history of computer vision development in drone detection can be traced through key milestones that show the evolution 

from early image processing techniques to the advanced methods used today. This timeline outlines the significant advancements 
in the field, with each stage building upon the previous one (Cazzato et al. 2020).

The journey of computer vision began with the first attempts to use computers to analyze images. In the early stages, computer 
vision was limited to primitive image processing techniques, such as filtering and thresholding. These methods focused on basic 
tasks like enhancing image contrast and detecting simple patterns. During this period, researchers also began experimenting with 
pattern recognition techniques to detect objects in images, laying the groundwork for more advanced methods.

The foundations of computer vision were laid during the initial attempts to use computers for analyzing visual data. At the 
early stages, primitive image processing techniques such as filtering and thresholding were widely used. Filtering methods aimed 
to reduce noise, enhance image contrast, and emphasize important features in visual data. Thresholding, on the other hand, was 
employed to segment images into binary formats by differentiating objects from their background based on pixel intensity values. 
Although these methods were simple and limited in scope, they provided critical insights into the challenges and possibilities of 
automated visual analysis, establishing a framework for more sophisticated approaches.

These early techniques were closely tied to the development of pattern recognition methods, which marked a significant step 
forward in object detection. Researchers began experimenting with statistical models and feature extraction techniques to identify 
and classify objects within images (Borodin et al. 2024; Xu et al. 2022). This work laid the groundwork for modern methods by 
introducing the idea of extracting relevant information from raw visual data and using it to train algorithms. Over time, the 
limitations of these approaches, such as their inability to handle complex patterns or adapt to variations in lighting, texture, 
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and object orientation, highlighted the need for more advanced methods, paving the way for the development of machine learning 
and deep learning-based techniques.

Between the 1970s and 1990s, computer vision saw significant development with the introduction of methods based on the 
extraction of characteristic features from images. Geometric analysis, pattern matching, and object classification became widely 
used in UAV detection tasks. These methods aimed to identify key features in images, such as edges, corners, and textures, to 
recognize objects. However, the computational limitations of the time and the huge variability of imaging conditions, such as 
lighting and scale, hindered further progress.

The period from 2000 to 2010 marked a resurgence in computer vision for drone detection, driven by advances in computing 
power. Machine learning algorithms started to be actively applied to computer vision tasks, and object classification and detection 
algorithms trained on large datasets produced significantly better results (Bay et al. 2006; Lowe 2004). Datasets specifically designed 
for UAV detection became crucial to the development of this field, as they enabled the training of models that could handle the 
complexities of real-world drone detection.

The true breakthrough came after 2010 with the advent of deep neural networks and deep learning techniques, which 
revolutionized computer vision. Convolutional Neural Networks (CNNs) emerged as the dominant method for image processing 
and object detection. CNNs allowed for the automatic extraction of hierarchical features from images, leading to more accurate 
and robust detection systems (Borges et al. 2024; Borodin et al. 2024). The application of transfer learning methods also enabled 
the adaptation of pre-trained models for specific tasks like drone detection. This period has seen continuous progress in the field, 
with CNNs powering some of the most advanced and efficient object detection models used today. The evolution of computer 
vision techniques for drone detection has laid a strong foundation for the development of advanced algorithms and architectures 
(Xu et al. 2022). With the advent of CNNs and their ability to extract complex hierarchical features, modern computer vision 
has reached new heights. Building on this progress, it is crucial to explore the key algorithms and architectures that underpin 
contemporary advancements in drone detection.

Key Algorithms and Architectures in Computer Vision for Drone Detection
Throughout the development of computer vision techniques for UAV detection, several key algorithms have played an important 

role. One such method is Harris corner detection, which identifies points in an image where the intensity changes significantly 
in multiple directions, ideal for detecting distinctive features in images. Another important method is the scale-invariant feature 
transform (SIFT), which generates local descriptors that are invariant to scale and rotation, making it particularly useful for 
feature description in various environments. Speeded-up robust features (SURF), a faster alternative to SIFT, improves feature 
extraction speed while maintaining robustness, making it suitable for real-time applications. Both SIFT and SURF are widely 
used in computer vision as feature description methods, typically applied in matching algorithms to find pairs of similar features 
(Douklias et al. 2022). These methods, along with others, have formed the foundational building blocks for more sophisticated 
and accurate object detection algorithms used in modern drone detection.

Deep learning algorithms, such as CNNs, are highly computationally demanding, especially during the training phase. These 
models require substantial computational resources due to the large volume of data required for training and the complexity of 
the models themselves, which consist of many layers and parameters (Tang et al. 2023). Training deep learning models typically 
requires powerful graphics processing units or specialized processors, as these computational resources accelerate the training 
process. During inference (prediction) with these models, the computational requirements are reduced but still remain high, 
particularly for real-time applications in complex conditions (Douklias et al. 2022).

Traditional computer vision methods, such as Harris, SIFT, and SURF algorithms, are generally less computationally demanding 
compared to deep learning-based approaches. These algorithms rely on simpler techniques to detect distinctive points in images, 
which reduces the strain on hardware resources, making them suitable for tasks with fewer objects or where feature recognition 
and matching are the primary objectives. For example, algorithms like SIFT and SURF can perform well in scenarios where object 
detection is not real-time or where the dataset is smaller and less complex.

While these methods require less computational power, they may struggle with large, complex datasets or tasks involving 
real-time object detection, where the need for higher accuracy and faster processing speeds becomes critical. In these cases, deep 
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learning models, despite their higher computational cost, demonstrate significant advantages. Their ability to process large datasets 
and handle complex features allows them to outperform traditional algorithms in tasks such as detecting objects in real-time or 
in highly varied environments.

While traditional methods like SIFT and SURF may offer lower computational costs in specific scenarios, they cannot 
match the effectiveness of deep learning models when dealing with more complex, large-scale tasks. The trade-off between 
computational efficiency and detection performance becomes evident when considering the increasing demands of modern 
object detection applications.

