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ABSTRACT

Reliability assessment of a multi-state system with binary state components (MSS-BC) is highly practical because the assumption
that the system has a binary state system (BSS) is often unrealistic in many engineering applications. The main research problem
is to determine the state of the MSS-BC based on the minimal path required for system operation and to evaluate its components’
importance. Such information is essential for purposes such as component prioritization, reliability improvement, and risk reduction
(RR), allowing for the identification of a system’s weaknesses or critical components and the quantification of the impact of their
failures on an MSS-BC. In this paper, a new reliability assessment approach for MSS-BC is presented, based on disjoint product
forms of minimal path sets and survival signature. It also introduces methods for the Birnbaum importance (BI), improvement
potential (IP), and RR measures using these concepts. Both the numerical case and the case study presented a driving subsystem
in aerospace engineering to demonstrate the applicability of the approach for MSS-BC. The proposed technique shows clear
superiority and potential for applications in aerospace engineering.

Keywords: Structural reliability; Multi-state system with binary state components; Sum of disjoint products method; Survival

signature; Component importance; Risk reduction.

INTRODUCTION

The reliability of multi-state systems (MSSs) is crucial in aerospace applications due to their complexity. Unlike traditional
binary states systems (BSSs), which can either be functional or failed, MSSs can operate at various performance levels, reflecting
real-world conditions. Aerospace systems experience different operational states, such as cruise, ascent, and descent. Evaluating
reliability across these states provides valuable insights into system performance. By modeling these variations, engineers can
assess risks and make informed design and operational decisions, ensuring safety and compliance with regulations. Additionally,
analyzing MSS reliability helps identify critical components necessary for maintaining high performance, as well as those that can
tolerate degradation without leading to failures (Kuo and Zhu 2012; Lisnianski ef al. 2010; Natvig 2010; Qin et al. 2016).

The primary research problem is to determine the status of the MSS-binary state components (BC), focusing on the minimal
path required for effective system operation. Gertsbakh and Shpungin (2020) provide definitions related to networks, describe
different types of network failures, and offer an overview of various criteria for assessing network failure. A network is considered
to be in a state of perfect functioning if the maximum flow from the source to the sink meets or exceeds a specific given value.

Conversely, the network is in a state of complete failure if it does not meet this threshold. The disjoint product forms divide the
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system’s reliability into multi-states, which are the states of the system during its lifetime. By associating the disjoint product

forms with the survival signature, a more accurate study can be made to calculate the reliability of MSS-BC based on the survival
signature. Many researchers have studied algorithms for constructing discrete product sums (Abraham 1979; Datta and Goyal
2017; Jane and Yuan 2001; Mutar 2023; 2025).

The signature of a system is essential for comparing the structures of coherent systems. Kochar et al. (1999) examined the
necessary conditions for one systemss lifetime to be greater than another system’s lifetime in terms of stochastic ordering, likelihood
ratio ordering, and hazard rate ordering. Contemporary advances in the use of the system signature concept have been reported
in Samaniego (2007). However, this approach’s limitation is that it assumes all system components are of the same type. Since real
systems usually consist of different component types, analyzing such systems using the system signature becomes challenging. Coolen
and Coolen-Maturi (2012) introduced the survival signature concept as an improvement over the system signature. Unlike the
system signature, the survival signature does not rely on the restriction to one component type. This means that the characteristics
of the components no longer need to be independent and identically distributed (i.i.d.) types. When only one component type
exists, the survival signature is closely associated with the system signature. Gertsbakh and Shpungin (2011) proposed creating a
strong link between the cumulative D-spectra and the derived number of system failure sets, emphasizing the potential insights
this connection could provide. Eryilmaz and Tuncel (2016) expertly presented the concept of survival signature, effectively
tailored for a particular class of unrepairable homogeneous MSSs. This innovative approach offers valuable insights into system
reliability and performance. Marichal et al. (2017) analyzed the combined signature of MSSs consisting of binary-state components.
Mi et al. (2020) presented an importance analysis based on survival signature used to analyze the reliability of a dual-axis pointing
mechanism for communication satellites, which is a commonly used satellite antenna control mechanism. Ge and Zhang (2020)
identified the essential components of a complex system using a survival signature. The feasibility of the proposed approach is
demonstrated through an actual production system. Yi et al. (2021) discussed the theoretical aspect of system signatures for multi-
state coherent or mixed systems with i.i.d. binary-state components. Yi et al. (2022a) presented the joint signatures of BSSs and
MSS-BCs. Additionally, several examples are provided to illustrate and verify the theoretical results established. Yi et al. (2022b)
considered coherent MSSs that can be viewed as a combination of series, parallel, or recurrent connections of multi-state modules
with either binary or multi-state components. Qin and Coolen (2022) proposed a reliability evaluation of MSSs, computing methods
of survival signature are studied for reliability analysis of several different systems. Yang et al. (2024a) proposes a survival signature-
based reliability framework for an imprecise MSS. Yang et al. (2024b) developed a survival signature-based reliability framework for
an MSS, taking into account both dependence and uncertainty. Chang et al. (2023) introduced a generalized reliability technique
for complex systems that uses survival signatures and stochastic processes to model degradation, allowing for reliability analysis
without failure data. Chang et al. (2024) presented a generalized reliability model specified using structural analysis techniques
and the survival signature, enabling the proposed method to be applied to different structural systems.

Understanding the importance index measures for components is crucial for assessing the necessary components within a
system and identifying the most critical ones. Various techniques exist for conducting importance analysis, with the primary
aim of determining the influence of one or multiple components on the system’s reliability (Armstrong 1997; Birnbaum 1968;
Kuo and Zhu 2012; Mehni and Mehni 2023; Zaitseva and Levashenko 2013; Zheng et al. 2023). In these studies, the importance
index measures are computed based on a structure function (Armstrong 1997; Birnbaum 1968; Kuo and Zhu 2012; Zaitseva and
Levashenko 2013), Markov model (Kuo and Zhu 2012; Mehni and Mehni 2023; Zheng et al. 2023), universal generation function
(Zhou et al. 2019), and Monte-Carlo simulation (Vaisman and Sun 2021). Several studies delve into the importance of index
measures calculated based on the survival signature and the techniques and algorithms for calculating various importance
index measures based on the system’s representation through a survival signature (Di Maio et al. 2023; Huang et al. 2019;
Mi et al. 2020; Mutar 2024; Mutar and Hassan 2025; Rusnak et al. 2022; 2024). Mi et al. (2020) investigates common cause
failures. Huang et al. (2019) discuss the computation of BI based on the survival signature. The definition of the system
critical state is studied in Di Maio et al. (2023) and Rusnak et al. (2022). Rusnak ef al. (2024) propose a technique for

calculating structural importance measures in BSS utilizing survival signatures and direct partial logical derivatives (DPLD).
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Additionally, Mutar and Hassan (2025) use an approach to calculate structural importance measures in MSS-BC employing
the survival signatures and DPLD.

