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ABSTRACT
This paper presents a robust optimization framework for Satellite Launch Vehicle (SLV) and upper stage trajectory design, 

integrating uncertainties to enhance flight performance, minimize steering workload, and improve reliability. Identifying a robust 
optimal trajectory under uncertainty is crucial. The methodology begins with developing a robust trajectory for a two-stage SLV. 
The upper stage trajectory was then optimized assuming the first stage remained fixed. Three-dimensional equations of motion 
served as constraints. Uncertainties (aerodynamic coefficients, dry mass, engine thrust) were modeled via mean and standard 
deviation. Four metaheuristic algorithms—genetic algorithm (GA), particle swarm optimization (PSO), grey wolf optimizer (GWO), 
and invasive weed optimization (IWO)—were utilized. Monte Carlo simulations with 300 iterations incorporated uncertainties. 
Results show significant trajectory accuracy improvements. For the upper stage, altitude error decreased by 77%, orbital velocity 
error by 68%, and flight path angle error by 90%. For the SLV, altitude error improved by 80%, orbital velocity error by 78%, and 
flight path angle error by 82%. These findings demonstrate the framework’s effectiveness in enhancing trajectory performance 
under uncertainty.
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INTRODUCTION

A frequent cause of space mission failures is the Satellite Launch Vehicle’s (SLV) inability to adhere to its predetermined flight 
trajectory. This can be attributed to inaccurate forecasting of factors and parameters that impact the system, often stemming from 
unexpected changes in the environmental or system conditions. 

Uncertainty is a crucial factor in many engineering problems because it is often impossible to predict accurately the parameters 
and factors that affect the outcome. At best, we can only estimate them. Uncertainty refers to the range between complete certainty 
and pure uncertainty that could impact a product or system’s future performance and ability to fulfill its mission. In engineering, 
uncertainties can significantly impact results, making them a critical parameter to be considered (Wazed et al. 2009).

Uncertainty can be caused by errors related to the system itself or its inputs. One of the most critical issues for an aerospace 
system is the expansion or synergism of uncertainties that can negatively affect the system’s output (Yao et al. 2011).

In many cases, not paying attention to these uncertain factors can have a heavy cost on the system’s performance and lead 
to disruption or even failure of the system’s mission. In the operation process of a system, there are many sources of uncertainty, 
which can come from the spacecraft system itself or its environment and mission conditions.
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Therefore, considering the existence of uncertainty in design, one should know and use methods of dealing with uncertainty 
to reduce its adverse effects on design. One way to be robust against uncertainties is to apply confidence coefficients. So far, there 
has not yet been a precise and comprehensive method for defining these coefficients. With larger confidence coefficients, design 
and optimization tend to arrive at solutions that are too conservative, while with smaller confidence coefficients, system reliability 
cannot be guaranteed. In addition, previous experiences regarding the reliability factor may be inappropriate or outdated for 
existing structures, thus leading to potential risks. Therefore, the traditional methods of dealing with uncertainties are not adequate 
enough to improve economically the system’s reliability, robustness, and performance. Therefore, this issue has strongly driven 
the development of design methods based on analytical uncertainty, accuracy, and advancements in mathematical theory, as well 
as the systematic and rational treatment of uncertainties during design (Padmanabhan 2003).

Among the methods of dealing with uncertainty, the robust approach is an effective method. Much research has been conducted 
in this regard, and many articles on its theory and application have been published, so it has found its place in many fields, such 
as aerospace engineering, electricity, industry, civil engineering, management, etc. In the following, to get acquainted with the 
work done so far, the research done will be reviewed.

Among the first works in uncertainty and robust optimization, we can mention the steps taken by Suister (Zardashti et al. 2020). 
Nevertheless, the presented model has been far from the optimal solution due to excessive caution.

The attempt to optimize a system is to achieve the minimum or maximum of the criterion function or the performance of 
that system in such a way that the system’s efficiency is finally improved. The complexity of aerospace systems is so great that it 
is impossible to obtain their optimal solution by analytical methods in an acceptable period. Therefore, there is no solution to 
settle for near-optimal solutions obtained from numerical methods in such a way that they are of acceptable quality and can be 
obtained in an acceptable timeframe (Wazed et al. 2009). In addition, Yao et al. (2011) introduced a linear model that achieves a 
balance between optimization and robustness in solutions. Padmanabhan (2003) presented a multiobjective optimization with a 
reliability assignment approach. Haimes (1994) introduced a multiobjective optimization model in the presence of uncertainties, 
and Hattis and Burmaster (1994) presented a model of uncertainties and their analysis. Youn and Wang (2006) also proposed 
a method for the effect of adding reliability in design in the face of uncertainties. Hosseini et al. (2011) examined optimization 
methods and the multidisciplinary optimal design of an SLV. Zardashti et al. (2020) investigated the robust optimal method for 
the robust trajectory design of a satellite carrier and used the evolutionary optimizer to solve the problem.