Faster CNN (R-CNN) improves the original R-CNN by integrating the region proposal network (RPN) to streamline object 
detection, combining region proposals and classification into one network, significantly boosting both speed and accuracy 
(Kakaletsis et al. 2021). You Only Look Once (YOLO) takes a different approach by predicting bounding boxes and class probabilities 
directly from the image in a single pass, making it suitable for real-time applications. Its various versions (YOLOv1 to YOLOv5) 
have enhanced speed, accuracy, and handling of small objects. Single Shot Multibox Detector (SSD) eliminates region proposals, 
performing detection in a single pass with multiple feature maps for different object sizes, offering a balance of speed and accuracy. 
Mask R-CNN extends Faster R-CNN with a branch for instance segmentation, enabling pixel-level object delineation, which is 
crucial for detailed applications like medical imaging or autonomous driving.

The Table 1 compares different CNN architectures such as YOLO, Faster R-CNN, SSD, and Mask R-CNN on several important 
metrics including accuracy, precision, recall, F1-Score, frame rate, resource consumption, suitability for real-time applications, 
and application domains. These metrics are key to selecting the appropriate architecture depending on the specific requirements 
of the object detection task, such as speed, accuracy, and resource consumption.

Table 1. Comparison of CNN architectures for object detection.

Model Accuracy Precision Recall F1-Score Speed
Resource

consumption
Real-time

applicability
Use case
suitability

YOLO 0.75 0.74 0.77 0.75 45 Medium Yes Surveillance, robotics

Faster R-CNN 0.80 0.79 0.82 0.80 10 High No Surveillance

SSD 0.78 0.76 0.79 0.77 25 Medium Yes Real-time detection

Mask R-CNN 0.82 0.80 0.83 0.81 8 High No Segmentation

Source: Based on the study by Tang et al. (2023).

Following the comparison of CNN architectures for object detection presented in Table 1, it is also important to evaluate 
architectures designed for object classification tasks.

It is important to note that the YOLO architecture discussed here is YOLOv5, which became widely adopted due to its open-
source nature, ease of use, and stable performance at the time the paper was written. However, later versions such as YOLOv6, 
YOLOv7, and the more recent YOLOv8 and YOLOv9 have introduced significant improvements in accuracy, speed, and resource 
efficiency. These newer versions have enhanced capabilities in handling small objects, improved robustness in varying environmental 
conditions, and optimizations for edge computing devices.

YOLOv8 and YOLOv9 represent significant advancements in the YOLO architecture, building upon the successes of earlier 
versions like YOLOv5 and YOLOv7. These newer iterations focus on enhancing the overall performance of the YOLO family by 
improving both accuracy and efficiency, addressing some of the limitations seen in previous versions.

YOLOv8, introduced with improved accuracy and speed, has brought about several innovations in object detection. One of 
the key features of YOLOv8 is its ability to better handle small objects, which had been a challenge for earlier versions. The model’s 
architecture includes advanced techniques like feature fusion and multi-scale detection, which help in extracting finer details from 
the input images and improve the model’s ability to detect objects at various scales. These advancements make YOLOv8 particularly 
effective in applications such as security surveillance, autonomous driving, and industrial inspections, where detecting small or 
partially obscured objects is crucial. Furthermore, YOLOv8 has been optimized for edge computing devices, allowing for faster 
inference and lower resource consumption, which is essential for real-time applications that require low latency.
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Table 2. Comparison of CNN architectures for object classification.

Architecture
Top-1

accuracy (%)
Top-5

accuracy (%)
Parameters

(millions)
Layers

Notable
Features

AlexNet 57.1 80.2 60.0 8 First deep CNN for classification, ReLU 
activation

VGG 71.5 89.9 138.0 16 Deeper network, high parameter count

ResNet 77.0 93.3 25.6 50 Skip connections to avoid vanishing gradient

Inception 78.8 93.9 23.0 22 Multi-scale feature extraction

Source: Based on the study by Tang et al. (2023).

YOLOv9, the latest version, continues to push the boundaries of real-time object detection by further refining the architecture 
for greater robustness and efficiency. It includes several optimizations, such as improved loss functions and the use of advanced 
backbone networks that contribute to better feature extraction. YOLOv9 introduces enhanced capabilities for handling challenging 
environmental conditions, including low-light scenarios and extreme weather, which often cause difficulty for traditional object 
detection systems. Additionally, YOLOv9 has been designed with a focus on computational efficiency, allowing it to maintain high 
accuracy and speed even in resource-constrained environments. This makes YOLOv9 particularly suitable for deployment in areas 
such as mobile robotics and embedded systems, where computational power is often limited but real-time performance is essential.

Table 2 below provides a detailed comparison of popular architectures, including AlexNet, VGG, ResNet, and Inception. 
These architectures are assessed based on performance metrics such as Top-1 and Top-5 accuracy, parameter count, depth, and 
their notable features. This comparison highlights the evolution of classification-focused CNN architectures and their distinct 
advantages, which play a crucial role in selecting the most suitable model for specific classification tasks.

AlexNet has become one of the key architectures that has significantly advanced the field of deep learning by dramatically 
reducing the classification error rate compared to previous methods. However, it’s worth noting that deep neural networks 
for classification already existed before AlexNet, in particular the LeCun LeNet5 network, which was developed in the 1990s 
(Bangar 2022). LeNet5 consisted of three main components: convolutional, clustering, and linear activation functions, and included 
seven layers. The main problem at the time was the loss of gradient along deep networks, which made training them much more 
difficult. With the advent of AlexNet, the use of ReLU activations and deeper architectures significantly reduced the error rate 
and improved training efficiency, which was an important step in the development of deep learning. Although AlexNet was not 
the first deep network, its innovations were key to the further development of this field.