The determination of the system state is regarded as a max-flow problem (Gertsbakh and Shpungin 2011; 2020). Gertsbakh
and Shpungin (2011) investigated a multidimensional analog of the D-spectrum specifically defined for binary coherent
systems. In the research, disjoint product forms of minimal path sets were utilized to determine the system’s state based on
the operating minimal path sets. Qin and Coolen (2022) defined system states based on the number of components in the
minimal path sets. In contrast, this paper defines system states using operating minimal path sets, which provides a more
accurate representation. Yang et al. (2024b) also categorized system states by the number of components in the minimal path
sets and utilized the survival signature. However, this paper offers a broader range of system states by employing operating
minimal path sets and presenting an updated version of the survival signature. Feng et al. (2016) established the importance
measures using the survival signature for binary systems. In this paper, the finding on importance measures using the survival
signature were extended to MSS-BC.

The novelty of this study lies in developing a new reliability assessment approach for MSS-BC, based on disjoint product
forms of minimal path sets and survival signature. It also introduces methods for reliability importance analysis, BI, IP,
and RR measures using these concepts. Unlike traditional reliability analysis methods, this approach evaluates the state
of the MSS with BCs based on the minimal path required for system operation. It evaluates its components’ importance
based on survival signature. This paper expands on the definition of the MSS-BC, introduced by Qin and Coolen (2022),
by incorporating concepts based on disjoint product forms of minimal path sets calculations referenced in sources (Mutar
2023;2025). Therefore, this method defines an MSS-BC model based on the disjoint product forms of minimal path sets to
form states with the number of minimal paths required for system operation. In other words, rather than defining system
states based on the number of components in each minimal path in Qin and Coolen (2022), this study focuses on the unique
states of each minimal path by utilizing disjoint product forms (providing more detailed and accurate states of a system
based on the number of minimal path sets). The research presents a novel way to calculate the BI, IP, and RR measures for
MSS-BC by analyzing survival signatures.

The remainder of this paper is organized as follows: first, a state characterization of MSS-BC based on disjoint product forms of
minimal path sets and a methodology for reliability analysis based on survival signatures. Next, several component importance index
measures, including the BI, IP, and RR measures for the MSS-BC model using survival signatures, are presented. Consequently, a
numerical example is included to illustrate the proposed techniques in detail. Additionally, a real-world application of the MSS-BC

model in aerospace engineering is discussed. Finally, the concluding remarks are provided.

MSS WITH BINARY-STATE COMPONENTS

Generating state of negation component
Consider a system consist of 1 components €y, Cy, ..., ¢, and m minimal path sets MPy, MP,,..., MP,,. The Boolean variables

can be defined by arithmetic operations using disjunction form of components as follows:

Vie1 € =& + 610 + 4 € v CuqCy (1)

where ¢; = 1 — ¢; is negation of i-component. Also, the disjunction form can be defined on all minimal path sets. Based on
Eq. 1, the complement set MP, — MP; = {¢c; € MP, and ¢; € MP;,1 < z < j <m} of the minimal path sets can be define as:

M, = MF; = iy @
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Then, the disjoint product form set D ’ of the j - th minimal path sets, based on Eq. 2, can be expressed as:

-1

D; = | |(MP, — MP;) MP; (3)

-

N
1l
(=Y

Therefore, to generate the state of the negation component, assume that & = (1 — ¢;)°% and, based on Eq. 3 for all ¢; € D;,

the state of the negation component can be defined as follows:

1, ifc eD;
Si, = J 4
g {0, otherwise @

Finally, the structure function ¢(c) of the system, according to Eq. 3, can be represented as:

9@ =) D) )
=1

The techniques used in Egs. 1-5 to convert this representation into a sum of disjoint simple products (Abraham 1979).

Definition 1:let D = {Dy, Dy, ..., D}, ...

operational. Assume that Dy = 1 — }}7%; D; is “complete failure” state of the considered system. The state of the system is determined

, Dy} be the set of distinct product forms of all minimal path sets while the system is

by the random variable /] € {0,1, ..., j, ..., m}. A value of 1 corresponds to the optimal state, j represents any intermediate condition,
and 0 indicates a state of complete failure.

For instance, consider the parallel-series system consisting of four binary-state components ¢ = (cy, ¢z, €3, C4), as depicted
in Fig. 1. Especially, components ¢, and ¢, belong to type 1, while components ¢, and ¢, belong to type 2. The system has two
operational minimal path sets: MP; = {c,, c3} and M'P, = {c,, c,}. Consequently, using Eq. 3 and 4, it is obtained that D; = ¢;c3
and Dy = ¢1cycy + 105030y, as depicted in Fig. 2.

According to Definition 1, the system has three distinct states, represented by J € {0, 1, 2}. Specifically, a complete failure

correspondsto | = 0, perfect functionality correspondsto / = 1,and the intermediate state is represented by / = 2.Assuming

Source: Elaborated by the authors.

Figure 1. A parallel-series MSS-BC.
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(a) State 1 (b) State 2

Source: Elaborated by the authors.

Figure 2. The operation states of the parallel-series MSS-BC are described using disjoint product forms.
The red dashed line represents the state of the negation component, whereas (a) represents the first
operational state of the system and (b) represents the second operational state of the system.

that the failure distribution for type 1 components follows an exponential distribution with an expected value of 1, we obtain the
reliability functions Ry (t) = et and Ry(t) = et For type 2 components, a Weibull distribution with a shape parameter
of 2 and a scale parameter of 1 is assumed, resulting in the reliability functions R3(t) = e~t* and R,(t) = et According to
Definition 1, the probabilities of the system existing in various states can be effectively plotted, as shown in Fig. 3.

Figure 3 shows how the states of the system are represented using the disjoint product forms of minimal path sets. In the next

subsection, an algorithm will be developed to find the disjoint product forms of minimal path sets.

A
1.0
0.8
£ 0561 Pr(J,=0)
g Pr(J,=1)
& 0.41 PriJ, = 2]
0.2
0.0
0.0 05 1.0 1.5 20"

Time

Source: Elaborated by the authors.

Figure 3. The probabilities of the parallel-series MSS-BC for different states at time t.

Disjoint product form

The more useful and efficient techniques involve defining a structure function as a sum of non-elementary disjoint products.
The number of these products is small (Abraham 1979).This approach can be achieved by executing simple algebraic processes
on the initial form derived from the set of all minimal path sets (Datta and Goyal 2017; Mutar 2023). The disjoint product form
algorithm can be given as follows:

Step 0: input all minimal path sets MP;, MP,,..., MP,, of the system with order collection.