Yager et al. (1994) have expressed methods for combining multiobjective optimization with robust design. Sentz and Ferson 
(2002) proposed a formulation and an algorithm to optimize the design in the presence of uncertainty from the point of view 
of the system’s robustness; they presented an independent method to separate design based on robustness from the analysis of 
nondesign cognitive variables to achieve computational efficiency.

Bataleblu et al. (2011) presented a thesis addressing the multiobjective optimization problem with Robust methods to reduce 
the SLV’s mass. Liu and Lu (2013) presented a formulation and algorithm for generating optimal limited Trajectory for meeting 
in an arbitrary orbit. Paiva et al. (2014) offered a comprehensive approach to analyzing, optimizing, and incorporating reliability 
into aircraft design. The model combines certainty with the simultaneous analysis of reliability and optimization, resulting in a 
simplified formulation for tackling optimization problems and mitigating predictability.

Okada et al. (2015) presented an article in which the design of a robust trajectory in the presence of uncertainties for a projectile 
is discussed. In order to check the effectiveness of the proposed method, it has been evaluated by Monte Carlo analysis. Shi et al. 
(2023) delved into the subject of optimal robust design methodology and applies it to the optimization of a plane wing. Luo and 
Yang (2017) discussed uncertainty in orbital parameters; their simulation also uses the Monte Carlo method and linear models. 

According to Su and Wang (2015), a trajectory optimization technique employing a robust approach has been proposed for the 
return phase of a reusable space vehicle. Grant and Bolender (2016) introduced an efficient robust trajectory design methodology 
using an indirect optimization framework, which integrates worst-case scenarios and robustness considerations to generate solutions 
that balance performance and robustness. Xue and Duan (2017) presented a research paper about attitude robust control for a 
reusable spacecraft during the reentry phase. The research methodology utilized fractional calculus and Pigeon-inspired optimization 
techniques to achieve the desired outcomes. Mirshams et al. (2016) presented a combination of multiobjective optimization with 
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robust optimization to design an SLV with minimum mass and maximum resistance against uncertainties. The Greylag Goose 
Optimization algorithm, inspired by geese’s V-shaped flight, was introduced and validated on University of California, Irvine datasets, 
benchmark functions, and engineering case studies, showing superior performance in statistical tests (El-Kenawy et al. 2024). Selim 
and Ozkol (2023) presented a robust multidisciplinary method to guide an SLV in the presence of uncertainties for correct closed and 
open-loop guidance. Also, Roshanian et al. (2013) discussed the optimal robust design of an SLV, with the objective of minimizing 
the total mass of the vehicle while ensuring that all mission and trajectory constraints are met. Additionally, the objective function 
should be able to withstand operational uncertainties and variations. In Ansaripour et al. (2019), the optimal trajectory for a two-
stage launch vehicle has been designed to transport a payload to a specific Altitude and velocity. One objective of this reference is to 
find the optimal pitch program angle as a control variable for the aforementioned problem.

The application of robust optimization and metaheuristic algorithms extends beyond aerospace engineering, demonstrating their 
effectiveness across various engineering domains. This cross-disciplinary adoption highlights the universality and adaptability of 
these methodologies in addressing complex optimization problems under uncertainty. In renewable energy systems, the integration 
of metaheuristic algorithms with machine learning techniques has shown significant promise. A recurrent neural network forecasting 
model that incorporates a dynamic fitness Al-Biruni Earth radius algorithm was proposed for wind power prediction, addressing 
uncertainties caused by climate change and varying weather patterns (Karim et al. 2023). Similarly, in feature selection problems, the 
binary arithmetic optimization algorithm was developed to tackle discrete optimization challenges in pattern recognition and data 
mining (Khodadadi et al. 2023). By converting the continuous search space to binary using sigmoid transfer functions and employing 
a wrapper-based approach with a K‑Nearest Neighbors classifier, binary arithmetic optimization algorithm outperformed Dipper 
Throated Optimization, particle swarm optimization (PSO), genetic algorithm (GA), and Satin Bowerbird Optimizer across 18 
University of California, Irvine benchmark datasets. The hybrid binary sine cosine weighted dipper throated optimization algorithm 
further demonstrated the effectiveness of combining complementary algorithmic strengths (Abdelhamid et al. 2023). In electromagnetic 
antenna design, machine learning ensemble models combined with metaheuristic optimization represent an advanced approach for 
metamaterial antennas (El-Kenawy et al. 2022). The success of these methodologies across renewable energy forecasting, feature selection, 
and antenna design validates the role of metaheuristic optimization techniques as fundamental tools for addressing complex engineering 
challenges under uncertainty, paralleling their effectiveness in aerospace trajectory optimization and robust design applications.