Deep CNNs represent an evolution from shallow neural networks, characterized by their significantly larger number of layers 
and parameters. Unlike shallow methods, which typically involve one or two convolutional layers for simple feature extraction, 
deep CNNs are designed to capture hierarchical and complex patterns in data by stacking multiple convolutional and pooling layers. 
This depth allows for the extraction of high-level features essential for complex tasks such as object detection and segmentation.

The specialized techniques in deep CNN architectures address inherent challenges such as the vanishing gradient problem, 
which becomes more pronounced as the network depth increases. Innovations like batch normalization (to stabilize and accelerate 
training), skip connections (as introduced in ResNet, to mitigate gradient loss), and advanced loss functions (e.g., focal loss in 
dense object detection) enable deep networks to learn effectively even with increased complexity.

Furthermore, these architectures incorporate advanced feature extraction techniques to handle a variety of real-world challenges. 
For example, multi-scale feature extraction, as seen in SSD and YOLO architectures, enables robust detection of objects across 
different sizes and conditions. These innovations allow deep CNNs to perform effectively in diverse scenarios, such as varying 
lighting, background noise, and object occlusion, providing a significant advantage over earlier shallow approaches.

Deep neural networks have achieved remarkable advancements across various fields due to key innovations that address critical 
limitations of traditional models. Batch normalization stabilizes and accelerates training by normalizing the input distribution 
for each layer. Skip connections, as implemented in ResNet, ensure efficient gradient flow throughout the network, mitigating 
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the vanishing gradient problem in deep architectures. Multi-scale feature extraction, utilized in SSD and YOLO architectures, 
enhances object detection accuracy across various sizes and challenging conditions. These innovations have made deep neural 
networks highly effective and adaptable for complex image analysis tasks.

The application of neural network architectures in computer vision opens new opportunities for solving a variety of problems 
related to image processing. Particularly significant are CNNs, which have become a major tool in this field. These networks 
consist of convolution layers that allow the automatic extraction and analysis of various features from images (Prayudi et al. 2020). 
The application of CNNs finds wide use in object detection tasks, where the network is trained to recognize and localize objects 
in an image. In addition, they are successfully used in image segmentation, where it is required to identify each pixel of an image 
and classify it to belong to a particular object or class.

The RPN is a fundamental innovation in the Faster R-CNN architecture that significantly enhances detection speed by generating 
region proposals directly within the network. Unlike earlier methods such as R-CNN and Fast R-CNN, which relied on external 
algorithms like selective search for proposal generation, the RPN integrates this process into the neural network itself, streamlining the 
overall workflow. The RPN operates as a fully convolutional network that scans the input image and predicts candidate bounding boxes, 
along with their objectness scores, which indicate the likelihood of the region containing an object. By using predefined anchor boxes of 
varying sizes and aspect ratios, the RPN effectively detects objects of different scales and shapes in a single forward pass. Additionally, 
its shared convolutional layers with the main detection network reduce computational overhead, making the approach more efficient.

YOLO, with its multiple iterations such as YOLOv1, YOLOv2, YOLOv3, YOLOv4, and YOLOv5, is renowned for its real-time 
object detection capabilities (Kouvaras and Petropoulos 2024; Prayudi et al. 2020). YOLO processes an image in a single forward 
pass, dividing it into a grid and predicting bounding boxes and class probabilities simultaneously. Each subsequent version of 
YOLO has introduced improvements, such as better feature extraction, optimized anchor boxes, and enhanced training strategies, 
resulting in higher speed and accuracy.

SSD achieves efficient and accurate object detection by combining multi-scale feature extraction with direct predictions of 
bounding boxes and class scores. Unlike Faster R-CNN, SSD eliminates the need for a separate proposal generation stage, making 
it more computationally efficient. By using feature maps at multiple scales, SSD excels at detecting objects of varying sizes and 
performs well in real-time applications.

In addition to object detection, CNN architectures are widely used for image classification tasks, where the goal is to assign 
an image to a specific category or class. Notable architectures such as AlexNet, VGG, ResNet, and Inception have set benchmarks 
in image classification by introducing innovations like deeper layers, skip connections, and improved convolutional operations. 
The general trend in CNN development is to create deeper and more efficient architectures capable of processing large volumes of 
data while maintaining high accuracy and speed. These advancements have driven the success of CNNs in both object detection 
and image classification tasks, solidifying their role as a cornerstone of modern computer vision (Chen et al. 2023).

Building on the advancements in CNN architectures and their pivotal role in object detection and classification, it is essential to 
consider how these methods are applied specifically to UAV detection. The unique characteristics of UAVs, their visual detectability under 
varying conditions, and the methods employed to identify them using computer vision form the core of modern UAV detection systems.

Characteristics, Visual Detectability, and Detection Methods for UAVs
Unmanned aerial vehicles are a variety of devices that do not require a pilot on board to perform tasks. They vary in size, shape, 

and characteristics, depending on their purpose (Tian et al. 2020a). One of the most common types of UAVs is multirotor vehicles 
equipped with multiple rotating rotors. This includes quadcopters with four rotors, as well as three-, six-, and eight-copters. They 
can range in size from small, such as the size of the palm of your hand, to large professional models with wingspans of several 
meters. Multi-rotor UAVs are usually highly maneuverable and capable of hovering in place in the air.

Another type of aircraft is fixed-wing vehicles, similar to those found on conventional aircraft. They provide a longer flight time 
than multirotor vehicles. They range in size from small radio-controlled models to large vehicles capable of carrying heavy loads 
and flying long distances. They are often used for monitoring, reviewing, and surveying large areas. There are also hybrid UAVs 
that combine the features of both multi-rotor and fixed-wing aircraft. These vehicles offer flexibility of use and can combine the 
advantages of both types (Ariza-Sentís et al. 2023). Their characteristics vary depending on their intended use and may include 
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maximum speed, range, and duration of flight, payload capacity, types of sensors and equipment used, and degree of autonomy and 
protection from external factors such as weather and wind. The visual detectability of drones at different altitudes and distances 
depends on several factors, including their size, shape, color scheme, and environmental lighting and background.