Step 1: for M'P; assume that vi; = {c; = 1|c; € MP,} and s;, = 0.

Step 2: define Dj o = MP; where 1 < z < j < m as follows:

J. Aerosp. Technol. Manag., v17, 1825, 2025


https://creativecommons.org/licenses/by/4.0/deed.en

n Mutar EK, Hassan ZAH

LIf MP, —MP; =@, then Do = (MP},50 v;; = {¢; = 1|c; € MP;} and s;, = 0.

2.1f ¢; € MP, and ¢; € MP; go to step 2.1.

3.If MP, — MP; = Vi=; cithen D;, = iz, ¢; MP;, so vj, = {¢; = 1]¢; € (MP, — MP;)MP;} and Si; = 1.
Step 3: repeat step 3 to form D; , for j =2,..,m.

In the above algorithm, the vectors Vj g where j,z =1,2,...,m representing the state j € {1,2,...,m} of the system are
extracted. The state Sij of the negated components (¢; ) where i = 1,2,...,n and j = 1,2,...,m is also extracted as in Eq. 4. To
effectively illustrate how the algorithm works, consider Fig. 1. The following steps are carefully outlined:

Step 0: the input consists of all minimal path sets M'P as follows: MP; = {cy,c3} and MP, = {c;, ¢4}

Step 1: for MP; = {c;, ¢,}: it is obtained that v, ; = (1,0,1,0) and 5;, = 0,k = 1,2,34.

Step 2: for : MP, = {c,, ¢4}

let Do = {2, €4}

Step 2.3: MP, — Dy o = {c1,c3}, then D, 1 = {Gy, ¢;, ca}and D, 5, = {c1,¢,, C3,¢4} then v,; = (0,1,0,1) and v,, = (1,1,0,1) and

51, =583, =1

The algorithm’s outputs for the system in Fig. 1 are vectors representing the operating system states, as illustrated in Fig. 2.
In the next subsection, the survival signature will be used to study the states of the system in detail based on the outputs of the

proposed algorithm.

Survival signature and disjoint product form

A system with two states and various components K > 2 types is crucial for optimal performance. The system consists of n
components, where 71, represents the number of -types of components, satisfying k € {1, 2, ...,K} and Y¥_, n, = n. Components
are 1.i.d. of the same type, and the random times of components of different types are entirely independent. The state vector

¥, ..., cX) can group its components of the same type together, with the sub-vector c* = (cf, ¢, ..., ¢, ) describing

c = (¢t .. c
the states of components of type k. The survival signature of a system that performs with exactly ;. of its components of type k is
represented as ®(ly, Ly, ..., I, ..., ), where [ € {0,1, ...,n;}. Consider (?:) state vectors c*, each with precisely I out of its ng
components ¢f = 1. These state vectors are represented by Sf for components of type k. The collection of all state vectors for the

entire system, where [, = 2?;‘1 ci, is represented by Sy ;. 1, 1. Then:

(Ul ol ) = [ (1)) X sy, 6 ©)

Let ¢ € {0,1, ..., n;} denote the number of components of type k in the system that function at time ¢ > 0. Based on Eq. 4 for

all ¢, € Dj, the state of the negation components of type k can be defined as follows:

o - {1,ifc—k € D
ki 710, otherwise

Definition 2:let H = (H,,H,, ..., Hy, ..., Hy) represent the operational state vector of the components, where H;, denotes the

operational status of the components of type k, H, =(hy,,hy,, ..., by, .. hy,), §;, means the ith component of type k. If the i-th

g’
component functions, then and h;, = 1and h;, = 0, if it does not function. The survival signature of the system is:

DUty ) = [T ()] % Ses,, ., O ®)
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The computation of the survival signature for a parallel-series system with two types of components is shown in Fig. 1, and
it can be calculated using Eq. 6. In Fig. 1, there are (n; + 1) X (n, + 1) = 3 x 3 = 9 combinations of /; and [,, as detailed
in Table 1. An example of calculating the vector H at states j = 1,2 based on the proposed algorithm and Eqgs. 7 and 8 are also

provided, with results in Table 2.

Table 1. Survival signatures of parallel-series system.

L L D(ly, 1)

0 (0.1.2] 0
[1,2] 0 0

1 1 1/2

1 2 1

2 [1.2] 1

Source: Elaborated by the authors.

Table 2. Survival signatures of parallel-series MSS-BC at different states.

State (/) H L L, ol,l,) Sy Sy
1 (1,0,1,0) 1 1 1/4 0
0,1,0,1) 1 2 1/4 1

2 (1,1,0,1) 2 1 1 0 1

Source: Elaborated by the authors.

Assuming independent failure times for components of various types and i.i.d. failure times for components of the same
type with a given reliability function Ry (t) for components of type k, the reliability function can be deduced based on Eq. 7 for
e € {0,1,..,m} and s, € {0,1} where k = 1,2,..,Kandj =12,..,m:

Pr(Nieta, e (ck = 1)) = [TE=1 Prick = L) = [T ((’Z,f) (Re () (1 — Rk(t))Sk,-> )

Suppose that T denotes the system’s random failure times. Consequently, the probability that the system will be operational

att > 0 based on Egs. 6 and 9 is as follows:

PrT>t = . @l le o, ) P k=1 >

v zlz:o zZo ’ ' <k=1,z,...,1<(C k)

=N N (el bt | [Preck =10

= 2?11:0 ---2111::0 (d)(llr Ly Ly o L) i1 ((711:') (R () (1 — Rk(t))Skj» (10)

The key benefit of Eq. 10 is that it fully separates the information about the system’s structure from the information about the

failure times of its components. Moreover, integrating the distribution of failure times is simplified by the assumed independence of

—G)
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failure times for different component types. To accurately assess a system’s reliability, it is essential to obtain the survival signature

through an analysis of the system’s structure (Mutar 2022; Samaniego 2007).