In this paper, the optimization problem is first considered by applying the payload mass maximization criterion as a cost 
function and three-dimensional equations of motion as the constraint equations. Then, the robust optimizer model is constructed 
by incorporating the mean and standard‑deviation parameters of the relevant uncertainties, including the SLV aerodynamic 
coefficients, dry mass, and engine thrust. In the following, four different metaheuristic optimization methods—the GA, PSO, grey 
wolf optimizer (GWO), and invasive weed optimization (IWO)—were utilized to optimize the model. Monte Carlo simulation 
for 300 iterations was used to analyze uncertainties and feed the information back to the optimizer model. 

At first, the problem is solved to design a robust optimal trajectory of a two-stage SLV. Then, assuming that the design of the 
first stage of SLV is already fixed, the design of the trajectory for the upper stage of this SLV proceeds using this method. To achieve 
this purpose, the remainder of the paper is organized as follows: The next section introduces the mathematical modeling of the 
SLV, followed by a detailed presentation of the optimization formulation, which is divided into two distinct cases: deterministic 
optimal and robust optimal formulations; the results of the simulations are discussed in a later section, and the paper concludes 
with a summary of the key insights and contributions in the final section.

MATHEMATICAL MODELING

Equations of Motion
In general, the equations of motion can be divided into two groups (Zipfel 2007): 1. Kinematic equations, which express the 

geometric relationship between the movement variables; 2. Dynamic (kinetic) equations, which are extracted using physical laws. 
The fundamental physical laws related to flight dynamics, Newton’s laws of motion and gravity, and aerodynamic principles are 
based on which forces, aerodynamic moments, and thrusters are calculated.
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The dynamic model employs a 3-degrees of freedom translational equations of motion, which describe the behavior of a 
variable-mass point within the rotating Earth-centered Earth-fixed reference frame. These equations are formulated to represent 
the translational position vector, denoted as [h; τ; λ]T, and the velocity vector, expressed as [V; γ·; Ψ·]T, both defined in spherical 
coordinates (Zardashti et al. 2020) (Eq. 1):
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where l represents longitude, τ denotes latitude, h is the altitude above mean sea level, V is the total velocity, γ is the flight path 
angle, ψ is the heading angle, m is the mass, r is the radial distance from the Earth’s center to the vehicle’s center of mass, ω is the 
Earth’s angular velocity, D is the drag force, L is the lift force, T is the thrust, Isp is the specific impulse, α is the angle of attack, and 
μ is the velocity roll angle (assumed to be zero in this manuscript).

Pitching Program for the SLV Trajectory
The SLV’s movement is guided, so a pitch angle is needed as a control function to meet flight requirements (Vinh 1981). These 

requirements include achieving the correct altitude and velocity for orbit while maintaining a trajectory angle of zero during 
orbital injection. The method is based on a table of changes of the flight path angle as a function of time, velocity, or altitude that 
the SLV follows, which is called preset guidance. This table is obtained by solving the flight equations of the SLV and applying the 
above rule, which is usually obtained in off-line mode. This program is presented in Eq. 2:

                                                                   ( )2 0
1

1 0

2 ;
2 2

t tt t t
t t

π πθ θ − = + − − =  − 
	 (2)

where t0 is the duration of the SLV’s vertical flight at the beginning of the trajectory, t1 is the time of the first staging, θ1 is the 
value of the pitch angle at this time, and tf is the burnout (final) time. These three parameters are achieved in the optimization 
design process.