At low altitudes and close ranges, UAVs can be easily spotted due to their distinctive sounds and movement characteristics. 
Multirotor vehicles, for example, often emit a characteristic noise from rotating rotors, making them visible even at low altitudes. 
Fixed-wings UAVs may be less conspicuous at low altitudes due to the lack of sound, but their large size and flight characteristics 
can attract attention (Lai and Huang 2020). However, at high altitudes and long distances, their visual detectability is reduced.

Multirotor vehicles may become less conspicuous due to their reduced size against the surrounding background and the lack 
of brightness of LEDs or other markers on the hull. Fixed-wings UAVs, on the other hand, may retain higher detectability due to 
their larger size and brighter markers. Lighting also plays an important role in the visual detectability of aircraft. In bright sunlight, 
the contrast between the vehicle and the environment may be low, making them less visible. However, in low-light conditions or 
when the angle of view changes, the vehicle may become more visible (Castellano et al. 2020). Thus, visual detectability at different 
altitudes and distances depends on many factors and can be vary depending on the viewing conditions.

Methods for detecting objects in images can be divided into two main groups: feature-based methods and methods using object 
detectors. Feature-based methods are designed to extract characteristic features of objects in images, such as corners, contours, 
or textures. The classic methods of this group include SIFT and SURF. These methods have low computational requirements and 
can provide fairly good accuracy in images with a small number of objects. At the same time, they have significant limitations: 
sensitivity to changes in lighting, scale, and viewing angle (Oyallon and Rabin 2015; Sadou and Njoya 2023).

Adapting and optimizing computer vision models for different drone detection scenarios requires the use of specialized data 
augmentation methodologies. While data augmentation is often employed to minimize the amount of training data, its primary 
objective is frequently to achieve class balancing. For instance, in cases where certain drone classes are underrepresented in the 
dataset, augmentation techniques such as duplicating and transforming samples of the minority class (e.g., through rotation, 
scaling, or mirroring) can help balance the dataset. This ensures the model does not overfit to more frequently occurring classes, 
improving its generalization ability across all categories.

In addition to augmentation, simpler techniques like data downsampling can also address imbalances. By reducing the number 
of samples in overrepresented classes, this method provides a straightforward approach to balancing datasets, particularly when 
computational resources or data complexity are limited. It is worth noting that in some cases, alternative strategies such as training 
from scratch, transfer learning, or fine-tuning on pre-trained models can eliminate the need for data augmentation entirely. These 
methods enable model adaptation to specific tasks by leveraging existing knowledge or highly customized training processes, 
thereby bypassing the need for extensive augmentation (Sivakumar and Tyj 2021).

Color transformations are an equally important tool in enhancing the robustness of drone detection models. Changing the 
brightness, contrast, saturation, adding noise, and simulating different color spaces help models become invariant to variations in 
lighting and camera sensors. This approach is critical for ensuring stable operation of drone detection systems in different weather 
conditions and times of day. These transformations can be applied effectively as long as spectral information is not crucial for the 
specific method being used. For example, if only RGB data is being used, almost any transformation can be applied to the image 
to increase the amount of data and make the training set as general as possible, thus representing the most diverse situations. 
However, if spectral information is important, such transformations should not be used. More advanced techniques include 
generative data augmentation methods. Generative Adversarial Networks (GANs) allow for the creation of synthetic images of 
drones with a high degree of realism. These artificially generated images can fill in gaps in the training data, especially for rare or 
complex surveillance scenarios. The result of these methodologies is the creation of more versatile and robust computer vision 
models that can effectively detect and classify drones in a wide range of real-world scenarios (Sonkar et al. 2023; Xu et al. 2022).

The use of color transformations and generative data augmentation techniques has significantly enhanced the robustness of drone 
detection models, enabling them to perform reliably under diverse environmental conditions. These advancements have laid the 
groundwork for more sophisticated approaches in UAV detection. The integration of deep learning techniques, particularly CNNs 
and GANs, has further revolutionized this field, providing unparalleled accuracy and efficiency in detecting and classifying UAVs.
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Advancements in Deep Learning for UAV Detection
Image segmentation identifies each pixel in an image and classifies it as belonging to an object. This method provides accurate 

object boundaries and the ability to distinguish between objects with overlapping contours but requires high computational 
resources and is prone to errors under complex imaging conditions (Ferreira et al. 2020). To summarize, the choice of object 
detection method depends on the specific task, accuracy and speed requirements, and available computational resources (Table 3).

Table 3. Comparison of object detection methods.

Method Pros Cons

Feature-based
Low requirements for computing resources Sensitivity to changes in lighting and scale

Good accuracy on images with a small number
of objects Sensitivity to viewing angles

Object detectors
High-speed image processing Computationally intensive

High accuracy of object detection The need for large datasets for training

Image segmentation
The exact boundary of the objects High computing resource requirements

Ability to distinguish between objects with 
overlapping contours Prone to errors under difficult surveying conditions

Source: Based on Ferreira et al. (2020), Kozachenko (2021), and Leira et al. (2020).

Drone detection and classification methods using computer vision, machine learning, and deep learning have different 
approaches and features. An important technology is image segmentation, which allows you to identify each pixel of an image 
and classify it as part of a specific object. This method provides accurate object boundaries and the ability to distinguish between 
objects with overlapping contours, but it requires significant computing resources and is prone to errors in difficult shooting 
conditions (Luo et al. 2023; Terven et al. 2023).

The use of deep learning and neural networks has become one of the most effective approaches in modern computer vision 
technology. Deep learning allows you to create complex neural networks that can automatically extract features from images and 
learn from large amounts of data. The most common approach to detecting UAVs is to use CNNs. Such networks can process 
images efficiently and accurately, identifying the characteristic features of objects (Tian et al. 2020b).