To determine the survival function of the MSS-BC at a certain state | = j, it is necessary to first obtain the survival signature
for the entire system at that particular state. The survival signature of the MSS-BC is the likelihood that the system maintains a
state | = j, assuming [, components of type k are present. This probability is represented by the symbol &, _; (I}, 1, ..., i, ..., Ig).
Given the system state j, attime ¢ > 0, the probability of the system being in state j can be defined as follows:

ny ng

Pr{.=j) = Z Z By (L, Ly o, Ly o L) Pr( (ck = zk)>
fi=0 Ig=0 k=12,..K
ny ng K
= Z Z (zp,:j(zl,zz, ol ...,zK)ﬂPr(cf = zk)>
=0 Ig=o k=1
= Tk T (Bl o o o ) T (1) (R0 1 — R ™)) (11)

t

For instance, consider the parallel-series system, as depicted in Fig. 1. Assuming that type 1 components have R;(t) = ™" and

type 2 components have R,(t) = e~t*. By applying Eq. 11, the probabilities of the system existing in various states are as follows:

Pre=1) = oty 1) (}') R0 (1 = Ra()™ () (Ra(0)'2(1 = Ro(0)™
1,2 2 2 1
- Z(l) (e -e™° (1) (e™) (L= Re(t)" = e~t-¢* (12)

Pr(J,=2) = 2e—t-t? _ o-2t-2t* (13)

Definition 3:let /] € {0,1, ...,J, ..., m} be the random variable of system’s state. The reliability function of the MSS-BC at state
J can be computed as follow:

Ri(t) = Xjz. Prde = J) (14)

For instance, the two types of reliability functions in the perfect and intermediate states can be computed using Eqgs. 12-14
and plotted, as shown in Fig. 4.

Consequently, Eq. 11 effectively calculates the probability of the system operating in each state using the disjoint product form,
removing the Bernoulli property. Equation 14 is utilized to determine the reliability of the MSS-BC in each state of the system.

Importance measure of MSS-BC

Reliability importance measures are crucial for evaluating industrial system security and managing risks. Analyzing reliability,
importance, and sensitivity provides valuable insights for designers and helps technicians allocate resources effectively (Kuo and
Zhu 2012; Mi et al. 2020; Zhou et al. 2019). In the following sections, three important measures based on the survival signature

will be discussed.
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A
1.01
0.8-
£ 06 R, (t]
3 R (t]
Q9
E 0.4
0.2
0.0 -
0.0 05 1.0 1.5 20"

Time
Source: Elaborated by the authors.
Figure 4. Reliability functions of parallel-series MSS-BC at different states.

Birnbaum Importance measure

One of the most commonly used measures of significance is the Bl index measure (Birnbaum 1968). The importance of component i
is determined by the difference in reliability between a flawless component i and a system with a failed component i. The metric
quantifies the probability that the system is in a condition where the operation of component i is crucial. The BI index measure with
respect to the number of types K = 2 components k € {1,2,...,K}and [, =0, 1, ..., n; can be derived from Eq. 11 as follows:

B0 = ) = S0y S <¢,271<11, Ly s b) = BT (L oy 1) T ((’:,f) (Re(®)*(1 - Rka))s"f)) (1)

where I7'(Je = J) is the BI index of component i at state j € {1,2,...,m} and time t. The BI index measure given in Eq. 15 is
the effect of small modifications in component reliability on the overall system reliability. Therefore, it ranks components based

on this effect.

Improvement potential measure

The IP index measure is a powerful tool for evaluating the potential impact of achieving complete reliability in a single system
component (Aven and Nekland 2010). It measures the maximum potential for increasing the reliability of a specific component by
calculating the percentage difference between the reliability of a system with an ideal component and the reliability of the system with
the actual component. The IP index measure with respect to number of types K = 2 components k € {1,2,...,K}and [, =0, 1, ..., n;

can be obtained from Eq. 11 as follows:

B =) = i - Sk (qb;;jl(zl, Ly s lie) = Byl Loy ) T ((’7:) (Re(0)*(1 - Rk<t))s"">> (16)

where I/* (], = j) is the IP index of component i at state j € {1,2, ...,m} and time t. Furthermore, the IP index measure in Eq. 16
can be readily adapted to assess risk indices. In contrast, the Birnbaum measure is commonly applied during functions, while the

IP is predominantly utilized in the structure stage (Vaisman and Sun 2021; Zaitseva and Levashenko 2013).

Risk reduction measure
The RR index measure establishes how potential failures or lapsed components affect system reliability. In other words, this

measure may be used to identify system elements that are the best candidates for efforts leading to reducing the system risk
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(or improving safety) (Van der Borst and Schoonakker 2001). The RR index measure is the difference between the system reliability

with the actual component and the system reliability with a failed component . The RR index measure with respect to the number

of types K = 2 components k € {1,2,...,K}and [, =0, 1, ..., n;, can be constructed from Eq. 11 as follows:

IFR (e = ) = Trig - Sk <¢]=,-<ll, Ly oo li) = B U Ly L) T ((’;,f) (Re(®) (1 - Rk<t))s">> (17)

where IF®(J; = J) is the RR index of component i at state j € {1,2,...,m} and time ¢. This importance measure in Eq. 17 is
defined as potential failure space. This is of interest when planning different maintenance activities for example testing single

components if a component is critical for the safe operation of the system.

NUMERICAL EXAMPLE

Model description

In this section, a numerical example is provided to illustrate the application of the suggested technique for determining the survival
function of MSS-BC at a specific state, ] = j, and estimating the reliability of MSS-BC. The three important measures based on the
survival signature are also determined. Figure 5 depicts a simple bridge system with six binary-state components divided into two
types: ¢}, c,, and ¢, belong to type 1, while c,, c;, and ¢, belong to type 2. This system has been referenced in several related works,
such as Qin and Coolen (2022) and Yang et al. (2024b), for determining the survival function and reliability evaluation, offering an

opportunity for comparison.

i Tpe 2

Source: Adapted from Coolen and Coolen-Maturi (2012).
Figure 5. A graph of a bridge system with two types of components.

For instance, it is essential to note that the failure time of type 1 components adheres to a Weibull distribution, i.e.,
BL1+1
Ry () = 8711;1T where 4, = O.?, and B; = 1.2, while the failure time of type 2 components is in line with a linear exponential
. = 2
distribution, i.e., Ry(t) = e (R2042621%) where A, =0.7,and B, = 1.4.In the following subsection, the disjoint product form and

the survival signature will be utilized to construct the system’s reliability function of MSS-BC in different states.