Furthermore, for the angle of attack program, its equation based on the limitations of the angle of attack, which is affected by 
the problems of aerodynamic heating and structural loads, is determined in terms of time, as shown in Eq. 3:

                                                                         ( )0 0( ) ( )
max( ) 4 1a t t a t tt e eα α − − − −= − 	 (3)

where the αmax maximum allowable value of the angle of attack and α is the time constant of the change of the angle of attack, 
which depends on the type of launcher.

https://creativecommons.org/licenses/by/4.0/deed.en


J. Aerosp. Technol. Manag., v18, e0326, 2026

Robust and Optimal Trajectory Design of a Space Transportation System by Various Heuristic Optimization Methods 5

Aerodynamics
Aerodynamic forces exert a significant influence due to the interaction between air particles and the body of the vehicle. 

Among the critical factors influencing the aerodynamics of the SLV is the structural design of its shape. The forces and moments 
acting on the vehicle are primarily governed by aerodynamic coefficients, as referenced in Taheri et al. (2013). These coefficients 
determine the magnitude of drag, lift, and momentum forces. Equations 4–6 represent these forces:

                                                                                             b DD qS C= 	 (4)

                                                                                             b LL qS C= 	 (5)

                                                                                           A b mM qS lC= 	 (6)

in which the aerodynamic coefficients of CD and CL are obtained with respect to the Mach number and the angle of attack variations, 
given in Eq. 7 (Ghapanvary et al. 2021):

                                                                       ( , ), ( , )D D L LC C M C C Mα α= = 	 (7)

Gravity Model
The Earth is modeled as a rotating spherical body, with its surface defined by the mean sea-level radius, denoted as r0. The 

gravitational acceleration is assumed to vary with altitude, adhering to the inverse-square law, as detailed by Zheng et al. (2020) (Eq. 8):

                                                                                               20
0 ( )rg g

r
= 	 (8)

here, r0 represents the mean sea-level radius of the Earth, with a value of 6,371 km, and g0 denotes the standard gravitational 
acceleration at the Earth’s surface, defined as 9.80665 m·s–2.

Propulsion
The SLV is powered by engines utilizing UDMH/N2O4 as the propellant, which are integrated into the main body and distributed 

across two stages. The first stage operates until its propellant is fully expended, while the upper stage continues to burn until the 
payload is successfully inserted into its designated orbit, as outlined by Adami et al. (2017) (Eqs. 9–10):

                                                                                        ' ' '
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here, Ae denotes the exit area, and the prime symbol (′) indicates parameters corresponding to a single engine.

Calculation of orbital Velocity and inclination angle
Equation 11 is used to calculate the final velocity at the moment of injection in the target orbit (Shaver and Hull 1990):

                                                                 
1
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In addition, Eq. 12 is used to calculate the target orbit inclination angle:
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where τ is the latitude.
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OPTIMIZATION DESIGN PROBLEM

Genetic Algorithm Optimization
The GA has demonstrated strong effectiveness as an optimization technique for solving nonlinear problems. The process begins 

with a randomly generated initial population of candidate solutions. Individuals with higher fitness, as determined by the objective 
function, are then selected for reproduction. New generations are produced through genetic operations such as crossover and mutation, 
allowing the algorithm to explore the solution space and converge toward optimal solutions. This process is repeated several times 
until a certain number of generations have been run or until a solution that is considered optimal is reached. The parameters of an 
individual to be optimized are represented by a structure called chromosome and a binary coding is adopted (Rostami and Toloei 2015). 

Particle Swarm Optimization
The PSO is a population-based computational technique designed to solve optimization problems by iteratively improving 

candidate solutions based on a defined fitness measure. In PSO, a swarm of particles—each representing a potential solution—
navigates the search space by updating their positions and velocities according to simple mathematical rules.

The movement of each particle is influenced by its own best-known position and by the globally best-known position identified 
by the swarm. As particles explore the search space and discover superior positions, both individual and global best values are 
updated accordingly. This collective behavior enables the swarm to converge toward optimal or near-optimal solutions over 
successive iterations (Zhao et al. 2023).

Grey Wolf Optimization
The GWO is an algorithm that is inspired by the behavior of grey wolves in nature. This algorithm simulates the leadership 

hierarchy and hunting mechanism of grey wolves by employing four types of grey wolves—alpha, beta, delta, and omega (Mirjalili 
et al. 2014). Additionally, the algorithm implements the three main steps of hunting: searching for prey, encircling prey, and 
attacking prey (Talouki and Toloei 2025).