Neural network architectures such as Faster R-CNN, YOLO, SSD, and Mask R-CNN are actively used to detect UAVs in 
images. These models are able to work in real-time and provide high accuracy of object detection even in the presence of strong 
background noise or changes in lighting. The use of deep learning and neural networks allows for the automation and improvement 
of airspace control, which is especially important in the context of the growing number and diversity of UAVs (Tang et al. 2023).

Although the paper primarily focuses on classification and detection, it is important to also acknowledge the significant 
advancements in segmentation networks, which are designed specifically for tasks requiring pixel-level understanding of images. 
These architectures play a critical role in many applications, including medical image analysis, autonomous driving, and scene 
understanding. Some of the most notable segmentation architectures include U-Net, DeepLab, SegNet, Fully Convolutional 
Networks (FCN), and PSPNet (Yu et al. 2023).

U-Net is a widely used architecture in medical image segmentation. It is characterized by its symmetric encoder-decoder 
structure, with skip connections between corresponding layers in the encoder and decoder. These connections help retain spatial 
information, making U-Net highly effective for precise pixel-level segmentation tasks. Its ability to work with relatively small 
datasets while achieving high performance has made it a popular choice in the field of biomedical image analysis.

DeepLab is another powerful architecture for semantic segmentation, known for its use of atrous convolutions (dilated 
convolutions), which allow the network to capture multi-scale context without losing resolution. DeepLab has undergone several 
iterations, with DeepLabv3+ being one of the most advanced versions, incorporating encoder-decoder structures and advanced 
atrous spatial pyramid pooling (ASPP) to improve segmentation accuracy in complex scenarios, such as urban and natural scene 
segmentation (Vasterling and Meyer 2013).
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SegNet is another encoder-decoder network, with a focus on efficient feature extraction and segmentation. Unlike U-Net, 
SegNet employs max-pooling indices in the decoder to improve segmentation quality while reducing the computational load. It 
has been particularly useful in applications requiring real-time performance, such as autonomous vehicles and robotic systems. 
FCNs were among the first architectures to introduce the concept of using fully convolutional layers for semantic segmentation. 
By replacing the fully connected layers of traditional CNNs with convolutional layers, FCNs can handle input images of any 
size and generate pixel-wise predictions. This architecture has been foundational in advancing the field of deep learning-based 
segmentation (Mittal et al. 2020).

Pyramid Scene Parsing Network (PSPNet) takes a different approach by using pyramid pooling to capture context at multiple 
scales. This multi-scale context helps the network understand global scene information, which is essential for accurate segmentation 
of complex scenes. PSPNet has proven highly effective for large-scale scene parsing tasks, including street scene segmentation for 
autonomous driving (Minaee et al. 2022).

Although some of the networks discussed, such as YOLO and Faster R-CNN, can be adapted to segmentation tasks, their basic 
concept was developed for object detection and classification. These networks focus on defining the boundaries of objects and 
their categories, rather than on the exact definition of each pixel of the image, which is the main task of segmentation. Therefore, 
although they can be adapted for segmentation, they are not optimal for such tasks compared to networks specifically designed 
for segmentation, such as U-Net or DeepLab.

Adapting drone detection algorithms to specific survey conditions and customer requirements plays a key role in ensuring the 
effective operation of the surveillance and control system. Environmental conditions, such as lighting, weather, landscape type, and 
obstacles, must be taken into account. For example, when shooting in low or changing light conditions, detection algorithms must 
be adapted to work more efficiently. However, such adaptations must be accompanied by a rigorous evaluation of performance to 
ensure that the algorithms continue to deliver accurate and reliable results under varying conditions.

One of the key tools for evaluating the performance of these detection algorithms is the confusion matrix. Confusion matrices 
are widely used to assess classification models, particularly in object detection tasks. This tool visually demonstrates how the 
model classifies objects and helps identify types of errors, such as false positives and false negatives. By using confusion matrices, 
it becomes easier to understand whether the model is working correctly in real-world conditions and how it can be further 
optimized to improve results. Below is an example of a confusion matrix and its components for drone detection, which highlights 
its importance as an effective instrument for evaluating the accuracy of the model (Samaras et al. 2019; Shaharom and Tahar 2023).

Customer requirements may vary depending on the specific task and application. In the security sector, a customer may be 
interested in high detection accuracy and speed, while in natural resource monitoring, they may be interested in reliability and 
the ability to work in different climatic conditions. Therefore, algorithms must be customized and optimized to meet specific 
requirements (Macukow 2016; Taha and Shoufan 2019).

The types of drones are extremely diverse and are classified according to many parameters. They can differ in size – from micro 
to large devices, in purpose – military, commercial, or entertainment, in configuration – multi-rotor, airplane-type, or hybrid. 
Drones differ in flight range, payload capacity, and type of power plant – electric, gasoline, or hybrid. Thus, adapting UAV detection 
algorithms to specific survey conditions and customer requirements involves considering the environment, customizing them 
for specific tasks, taking into account the characteristics of the objects to be detected, and optimizing the use of resources. This 
ensures efficient and reliable operation of the detection system in various conditions and applications.

Integration of Multi-Sensor Technologies
Metrics for evaluating the performance of UAV detection algorithms are essential tools for analyzing and comparing their 

effectiveness under different conditions and application scenarios. Accuracy, for instance, measures how correctly an algorithm 
detects UAVs, calculated as the ratio of correctly detected aircraft to the total number of objects flagged as UAVs. The higher the 
accuracy, the fewer the false positives. Completeness, on the other hand, assesses how well the algorithm detects all real-world 
UAVs, defined as the ratio of correctly detected UAVs to the total number of UAVs present. A higher completeness means fewer 
missed detections.
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Given the importance of these metrics in assessing algorithm performance, it is crucial to regularly calibrate and update UAV 
detection systems to adapt to changing conditions, such as varying lighting, weather, and new UAV designs. These updates ensure 
that detection systems remain reliable, accurate, and efficient over time.