Reliability calculation of bridge system
To calculate the reliability of MSS-BC based on the survival signature, the system state is determined based on the disjoint

product forms of minimal path sets. According to the proposed algorithm for the disjoint product form, the system state is denoted
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as j = 0 if no working path exists, j = 1 if the system reaches its maximum flow, and j = 2, 3, or 4 for other scenarios. The bridge
system in Fig. 5 has four working minimal path sets, which are: MP; = {cy, ¢y, ¢3}, MP, = {1, ¢4, €5}, MP3 = {cy, ¢y, C5, ¢} and
MP, = {c1, 3, €4 C6}. The disjoint product form of Fig. 5 can be given as follows:
Step 0: input all minimal path sets MP as follows:
MPy = {c1,€3,¢3}, MPy = {1, €4, €5}, M Py = {c1, €3, €5, €6} and M Py = {cy, €3, €4, C6}
Step 1: for MP; = {c;, ¢z, c3}: it is obtained that v; ; = (1,1,1,0,0,0) and 5, = 0, k = 1,2,3,4.
Step 2: for M'P, = {c;, ¢4, C5):
let Dy = {1, Ca) €5}
Step 2.3: MP; — D, = {Cy,¢3}, then D, ; = {cy,Cy, Cy, Cs}and D, , = {C1, €3, C3, €4, C5}
then v, = (1,0,0,1,1,0) and v,, = (1,1,0,1,1,0) and 5,, = 5,, = L.
Step 2: for MP; = {¢;, ¢5, €5, C6 }:
let D3 = {cy, €y, C5,C6}
Step 2.3: MP; — Dy = {c3}, then D3 = {cy,C;,C3, Cs,C}
Step 2.3: MP, — D3, = {c,}, then D3, = {cy,C;,C3,Cy, C5, Cg }
then v;, = (1,1,0,0,1,1) ands;, =s,, = 1.
Step 2: for MP, = {cy, Cs, €4, Co }:
let Dyo = {cy, €3, €40 C6}
Step 2.3: MP, — Dy = {cs}, then Dy, = {c1, C, €3, €4, G5, C6}
Step 2.3: MP, —Dyq = {cs}, then Dy, = {c1, Gy, €3, €4, Cs, Co }
Step 2.2: MP; — Dy, = @, thenDys3 = {c1,C,C3,€4,Cs, C6}
then v;; = (1,0,1,1,0,1) and s;, =s,, = L
The algorithm offers the advantage of assigning a vector to each state to represent a condition for extracting the required state
using the survival signature. This technique eliminates the Bernoulli property. The structure function of the MSS-BC in Fig. 5
includes four operational states as follows:
j=1v, = (1,1,1,000) ands; =5, =0,
j =215, =(1,0,0,1,1,0),v,, = (1,1,0,1,1,0) and sy, =51, =1,
j=3vs; = (1,1,001,1) ands,, =5, =1,
j=4vs, = (10,1101 ands, =5, = 1.

The state vectors for each state can be used to calculate the survival signature for the four operational states as shown in

Fig. 6. The survival signature &;_;(l;, l,) for the five system states is listed in Table 3.

(a) State 1 (b) State 2 (c] State 3 (d) State 4

Source: Elaborated by the authors.

Figure 6. The MSS-BC bridge’s operational states are represented in disjoint product forms where the red
dashed line shows the negation component’s state. The states are (a) the first operational state, (b) the
second operational state, (c) the third operational state, and (d) the fourth operational state.
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Table 3. Survival signatures of bridge MSS-BC for different states of system.

I L, @)y, 1)
j=0 j=1 j=2 j=3 j=4
0 [0,1,2,3] 1 0 @] 0 0
[1,2] [0,1,3] 1 8] @] 0 0
1 2 8/9 0 1/9 0 0
2 2 2/3 0 1/9 1/9 1/9
3 @] 0 1 0 0 0
3 [1,2,3] 1 0 0 0 0

Source: Elaborated by the authors.

Then, by using Eq. 11, the probabilities of the system at various states can be displayed in Fig. 7. Furthermore, Fig. 8 illustrates

the reliability functions at different states for a comprehensive comparison based on Eq. 14.

A
1.0
0.8
Pr(j,=0)
£ 06 Pr(,=1)
5 Pr(j,=2)
| Pr(J =3)
2 0.4+ t
g -==Pr@,=4
0.2
0.0/ -
0.0 05 1.0 1.5 20"

Time
Source: Elaborated by the authors.

Figure 7. Bridge MSS-BC probabilities for various states at time.

A
1.0
0.8
> —R, ()
£ 06 —R, (1)
g —R,(®)
:% 0.4 —R,(®
0.2
0.0/ >
0.0 05 1.0 1.5 20~

Time
Source: Elaborated by the authors.

Figure 8. Reliability functions of bridge MSS-BC at different states.

Importance measures of bridge system

In this section, the three importance measures for each state of the MSS-BC (shown in Fig. 5) are calculated using binary-state
components. These measures are crucial as they quantify the disparity between the probabilities of the system functioning when
component i is operational versus when it is not. To do this, the proposed algorithm for the disjoint product form determines

each component’s state (success or failure) for every operational state of the MSS-BC. These states are detailed in Table 4.
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Table 4. State vectors of components of bridge MSS-BC.

Ci=1 Ci=0
C.
P =1 j=2 j=3 j=4 j=1 j=2 j=3  j=4
(1.0,0,1,1.0),
¢, 111000 1104110, 1O (101,101 - - -
1 o s =5=1 s =5=1
311—517—1 1 1

c (1,1,1,0,0,0) (1,1.0,1,1,0), (1,1,0,0,1,1), R (1,0,0,1,1.0) (1,0,1,1,0,1), ) )
2 s =1 s =s.=1 s, =1

1 1 2 1
¢, (11000 101110001101, . (100110 10011, : i
3 s =1 s =s=1 s, =1

1 1 2 1
. o040 111100, (101,101 ] 111000 (110011 ) ]
4 s, =1 s =5 =1 s =1

1 1 2 1
c (1‘0’011‘1’0] [1,1,0,1,1,0]: [1,1,0,0,1,1] _ [1,1,1,0,0,0] [1,0,1,1,0,1], _ _
5 521:1 51,5 5,= 511:1

(1.0,0.1,1,1), (1,00.1,1,0),

¢, (1001 gy, BHOOAN O8I0y 4000 110110, - .

—c = $,=5,= 1 $,=5,= 1 _

51,55, 1 1 b 1 h 51,= 1

Source: Elaborated by the authors.

Bold type denotes the fixed state of the component in the system’s state vector.

For instance, the survival signature of MSS-BC in Fig. 5, when component 6 operates and fails, can be determined based on the

proposed algorithm for the disjoint product form. The survival signature of these subsystems can be represented as <1>/C=671(ll, 1)

and <15]C=67°(ll, L,), and the results can be seen in Table 5.

Table 5. The survival signature of the two circumstances of component 6.

@ (U, )

750U, 1)

ll 12
j=1 j=2 j=3 j=4 j=1 j=2 j=3 j=4

0 [012 O 0 0 0 0 0 0 0
1 [0.1] 0 0 0 0 0 0 0 0
1 2 0 1/3 0 0 0 1/3 0 0
2 0 0 0 0 0 0 0 0 0
2 1 0 0 /6 1/6 0 0 0 0
2 2 0 1/3 0 0 0 1/3 0 0
3 0 1 0 0 0 1 0 0 0
3 1.2 0 0 0 0 0 0 0 0

Source: Elaborated by the authors.

Bold type denotes the differences between the operation and failure of component 6.