Invasive Weed Optimization
The invasive weed metaheuristic algorithm is an optimization algorithm based on population that aims to find the overall best 

solution of a given function through simulating the compatibility and randomness of a weed colony. This optimization algorithm 
is inspired by the behavior of weeds in a limited area, struggling for survival for a limited amount of time. Weeds are powerful 
grasses that grow aggressively and pose a serious threat to crops. 

They are highly resilient and adaptable to environmental changes. The algorithm aims to imitate the robustness, adaptability, 
and randomness of the weed community in nature (Mehrabian and Lucas 2006).

Figure 1 shows a flowchart of the robust optimization trajectory design with four optimization methods mentioned before.

UNCERTAINTY SOURCES

The sources of uncertainty throughout the life cycle, from the moment of its inception to the retirement of the aerospace 
vehicle, which affect the phase of design to flight, are categorized as follows (Zardashti et al. 2020):
•	 In the mission review phase, uncertainties arise from variability in the needs and requirements of the mission, the progress of 

science and technology, economic issues, investment priorities, and cultural and political factors.
•	 During the design phase, simulations are often used to make calculations. However, uncertainties can arise from these 

calculations. Three main factors contribute to the uncertainty of computational simulations. These factors are model input 
and output uncertainty, model structure and parameter uncertainty, and model error.

•	 In the construction phase, uncertainties arise from human and construction errors, etc.
•	 In the operation phase, uncertainties arise from operational conditions (environment).
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Therefore, in this work, some important parameters that have a direct effect on mass and energy characteristics, such as the 
SLV aerodynamic coefficients, dry mass, and engine thrust, are considered with their appropriate error (disturbed) values as 
uncertainty sources (Table 1).

Source: Elaborated by the authors.

Figure 1. Flowchart of the robust optimization trajectory design: a) GA, b) particle swarm (PSO), c) GWO, d) IWO.
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In the following simulation problem, the error is applied as a random process with a normal distribution. The normal 
distribution function is shown in Eq. 13:
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2
( )
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1( ; , ) ,
2
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f x e x
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σµ σ
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− −
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ROBUST OPTIMAL TRAJECTORY FORMULATION IN THE PRESENCE OF UNCERTAINTIES

Robust design seeks to minimize the influence of uncertainties or variations in design parameters on a vehicle’s performance, 
without requiring the complete elimination of these sources of variability (Niazi et al. 2024). Therefore, a robust optimal design 
shows decreased sensitivity to fluctuations in uncontrolled design parameters compared to a deterministic optimal design. A key 
element of robust design optimization is the formulation of the objective function. This is usually accomplished by calculating 
the mean and variance (or standard deviation) of the uncertain parameters. Generally, the mathematical framework for robust 
design optimization can be expressed as shown in Eq. 14:
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here, x represents the design variables, which may include both definite and indefinite parameters, while μf and σf denote the mean 
and standard deviation of the uncertain parameters, respectively.

In this study, the mean value of the problem is derived from the final altitude, final velocity, and flight path angle of both the 
SLV and the upper stage (Eq. 15):
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here, n represents the number of Monte Carlo simulations executed. The standard deviation of the final altitude, velocity, and 
flight path angle is expressed in Eq. 16:
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Table 1. Error value percentage of parameters.

Parameters Percentage of error

Aerodynamic
Aerodynamic coefficients 25%

Atmospheric / environmental (atmospheric density and air pressure) 5%
Engine Thrust 1.5%

Structural
Dry mass

1%
Manufacturing tolerances

Source: Elaborated by the authors.
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The proposed optimization framework aims to minimize the standard deviation of the final altitude, velocity, and flight 
path angle, treated as the first, second, and third objectives, respectively. Conversely, maximizing the payload mass is defined as 
the fourth objective. Consequently, the robust optimization problem is formulated as a weighted-sum multiobjective function, 
expressed in Eq. 17:

                                                                        1 2 3 4
1min

( ) 0
. .

f f f
h v

f

L U

find x

k k k k
m

g x
S t

x x x
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here, the weighting coefficients are assigned as follows: k1 = 10⁸, k2 = 10-3, k3 = 10-1, and k4 = 10³.
It should be emphasized that the selection of weighting coefficients with differing orders of magnitude was primarily aimed 

at ensuring a balanced contribution of the four performance criteria in the composite objective function. This adjustment was 
necessitated by the considerable disparities in both scale and magnitude of variation among the parameters—namely, final 
mass, altitude, velocity, and flight path angle. The weighting factors were determined according to the characteristic output 
range of each objective function and were empirically tuned to normalize the relative influence of each criterion within the 
optimization process.