Looking ahead, the integration of additional technologies, such as LIDAR and radar, will play a vital role in enhancing 
UAV detection capabilities. While computer vision algorithms are integral to real-time detection, multi-sensor approaches can 
significantly boost efficiency and reliability. Radar systems, for instance, are invaluable for detecting objects at long ranges, even 
in challenging weather conditions and low visibility. In combination with computer vision, radar data provides spatial coordinates 
and velocity information, improving overall system accuracy.

LIDAR technology complements these sensors by offering extremely detailed spatial information through laser scanning. 
LIDAR can generate highly accurate three-dimensional maps of the terrain, enabling precise detection of UAV shapes, sizes, and 
positions. This synergy between multiple sensors will enhance the robustness and adaptability of UAV detection systems, ensuring 
higher reliability and efficiency in diverse environments (Jiang et al. 2022).

The F-Score is the harmonic mean between accuracy and completeness. It covers both metrics in a single numerical value and 
provides an overall measure of the algorithm’s performance. The higher the F-Score, the better the combination of accuracy and 
completeness. The detection rate is the time it takes for the algorithm to detect aircraft in an image or video stream. This metric 
is important for tasks where a fast response to object detection is required, such as in security systems or airspace monitoring. 
False positives are the number of objects that the algorithm mistakenly flagged as UAVs when in fact they are not. This metric 
is important for evaluating unwanted false positives that can affect the reliability of the detection system. Missed detections are 
the number of actual UAVs that the algorithm failed to detect. This metric is important for assessing detection completeness and 
evaluating potential gaps in the detection system.

The analysis of these metrics provides a comprehensive evaluation of the performance of the algorithms and determines their 
suitability for specific tasks and application conditions. When comparing different drone detection methods and algorithms, 
it is important to consider their features, advantages, and disadvantages (Table 1). This table provides an overview of the main 
methods and their characteristics, which helps make an informed decision about the most appropriate method for a particular 
aircraft detection task.

A confusion matrix is a valuable tool for evaluating the performance of classification models, particularly in tasks like UAV 
detection. It provides a clear representation of the model’s predictions by categorizing them into four outcomes: true positives 
(correctly identified UAVs), false positives (objects incorrectly identified as UAVs), false negatives (missed UAVs), and true negatives 
(correctly identified non-UAVs). This framework simplifies the explanation of key concepts such as model accuracy and error 
types. The confusion matrix facilitates the calculation of essential metrics like sensitivity (the ability to detect all actual UAVs) 
and specificity (the ability to correctly identify non-UAVs), offering a comprehensive assessment of the model’s effectiveness in 
real-world applications (Bouguettaya et al. 2022; Kaur et al. 2021).

One of the main advantages of modern computer vision algorithms is their high detection accuracy. However, accuracy 
alone may not fully capture the specific requirements of critical systems. In addition to accuracy, other key metrics such as recall 
(sensitivity), mean average precision (mAP), mAP50, and the F1-Score are also important, as these metrics provide a more 
comprehensive evaluation of model performance in complex scenarios. These metrics can be especially valuable in applications 
like UAV detection, where balancing detection quality and minimizing false positives or false negatives is crucial for system safety, 
defined here as the ability to accurately identify and respond to threats while minimizing errors that could lead to undetected 
UAVs or incorrect actions. Furthermore, in critical systems, it is important to consider uncertainty factors and ensure redundancy 
in the detection process. This redundancy helps maintain safety and operation in the event of a detection failure, ensuring more 
reliable and continuous performance.

Another significant advantage is the wide range of applications of computer vision technology. It can be used not only for 
UAV detection for security purposes but also in environmental monitoring, area protection, and in the aviation and transport 
industries to detect and track vehicles. However, besides the advantages, there are some disadvantages to applying computer 
vision for UAV detection (Iqbal et al. 2024; Kakaletsis et al. 2021). These may include the need for high computational resources, 
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the dependency on environmental conditions such as lighting and weather, and the potential for false positives or negatives in 
complex scenarios. Addressing these challenges is crucial for the effective deployment of computer vision systems in real-world 
applications (Kouvaras and Petropoulos 2024).

Some computer vision methods, especially those based on deep learning, require significant computational resources for training 
and inference. This may require the use of powerful computing systems and infrastructure (Poplavskyi 2024). In addition, computer 
vision methods may be sensitive to imaging conditions such as changes in lighting, weather conditions, and other environmental 
factors. This can degrade the performance of algorithms under uncontrolled conditions, requiring additional efforts to adapt and 
optimize the methods for different imaging scenarios.

It is also worth noting that to maintain the effectiveness of the aircraft detection system, the computer vision algorithms 
must be calibrated and updated regularly to meet changing conditions and task requirements. This requires additional time and 
resources to maintain and support the system. Overall, despite some limitations, the application of computer vision for commercial 
UAV detection is an effective and promising approach that can significantly improve safety and efficiency in various applications.

The prospects for further research in the application of computer vision for commercial UAV detection are promising and 
offer significant benefits in various aspects. One of the key areas of focus in this area is to continuously improve the accuracy and 
reliability of detection algorithms. The development of new computer vision techniques and the improvement of existing ones 
will lead to more accurate results, which is essential to ensure the safety and efficiency of the detection system.

The integration of LIDAR into drone detection systems provides unique advantages that dramatically increase the efficiency 
of airspace monitoring. LIDAR provides extremely precise three-dimensional spatial information, allowing for the instantaneous 
determination of geometric parameters of drones with millimeter accuracy. Unlike traditional optical systems, LIDAR technology 
can clearly identify the shape, size, and spatial orientation of unmanned vehicles even in difficult environmental conditions. The 
key advantage of the integration approach is the ability to detect drones in conditions where traditional technologies are ineffective. 
This is especially relevant for ensuring the security of critical infrastructure, airports, sensitive facilities, and mass events where 
the most complete control of the airspace is required (Poplavskyi 2024).