Furthermore, the analytical approach can be used to compute the BL, IP, and RR measures of component 6 at states j = 3 and j = 4

of MSS-BC in Fig. 5. The results of this calculation can be shown in Fig. 9. For generality, in calculating the three importance index

measures, failure times of the remaining components provide exact distribution parameters, e.g., 4, = 0.5,4, = 0.7,8; = 1.2 and

B, = 1.4, and time t = 0.7. time . The results are shown in Table 6.

Table 6 displays the values of the importance index measures for each state of each component of the MSS-BC in Fig. 5. It is

important to note that certain importance index measures have resulted in negative values due to system state overlaps. In such

cases, these negative values have been adjusted to zero. Moreover, the importance index measures for the overall MSS-BC are

provided in the last three columns of Table 6, representing the sum of the importance index measures for each state of the MSS-BC.
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Source: Elaborated by the authors.

Figure 9. The B, IP, and RR measures of component 6 in the bridge system at state.

Table 6. The B, IP, and RR measures of MSS-BC in Fig. 5.

D51 (11, 1)

LIEICHY)

D)3y, 1)

Dj-s(ly, 1)

oy, 1)

7'y 1*Uo If*U

7'go 1fyo 1f*U»

'go 1fyo 1870y

'go 1fyo If*U

gy 1fyo 18Uy

0.8127 0.0800 0.7326

0.0353 0.0034 0.0319

0.0084 0.0009 0.0085

0.0084 0.0009 0.0085

0.8670 0.0854 0.7816

0.6423 0.0800 0.5622

-0.0700-0.0151-0.0549

0.0084 0.0009 0.0085

0.0000-0.0085 0.0085

0.5817 0.0573 0.5244

0.6423 0.0800 0.5622

-0.0700-0.0151-0.0549

0.0084 0.0009 0.0085

0.0000-0.0085 0.0085

0.5817 0.0573 0.5244

-0.3407-0.3407 0.0000

0.3990 0.3822 0.0167

0.0186 0.0111 0.0085

0.0000-0.0085 0.0085

0.0779 0.0440 0.0338

-0.3407-0.3407 0.0000

0.3990 0.3822 0.0167

0.0186 0.0111 0.0085

0.0000-0.0085 0.0085

0.0779 0.0440 0.0338

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0186 0.0111 0.0085

0.0186 0.0111 0.0085

0.0382 0.0222 0.0170

Source: Elaborated by the authors.

APPLICATION EXAMPLE

Model description

The driving subsystem is vital as electromechanical equipment widely utilized for dual-axis drive mechanisms in industrial
engineering, particularly for intricate spatial motions. Its significance is evident when installed on a satellite to deploy an antenna.
Since the equipment becomes unrepairable once the satellite is launched, its reliability is paramount. Any failure could jeopardize
the success of the entire mission. The driving subsystem comprises four components: stepping motors 1 and 2, driving axles 1 and
2, connecting axle, and harmonic wave decelerators 1 and 2 (Yang et al. 2024b). The schematic diagram of the driving subsystem
is depicted in Fig. 10.

The two-terminal system’s reliability quantifies the likelihood of successful data transfer from source to sink, determining the
probability of data being effectively transmitted through non-failed connections between the source and sink points. For example,
the complex system shown in Fig. 10 can be expressed as the mathematical notation graph G = (V,E), where V = {a,b,..., f
and £ = {1,2,...,7}, representing the two-terminal graph. The driving subsystem comprises four key components: the steering
motor (¢; and ¢;), the driving axle (c3 And c4), the connecting axle (cs), and the harmonic wave decelerator (¢, and c;). The graph
illustrating the driving subsystem is displayed in Fig. 11.

Furthermore, due to the limitations of the test data and the ambiguity in previous details, certain distribution parameters

cannot be accurately determined and are instead represented as intervals. For MSS-BC in Fig. 11, the detailed parameter settings

of the numerical simulation are summarized in Table 7.
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éDual-axis drive machanism EDriving subsystem: Components of driving subsystem
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Reliability block diagram of Driving subsystem of Dual-axis Drive Mechanism

Source: Adapted from Yang et al. (2024b).
Figure 10. Schematic and block diagram of driving subsystem.

Type 3

¥ Type 4

Source: Elaborated by the authors.

Figure 11. A graph of driving subsystem.

Table 7. Parameter settings of components of the driving subsystem.

Component Distribution Parameter
Components .
type type setting
Bi+1
c,and c, 1 Weibull Ri(t) = e_litﬂiT B, By € [2% 10%4 x 10%] A1, 4, € [0.1 X 108, 2 x 10°],
i
¢;and ¢, 2 Linear-exponential Ri(t) = e—(lif%ﬁitz) B3, By € [0.5% 10°2 x 10°] 15,1, € [0.2 X 10°,3 x 10°],
Bit+1
Cs 3 Weibull R(6) = oM Bs € [0.5:x 1062.6 x 10°] A5 € [0.1 x 105, 3 x 106],
L
cgand ¢, 4 Linear-exponential Ri(®) = o~ (ut+36) Be, By € [0.1 X 10°2 x 108 14,1, € [0.5 x 10°,4 x 10°],

Source: Elaborated by the authors.
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Reliability evaluation of driving subsystem

Consider the driving subsystem illustrated in Fig. 11, where the distinct product forms of minimal path sets determine the system state.

The system features four functional paths: MP, = {c,, c3, ¢s}, MP, = {c;, ¢4, ¢;}, MP; = {1, €3, C5, ¢, }» and MPy = {c3, €4, C5, €6}
According to the proposed algorithm for the disjoint product form, the system state is j = 0 if no functional path exists, j = 1 if
the system achieves maximum flow, and j = 2,3, or 4 for other scenarios. The distinct product form of Fig. 11 can be formulated
as follows:
1. Step 0: Input all minimal path sets M'P as follows:
MPy = {c1,¢5,66}, MP; = (€3, €4, €73, MPs = (€1, €3, C5, €7} and MPy = {€3, €4, Cs, €6}

2. Step 1: For M'P; = {c;, c3, ¢4} it is obtained that v;; = (1,0,1,0,0,1,0) and s, =0, k = 1,2,3,4.
3. Step 2: For MP, = {c;, ¢y, C5}:

let Dy = {2, €4 67}

Step 2.3: MP; — D, = {1, 3, ¢}, then D, = {Cy, C;, €y, €5}, Dy = {1, €2, C3, Cay C}aNd Dy 5 = {C4, €2, C3, €4, Cg, €7},

then v,, = (0,1,0,1,0,0,1), v,, = (1,1,0,1,0,0,1) and v, ; = (1,1,1,1,0,0,1), and s,, = 5,, = 54, = L.