Implementation of robust optimization algorithm 
In the problem of optimizing the robust design of the SLV or upper stage, the formulation presented was first used to 

model the problem. Moreover, to solve the optimization problem, four optimization methods (GA, PSO, GWO, and IWO) 
were used.

It should also be noted that the parameter values for each optimization algorithm were determined through an iterative 
trial-and-error process. To ensure reliable performance and adequate convergence behavior, these parameters were carefully 
tuned during preliminary simulation runs. A summary of the final parameter settings for each algorithm is presented 
in Table 2.

The complexity of the problem, as well as the Monte Carlo implementation, significantly increased the computational 
load, so the robust design optimization process required a very long time for continuous execution. The Monte Carlo method 
required the calculation of the mean and standard deviation of the objective function and the problem constraints. The main 
effect was an increase in computational load, which slowed down the optimization process (here, the number of Monte Carlo 
iterations is considered equal to 300). The constraints, along with the mean and standard deviation of the parameters required 
for implementing the robust design optimization method, are placed in an objective function after normalization using the 
penalty function method.

SIMULATION RESULTS

In order to show the effect of uncertainties on the SLV trajectory and the performance of optimization methods in the presence 
of uncertainties, simulation has been implemented in MATLAB-R2020b and tested on a PC with 2.5 GHz Intel Core i5 processor 
and 16 GB of RAM running the 64-bit Windows 11 operating system.

Additionally, to ensure the reliability of the developed MATLAB-based trajectory simulation code, a validation process was 
carried out by comparing its outputs to available flight data from real-world launch vehicles. The results demonstrated a high 
degree of agreement between the simulated trajectories and the actual flight data of the launch vehicles considered.
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In the following, the simulation is performed with two approaches: first, the problem is solved by designing a robust optimal 
trajectory of a two-stage SLV; then, assuming that the design of the first stage of the SLV is already fixed, the trajectory design for 
the upper stage of this SLV proceeds with this method. For the two approaches, the SLV final desired parameters are considered 
as follows (Eq. 18):

                                                                 g(x): [ 250fh Km= , 7600f
mV
s

= , 0f degγ = ]	 (18)

First approach (SLV simulation results)
In this approach, for designing a robust optimal trajectory of the SLV, the required parameters are presented in Table 3.

Table 2. Algorithm parameter tuning.

GA

Parameter Value

Population Size 100

Elite Count 5

Max Generations 20

Max Stall Generations 5

Function Tolerance 1e-2

Crossover Fcn @crossoverheuristic

Mutation Fcn @mutationadaptfeasible

Creation Fcn @gacreationuniform

PSO

Parameter Value

Function Tolerance Data 1e-6

Max Iterations Data 100

Min Neighbors Fraction Data 0.25

Self-Adjustment Weight Data 1.49

Social Adjustment Weight Data 1.49

Swarm Size Data 50

GWO

Parameter Value

Number of Iterations 150

Population Size (Pack Size) 100

IWO

Parameter Value

Initial Population Size 20

Maximum Population Size 100

Min Seeds Produced 0

Max Seeds Produced 5

Initial Standard Deviation 0.1

Final Standard Deviation 0.001

Number of Iterations 500

Source: Elaborated by the authors.
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Additionally, within this framework, the design parameter vector x comprises the initial burning time, the final burning time, 
and the pitch angle at the first staging, respectively. This vector can be expressed as shown in Eq. 19:

                                                                                    
1 2 1[ , , ]b bx t t θ= 	 (19)

The upper and lower bounds for the decision variable vector in the optimization problem are defined as in Eqs. 20 and 21:

                                                              
11 2

[ , , ] [130,350,23];(Sec, )
b b

L L L Lx t t Degθ= = 	 (20)

                                                              
11 2

[ , , ] [153,365,28];(Sec, )
b b

U U U Ux t t Degθ= = 	 (21)

The simulation of the SLV trajectory’s deterministic optimum and robust optimum using four optimization methods—GA, 
PSO, GWO, and IWO—has been completed. The simulation results have been presented in Table 4.

Table 3. The SLV parameters required for simulation.