Infrared sensors are vital components in UAV detection systems, as they enable effective monitoring in low visibility conditions 
such as at night or during poor lighting. These sensors operate by detecting thermal radiation, allowing objects to be identified based 
on their temperature differences from the surrounding environment. Infrared sensors are especially valuable for detecting drones in 
challenging weather conditions, such as fog, rain, or snow, where traditional optical cameras may struggle to provide clear images.

The integration of infrared sensors with other sensor types, such as video cameras and radars, creates more versatile and 
reliable drone detection systems, significantly enhancing both accuracy and detection efficiency in a variety of environmental 
conditions (Chen et al. 2023). Infrared sensors contribute additional data that complements other sensor outputs, enabling more 
detailed and real-time observation of objects.

The advantages of infrared sensors lie in their ability to detect objects in conditions where optical sensors are ineffective, such 
as low-light or in difficult weather. They also offer a non-intrusive method for detecting drones, which is crucial for maintaining 
security without disrupting the surrounding environment (Du et al. 2022). Infrared sensors are highly effective for continuous 
monitoring and can operate autonomously in real-time, making them crucial for applications such as critical infrastructure 
protection, security monitoring, and airspace control. Their importance in providing redundancy in detection systems, where 
reliability and safety are paramount, cannot be overstated.

Overall, further research in this area will focus on the development of more accurate, faster, and more reliable UAV detection 
systems to enable their effective use in various fields such as security, monitoring and control, and in the transport industry. 
Summarizing the research on the application of computer vision to commercial UAV detection, several important conclusions 
and generalizations can be drawn.

The integration of computer vision with other sensory data, such as radar and infrared sensors, plays a crucial role in enhancing 
detection systems. By combining these technologies, we can achieve more complete and efficient systems capable of operating 
effectively in a variety of environments and scenarios. This multi-sensor approach is essential not only for improving detection 
accuracy but also for adapting to challenging and changing conditions.
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The future of real-time UAV detection systems lies in further advancing these technologies. A key focus of this development 
will be to optimize computer vision algorithms to ensure the fastest and most accurate detection of UAVs, even in highly dynamic 
and complex environments. The goal is to create intelligent systems capable of instantaneously recognizing and classifying drones. 
However, the development of such systems is not limited to computer vision alone. The integration of computer vision with other 
technologies, such as radar, acoustic, and thermal imaging systems, is vital for increasing detection reliability and minimizing 
recognition errors. This approach will allow for more robust and efficient UAV detection systems that can operate in a broader 
range of conditions.

One such technology that promises to significantly improve UAV detection is LIDAR. By combining LIDAR with other sensors 
like radar, LIDAR offers extremely detailed spatial information, enabling the precise detection of UAVs even in conditions where 
optical cameras and traditional detection methods may fail. Radar, for example, has already demonstrated its ability to detect 
drones at long distances, even in poor visibility conditions such as fog or rain, where optical sensors struggle. This data fusion 
approach, which integrates radar, LIDAR, and infrared cameras, is poised to enhance the effectiveness of UAV detection systems, 
ensuring they are both accurate and reliable across a variety of operational scenarios.

Practical results show that combined systems using radar, LIDAR, and infrared sensors achieve much better outcomes 
compared to using a single sensor. For example, one system that integrated these technologies demonstrated a 95% detection 
accuracy while simultaneously reducing false positives to 5%, which significantly surpasses the results of individual sensors (Du 
et al. 2022; Poplavskyi 2024). This highlights the importance of integrating data from different sensors to achieve high accuracy 
and reliability in the system. Data fusion compensates for the weaknesses of individual sensors: radar works well in poor visibility 
but does not provide detailed characteristics of objects, while LIDAR and infrared cameras offer additional capabilities for precise 
detection under various conditions. The use of neural networks to process fused data enables real-time drone detection, which is 
crucial for rapid response in complex scenarios.

Experimental and practical results confirm the effectiveness of data fusion methods from different sensors in creating reliable 
drone detection systems. They demonstrate significant advantages over the use of individual sensors, particularly in improving 
accuracy, reducing false positives, and enhancing operational efficiency in challenging conditions.

DISCUSSION

The results of this study confirm the significance of using computer vision to detect commercial drones to improve safety and 
efficiency in various applications. The study determined that the use of advanced computer vision techniques can provide high 
detection accuracy and system reliability. Similar findings are obtained in studies conducted by other researchers dealing with 
similar topics. For instance, the study by Akbari et al. (2021) on the application of computer vision to analyze videos and images 
captured by drones highlights the importance of using technology to improve UAV functionality and safety.

However, the results of this study are peculiar due to the focus on a specific application area – UAV detection. While the study by 
the researchers covers a wide range of applications of data from drones, the analysis focuses on the specific task of object detection. 
Thus, while both studies support the importance of using computer vision to improve safety and efficiency in the aviation industry, 
the results of this study add value by drawing attention to specific aspects of the application of this technology in UAV detection.

A study conducted by Kakaletsis et al. (2021) and this study share similar aspects in that they both address safety issues in the 
context of drone use and recognize the importance of integrating safety knowledge into drone algorithms and architectures. Both 
studies also consider the role of computer vision in improving the safety and efficiency of drone use. However, while the study 
by the researchers focuses on analyzing the increasing use of autonomous drones and the importance of legal regulation in this 
area, the study written above focuses on analyzing and optimizing computer vision techniques for detecting commercial UAVs 
to improve safety and control their use in various industries.