4. Step 2: For M'P; = {cy,c3,¢5,¢7}:

let D3, = {cy, ¢35, C5, €7}

Step 2.3: MP; — D3 = {¢6}, then D3 ; = {cy, ¢3, Cs, Cg, €7}

Step 2.3: MP;, — D31 = {Cy, Ca}, then D35 = {cy,Cy, €3, C5,C, €7} and D3 3 = {Cq, €3, €5, Ca, €5, Co, €7}

then v3; = (1,0,1,0,1,0,1), and v, = (1,1,1,0,1,0,1), and s, = S4; = Sz, = S4, = L.
5. Step 2: For MP, = {c;,¢4,C5, Co )

let Dy = {cz, €4 C5, €6}

Step 2.3: MP; — Dy = {c1, 3}, thenDyq = {Cy, €3, €4, C5,C6} and Dy, = {4, €3, C3,C4, Cs, Co }

Step 2.3: MP, — D,y = {¢;}, then Dy 3 = {C}, C3,C4, Cs, C4, &7} and MP, — D, , ={C7}, then Dyy = {c1, €5, C5, C4, Cs5, C6, C7}

Step 2.2: MP; — Dy 5 = @, then Dys = {1, €2, C4, Cs, C6, G} and MP, — Dy, = @, then Dy = {cy,C3, 3,4, Cs, C, C7}

then v, ; = (0,1,0,1,1,1,0), and v, , = (1,1,0,1,1,1,0), and sy, = S4; = S5, = S4, = L.

The structure function of the MSS-BC in Fig. 11 includes four operational states as follows:

j=1v, =(1,0,10,0,10) ands;, =0,k = 1,234,

j=2:v,, =(0,1,0,1,0,0,1), v, = (1,1,0,1,0,0,1) and v, 5 = (1,1,1,1,0,0,1), and 5,, = Sz, = 45 = 1,

j=3:v3,=(10,1010,1), and v3, = (1,1,1,0,1,0,1), and s, =S4, = S, = 54, = 1,

j=4v,,=(0101110),and v,, = (1,1,0,1,1,1,0), and s;, = 54, = S5, =S4, = L.

A critical study thoroughly evaluates the reliability of the driving subsystem throughout its lifespan to achieve this goal.
A comprehensive analysis using the proposed method was conducted. Firstly, the vectors that define the states of the MSS-BC
are calculated according to the proposed algorithm for the disjoint product form, as in the solution above. Secondly, the survival

signature &;_;(ly, 15, 13,1;) of MSS-BC for all state combinations of the driving subsystem is calculated, as depicted in Table 8.

Table 8. Survival signatures of driving subsystem for different states of system.

¢]=j(lll lZl 13' 14)

L L, 13 1,
j=0 j=1 j=2 j=3 j=4
0 [0,1,2] [0,1] [0,1,2] 1 0 0 0 @]
[1,2] 0 [0,1] [0,1,2] 1 0 @] 0 0
[1,2] [1,2] [0,1] [0,2] 1 0 0 0 @]
1 2 [0,1] 1 1 0 0 0 @]
2 2 1 1 1 0 0 0 @]
1 1 0 1 3/4 1/8 1/8 0 0
1 1 1 1 3/4 0 0 1/8 1/8
2 1 0 1 3/4 0 1/4 0 0
2 1 1 1 1/2 0 0 1/4 1/4
2 2 0 1 1/2 0 1/2 0 0

Source: Elaborated by the authors.
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Subsequently, based on Eq. 11, the probabilities of the MSS-BC being in different states are estimated, providing an insightful
analytical solution. Provided that the failure times of the components correspond to exact distribution parameters, e.g.,
A =2, =0.10,4; = A, = 0.20,A5 = 0.30,A, = A, = 0.25,B, = B, = 2.10, f5 = f, = 0.90, fs = 2.30 and B, = B, = 0.95. The

probabilities of the system at various states are visually presented in Fig. 12.

1.0
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s Pr(J,=2)
D‘% 0.4 Pr J,=3)
--=-Pr(,=4
0.2
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Time
Source: Elaborated by the authors.

Figure 12. The probabilities of the driving subsystem for different states at time ¢.

In Yang et al. (2024b), the analysis of system states was based on the number of components in the minimal path, which only
defines two states for the system, as noted in Qin and Coolen (2022). In contrast, the proposed technique examines the system
states for each minimal path separately, leading to a more accurate representation of the system’s operational states. This approach
defines four states for the same system studied in Yang et al. (2024b). In other hand, the system’s reliability function for various

states can be obtained using Eq. 14, as illustrated in Fig. 13.
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Source: Elaborated by the authors.

Figure 13. Reliability functions the driving subsystem for different states at time t.

Importance measure of the driving subsystem

The importance index measures are essential for evaluating the performance of the driving subsystem. These measures assess
the impact of each component’s state on the system’s functionality. By utilizing the proposed algorithm for the disjoint product
form, the state of each component (success or failure) at each state of the MSS-BC depicted in Fig. 11 were determined. These
crucial state vectors of components are displayed in Table 9, providing valuable insights into the subsystem’s performance at

different time intervals.
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Table 9. State vector of components of driving subsystem.

Ci = 1 c;i = 0
G . . , , . . , ,
(1.1,0,1,0,0,1), (1.0.1,0,1,0.1),
¢, (101,000 (1.1.1,1.00), (1.1.1.01.0.1, P11V LO 940100, @110 )
85,7 54,7 1 $1,7 5, % 9,7 8,7 1 21 Ty 4
1,1,1,0,0,1,0), (0.1,0,1,1,1,0)
¢, 0101001 (1.1.1.1.01.0, (1,101,110, 11010494001, 1010100 .
52]:547:1 S, 84, =8, 78,7 1 21 Ty 4
(0,1,1,1,0,0,1), (1,0,1,0,1,0,1),
¢, 1010010 (1,111,001, (1.1.1.0.1.0,1), @11 1110 91049004 G101110 )
5,7 54,7 1 $1,7 84, = 5,7 84, 1 I ™4 4
(1,0.1,1,0,1,0), (0,1,0,1,1,1,0),
¢, 0101001 1.1.1.1.01.0. (1.1.0.1.1,1,0, POT11ON 404001, 1010100 .
=5, =1 5, =5, =5, =5, = Sy % a7
0101109 1010100 0101110 0101001
¢ 1010110 P11 9 oo (10, nosoero rtiee) -
s, =5, =5, =1 511:5412522:342:1s11:541:322:s42:1 s, =5, =s,=5,=1
L 72" T4y L4 T T My
0,1,0,1,01.1), (0.1,0.1,1,1,0), (1,0.1,0,1,0,1),
¢, (1.01,001,0) (1.1,0.1.0,1.1), (1,1,0.1.1,1,0), - (0,101,001 (1.1,1.01.01) - .
5,7 54,7 1 §1,5 84, =5 =8y 1 51,75, 1
(1,0.1,00,1,1), (1,0,1,0.1,0,1), (0,1,0.1,1,1,0),
¢, (01,0100, (1,1,1,00,1.1), (1.1,1.0,1,0.1), - (1010010 (1.1.01.1.1.0, - .
s, =8, =1 s=8, =s,=5,=1 s =5,=1
1 2 1 1 2 2 1 2

Source: Elaborated by the authors.