Parameters Value

Total weight 102100 (kg)

1st stage thrust 1788000 (N)

2nd stage thrust 157000 (N)

1st stage burning time (t1) 365.4963 (s)

2nd stage burning time (tf) 153.5491 (s)

1st stage specific impulse (Isp1) 291.3 (s)

2nd stage specific impulse (Isp2) 303 (s)

Longitude –80.54

Latitude 28.5

Initial altitude 0 (km)

Source: Elaborated by the authors.

Table 4. The final SLV parameters in the three modes, the non-optimal, optimal, and the robust optimal.

Parameters
Basic 
pitch 

program

Optimal
(GA)

Optimal
(PSO)

Optimal
(GWO)

Optimal
(IWO)

Robust
Optimal

(GA)

Robust
Optimal
(PSO)

Robust
Optimal
(GWO)

Robust
Optimal
(IWO)

1st stage 
burning Time 

(t1), sec
134.0711 130.6637 131.6881 130 130.6385 131.0173 131.2 131 130.9361

2nd stage 
burning Time 

(tf), sec
358.9201 356.1636 350.1636 360 354.6958 350.9957 350 351.7865 352.724

1st stage 
pitch angle 
(θ1), deg

24.65 24.4596 23.8293 24.49 24.5897 23.8408 23.7606 23.7867 23.8321

Final mass 
(Mass At 
Seccend 
Stage 

Burnout)-(kg)

2920.33 3492.23 3236.18 3228.05 3545.07 3182.8 3115.74 3140.53 3150.29

Run Time
(Sec) - 56.33 101.2 270.1 400.4 1126.7 2726.1 9454.9 11,966.5

Source: Elaborated by the authors.
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During the execution of the SLV robust trajectory design simulation, uncertainties can cause differences in parameters, 
which results in a penalty in the optimization problem. As a result, the amount of propellant the launcher consumes in robust 
optimization is more significant than in deterministic optimization. Additionally, the first- and second-stage flight times differ in 
robust optimization. To illustrate this, Fig. 2 shows a comparison of different optimization methods.

Source: Elaborated by the authors.

Figure 3. comparison of the Satellite Launch Vehicle flight parameters for eight optimal and robust optimal design methods: 
a) Altitude, b) Velocity, c) Pitch angle(θ), d) Flight Path Angle(γ), e) Lift-off Mass.

Source: Elaborated by the authors.

Figure 2. Comparison of the SLV final mass calculated from the simulation of different optimization methods.

As illustrated in Fig. 3, the simulation results indicate that the SLV successfully achieved the target orbit under both the 
deterministic optimal and robust optimal approaches, with each method yielding specific final parameter values. Moreover, these 
images provide a comparison of the flight parameters for the eight optimal and robust optimal design methods.
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To demonstrate the impact of uncertainties listed in Table 1 on an optimal trajectory, a Monte Carlo simulation is used. The 
results of this simulation are presented in Figures 4 to 6 which show the Altitude, velocity, and Flight Path angle. The final Altitude 
has a standard deviation of roughly 31 km, indicating that a considerable amount of energy is needed to compensate for this Altitude.

Source: Elaborated by the authors.

Figure 4. The effect of uncertainties on SLV Altitude with deterministic optimal design.

Source: Elaborated by the authors.

Figure 5. The effect of uncertainties on SLV velocity with deterministic optimal design.

Source: Elaborated by the authors.

Figure 6. The effect of uncertainties on SLV Flight Path angle with deterministic optimal design.

0      50     100    150   200    250    300   350

0      50    100   150    200    250   300   350

0      50    100   150    200   250   300   350

Time (s)

Time (s)

Time (s)

A
lti

tu
de

 (
km

)
Ve

lo
ci

ty
 (
m

/
s)

Fl
ig

ht
 p

at
h 

an
gl

e 
(d

eg
)

300

250

200

150

100

50

0

8000

7000

6000

5000

4000

3000

2000

1000

0

100

80

60

40

20

0

-20

https://creativecommons.org/licenses/by/4.0/deed.en


J. Aerosp. Technol. Manag., v18, e0326, 2026

Arani SAS, Nosratollahi M, Abbasi Y, Adami AH14

The method of robust optimal design of the SLV trajectory, shown in Fig. 1, was evaluated for the impact of uncertainty using 
the objective function described in Eq. 14. The uncertainty analysis was performed through Monte Carlo simulation, as explained 
in Fig. 7 to 9. The standard deviation of the final altitude was found to be approximately 6 km.

Source: Elaborated by the authors.