Chelluri and Manjunathachari (2019) and Mittal et al. (2020) reviewed state-of-the-art object detection algorithms and their 
applicability to low-altitude drone data. The main objective of this study is to survey and analyze algorithms such as Faster R-CNN, 
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YOLO, SSD, and RetinaNet and their applicability to specific low-altitude data. In contrast, this study focuses on the analysis and 
optimization of computer vision techniques for the detection of commercial UAVs in various industries. This study seeks to develop 
more efficient and robust UAV detection systems, making them more applicable and practical in various fields of endeavor. The 
approach in the study not only considers existing algorithms but also proposes adaptation and optimization of these methods to 
suit specific needs and survey conditions. Thus, unlike the study by the researchers, which concentrates on algorithm review, this 
study aims to provide applicable solutions for UAV detection in real-world environments.

Perry and Guo (2021) present a new remote sensing approach to measure the dynamic displacement of three-dimensional 
structures using a sensor system on UAVs and optical and infrared cameras. This research significantly contributes by proposing 
the integration of different types of cameras to measure three-component displacement and the development of new data 
processing algorithms to extract information from video. Its performance has been validated by laboratory experiments, indicating 
its potential relevance in the field of measuring the dynamic structural response of three-dimensional structures. Both studies 
highlight the need for further research and innovation in commercial UAV detection. However, the researchers focus on the 
development of a new sensing method using optical and infrared cameras on UAVs, while this study offers general conclusions 
and recommendations for improving UAV detection systems, including computer vision algorithms, integration of data from 
different sensors, and system security.

A study by Ramachandran and Sangaiah (2021) and this study highlight the role of computer vision in the context of UAVs and its 
application to real-time object detection and tracking. Both studies emphasize the importance of these tasks for monitoring different 
environments and identifying gaps in existing research, which helps to identify directions for future research. The methodology of 
both studies includes a detailed literature review on object detection and tracking using UAVs and the development of methods to 
detect objects in UAV images. Both studies also enumerate specific datasets for these tasks and summarize existing research work 
in different UAV applications. However, the study of the researchers is more focused on the literature review and classification 
of object detection methods in UAV images, while this study is more specifically focused on analyzing the performance of UAV 
detection methods and their suitability for specific tasks and applications. Thus, although both studies address similar topics, they 
have different biases and approaches to analyzing the issues under investigation.

This study focuses on analyzing the findings and recommendations for improving UAV detection systems. It notes that to 
improve the performance and reliability of such systems, improvements in computer vision algorithms and integration of data 
from different sensors such as radar, LIDAR, and infrared sensors are needed. It also emphasizes the importance of real-time 
operation and highlights the potential threats and risks associated with the use of such systems, which requires further research 
in cybersecurity and data protection.

CONCLUSION

The study highlighted the significant benefits of using computer vision to detect drones, including its ability to provide high 
accuracy and rapid response to threats. This is an important aspect of the work, as it emphasizes the importance of the system’s 
operational effectiveness in detecting and responding to potential threats in real-time. Computer vision for drone detection not 
only ensures high accuracy in UAV identification, but also guarantees a quick response, which is critical for applications that 
require immediate action, such as security and surveillance. In the context of the study, high accuracy is only one of the key metrics 
used to evaluate the effectiveness of drone detection systems. While accuracy plays a crucial role, other performance metrics 
such as recall, precision, and F1-Score are equally important and should be considered when assessing the overall performance 
of the system. These metrics have been discussed throughout the study, providing a more complete understanding of the system’s 
capabilities beyond simple accuracy. It is important to emphasize the importance of these additional metrics as they help to provide 
a complete picture of the strengths and weaknesses of the detection system.

The study has determined that deep learning architectures, particularly deep CNNs, play a central role in solving UAV 
detection tasks. This terminology aligns with the specific usage in the paper, where deep CNNs are highlighted for their ability 
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to automatically extract hierarchical features from visual data, significantly enhancing the accuracy and reliability of detection 
systems. These architectures are especially effective in challenging conditions, such as varying lighting, poor visibility, or different 
background obstacles, making them essential for robust and adaptive UAV detection systems.

Data fusion involves not only integrating diverse inputs into a model for classification and detection but also combining the 
results and methods used during the detection process. This means that fusion can occur at different stages, from pre-processing, 
where different types of data can be combined to create a more comprehensive view, to combining the output from multiple 
models after processing. In addition, fusion can include the integration of different detection methods, allowing the strengths of 
each method to be combined to achieve more accurate and reliable results.

Deep learning, particularly CNNs, has greatly improved the efficiency of processing large volumes of data and enabled the 
implementation of more complex and adaptive UAV detection methods. This confirms the importance of such technologies for 
achieving high results in real-time, particularly through integration with other sensors such as radar and LIDAR. At the same 
time, despite their numerous advantages, the use of deep networks requires significant computational resources, which must be 
considered when developing real-world detection systems.

The importance of adapting UAV detection algorithms to specific survey conditions and customer requirements such as lighting, 
weather, landscape type, and object specificity was emphasized. It is necessary to consider the different needs of customers and 
optimize the algorithms to meet their requirements. It was also found that to maintain the effectiveness of the drone detection 
system, it is important to regularly calibrate and update the computer vision algorithms according to changing conditions and 
task requirements. This may require additional time and resources, but it is necessary to ensure reliable system performance. The 
application of computer vision to the detection of commercial UAVs promises to be an effective and promising approach that can 
significantly improve safety and efficiency in a variety of applications. The development of new methods and the improvement of 
existing methods will enable more accurate results to be achieved.

The visual detectability of UAVs at different altitudes and distances is described, considering factors such as size, shape, color 
scheme, lighting, and environmental background. The study reveals the future of real-time UAV detection systems and suggests a 
direction for further research: improving the adaptability of detection systems to different imaging conditions, including lighting, 
climatic zones, and UAV movement scenarios. This direction will develop more efficient and robust detection systems, contributing 
to the safety and efficiency of UAV applications in various fields. Further research in these areas can lead to more efficient and 
reliable UAV detection systems, which in turn contributes to improved safety and efficiency in various UAV applications.
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