Bold type denotes the fixed state of the component in the system’s state vector.

For instance, when component 5 is operational, or in the event of a failure at time t, the survival signatures for the driving
=1
J
when it fails are determined in Table 10.

subsystem are denoted as qbfj (L, by, 13, 1) and <15C=570(ll, l,,13,1,). The survival signatures when component 5 is working and

Table 10. The survival signatures when component 5 is working and failure.

, , , D75 (L by b L) @)% (o 1, L)
1 2 4
j=0 j=1 j=2 j=3 j=4 j=0 j=1 j=2 j=3 j=4
0 [0,1.,2] [0,1.2] 1 ] 0 0 0 1 ] 0 0 0
[1.2] 0 [0,1.2] 1 ] 0 ] 0 1 0 0 ] 0
[1.2] [1.2] [C,2] 1 0 0 0 0 1 0 0 0 0
1 2 1 1 0 0 0 0 1 0 0 0 0
1 1 1 1/2 1/8 1/8 1/8 1/8 3/4 1/8 1/8 0 0
2 1 1 3/4 0 1/4 1/4 1/4 3/4 0 1/4 0 0
2 2 1 1/2 0 1/2 0 0 1/2 0 1/2 0 0

Source: Elaborated by the authors.

Bold type denotes the differences between the operation and failure of component 5.

Suppose a precise distribution parameter for the component failure times, such as 4; = 1, = 0.10,4; = 1, = 0.20,
A5=10.30,1, = A, = 0.25,8, = §, = 2.10, 83 = B, =0.90, fs = 2.30 and B = B, = 0.95. In that case, the relative BI, IP, and RR
measures of component 5 can be calculated at states j = 3 and j = 4 of MSS-BC in Fig. 11. These results are visualized in Fig. 14.
Moreover, for a more comprehensive analysis, the results of calculating the three importance index measures of the remaining

components’ failure times at a specific time ¢t = 1.1 are also included in Table 11.
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Figure 14. The BI, IP, and RR measures of component 5 in the driving subsystem at state.

Table 11. The B, IP, and RR measures of MSS-BC in Fig. 6.
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'go 1fyo If*U»

'go 1fyo 1870y

7'go 1*yo If*UD

'go 1Fyo 1870y

0.0081 0.0091 0.0000

0.0563-0.00190.0582

0.0614 0.0026 0.0588

0.0567-0.0021 0.0588

0.1835 0.0077 0.1758

0.0081 0.0091 0.0000

0.0563-0.00190.0582

0.0614 0.0026 0.0588

0.0567-0.0021 0.0588

0.1835 0.0077 0.1758

0.2382 0.2382 0.0000

0.0088-0.0494 0.0582

0.1264 0.0675 0.0588

0.0045-0.05430.0588

0.37790.20200.1758

0.2382 0.2382 0.0000

0.0088-0.0494 0.0582

0.1264 0.0675 0.0588

0.0045-0.05430.0588

0.37790.20200.1758

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0614 0.0026 0.0588

0.0614 0.0026 0.0588

0.1228 0.0052 0.1176

0.2382 0.2382 0.0000

0.1264 0.0721 0.0543

0.0048-0.05390.0588

0.0000-0.05880.0588

0.36894 0.1974 0.1719

0.2382 0.2382 0.0000

0.1264 0.0721 0.0543

0.0048-0.05390.0588

0.0000-0.05880.0588

0.3684 0.1974 0.1719

Source: Elaborated by the authors.

Table 11 provides a comprehensive breakdown of the importance index measures for each state of the MSS-BC and each
component of the MSS-BC. Negative importance index measures resulting from system state overlap were treated as zero in
the importance index measures. The last three columns in Table 11 represent the total importance index measures for the entire
MSS-BC, achieved by summing the importance index measures for each state of the MSS-BC. Additionally, Fig. 15 illustrates
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Figure 15. BI measure for each component of each state of driving subsystem.
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the BI measure for each component of each state of the MSS-BC. To underscore the significance of the dependencies of the three

importance index measures for every state of the driving subsystem, a comparison of BI, IP, and RR measures for each component
of each state of the driving subsystem was conducted, as depicted in Fig. 16.
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Figure 16. The BI, IP, and RR measures for each component of the driving subsystem in each state.

Certain components exhibit the IP and RR in specific states of the driving subsystem. In engineering applications, if these
improvements and RRs are not properly addressed, they could lead to overly risky reliability estimation results, posing a potential
danger. The importance index measures are critical for a satellite-based driving subsystem, where reliability is of the utmost concern
in safety-critical fields such as aerospace engineering.

CONCLUSION

This paper presents a new reliability assessment approach for MSS-BC, based on disjoint product forms of minimal path
sets and survival signatures. It also defines an MSS-BC model based on the disjoint product forms of minimal path sets to form
states with the number of minimal paths required for system operation. The Bernoulli property was eliminated based on the
survival signature and disjoint product forms. For this reason, the formula for computing the reliability function was updated
based on a vector representing the state of the negated components. Additionally, the paper presents methods for the BI, IP, and
RR measures based on disjoint product forms of minimal path sets and survival signatures. The method proved its accuracy and
effectiveness by studying a numerical model. An applied model was then studied, and data was presented, showing its engineering
and practical benefits.

The complexity of the proposed method increases with the number of minimal paths. As the number of minimal path sets in
a system grows, the computational complexity also rises. This issue can be addressed by examining subsystems. The application
of MSS-BC reliability is especially relevant in various fields, such as engineering, telecommunications, and transportation. In
these systems, the overall system can operate at multiple performance levels while individual components are considered binary
(either functioning or failed).

®
J. Aerosp. Technol. Manag., v17, 1825, 2025


https://creativecommons.org/licenses/by/4.0/deed.en

Reliability Importance Analysis of a Multi-State System with Binary Components Using Survival Signature

For future development in this area, expanding the methodology to include multi-state components in MSS-BC would be
beneficial. This expansion would greatly enhance the applicability of the approach. Additionally, it would be worthwhile to investigate
how different failure distributions affect structural importance measures. Another promising direction for future development is
to develop general techniques for computational methods, statistical inference methods, detailed modeling of component state
change processes, and decision support for inspection and maintenance. It is extremely valuable to ensure that these developments

are closely tied to real-world applications to maximize their functional relevance in the future.
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