Figure 7. Reducing the effect of uncertainties on SLV Altitude with robust optimal design.

Source: Elaborated by the authors.

Figure 8. Reducing the effect of uncertainties on SLV velocity with robust optimal design.

Source: Elaborated by the authors.

Figure 9. Reducing the effect of uncertainties on SLV Flight Path angle with robust optimal design.
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Based on Figs. 4 to 9, the impact of the robust optimal design can be observed through the Monte Carlo analysis. This 
impact is also reflected in Tables 5 and 6, which show the deviation from the standard in the deterministic optimum for the 
altitude parameter as 31 km, orbital velocity as 950 m·s–1, and flight path angle as 6.7°. However, in the robust optimum, 
the deviation from the standard for the altitude parameter is only 6 km, the orbital velocity is 100 m·s–1, and the flight 
path angle is 0.3°.

Table 5. Amount of deviation from the standard in uncertainty analysis for deterministic optimum.

Parameters 3 opt
hσ 3 opt

Vσ 3 opt
γσ

Value 31 (km) 950 (m·s–1) 6.7 (deg)

Source: Elaborated by the authors.

Table 6. Amount of deviation from the standard in uncertainty analysis for robust optimum.

Parameters 3 opt
hσ 3 opt

Vσ 3 opt
γσ

Value 6 (km) 200 (m·s–1) 0.3 (deg)

Source: Elaborated by the authors.

Therefore, the robustness of the optimal trajectory has caused the altitude error to be reduced by nearly 25 km and the error 
in the orbital velocity of 750 m·s–1, as well as this error in the flight path angle to be reduced by 6.4°. Finally, this analysis results 
demonstrates the positive impact of the robust design algorithm in reducing the final error due to uncertainties.

Second approach (Upper-stage simulation results)
In this approach, for designing a robust optimal trajectory of the upper stage of the mentioned SLV, the required parameters 

are presented in Table 7.

Table 7. The upper-stage parameters required for simulation.

Parameters value

Total weight 14900 (kg)

Upper-stage thrust 157000 (N)

Upper-stage burning time (t1) 200 (s)

Upper-stage specific impulse (Isp) 303 (s)

Longitude 55.1873

Latitude 36.2624

Initial altitude 65 (km)

Source: Elaborated by the authors.

Furthermore, in this methodology, the design parameter vector x consists of the upper stage burning time and the pitch angle 
at the first staging. This vector can be expressed as shown in Eq. 20:

                                                                                          1[ , ]
Ubx t θ= 	 (20)

The upper and lower bounds of the decision variable vector for the optimization problem are defined in Eqs. 21–22:
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                                                                      [ , ] [100,15];(Sec, )L L L
f fx t Degθ= = 	 (21)

                                                                     [ , ] [250,30];(Sec, )U U U
f fx t Degθ= = 	 (22)

After simulating the deterministic optimum and the robust optimum of the upper-stage trajectory with four optimization 
methods, GA, PSO, GWO, and IWO, the results of the simulation are presented in Table 8.

Table 8. The final upper-stage parameters in the three modes: the non-optimal, optimal, and the robust optimal.

Parameters
Basic 
pitch 

program

Optimal
(GA)

Optimal
(PSO)

Optimal
(GWO)

Optimal
(IWO)

Robust
Optimal

(GA)

Robust
Optimal
(PSO)

Robust
Optimal
(GWO)

Robust
Optimal
(IWO)

Upper-stage 
burning time 

(tf), s
226.8491 219.9245 220 220.591 221.9869 221.9891 221.64 223.880 224.193

Stage pitch 
angle (θ1), 

deg
22.05 22.5001 21.4 21.3222 21.1463 21.15 21.22 21.0076 20.861

Final mass 
(mass at 
end of 

burning)-(kg)

2951.16 3215.34 3268.18 3268.18 3215.34 3109.67 3162.51 3114.32 3098.47

Propellant 
consumption 11948.84 11684.66 11631.82 11631.82 11684.66 11790.33 11737.49 11785.6 11801.5

Run time
(s) - 8 9.2 18.8 60 268.2 447.8 1894.7 4796.4

Source: Elaborated by the authors.

By executing robust design simulation in the presence of uncertainties, the differences in parameters due to uncertainty cause a 
penalty in the optimization problem in such a way that the amount of propellant consumed by the launcher in robust optimization 
is more significant than the deterministic optimum, and the flight time also increases in robust optimization. This comparison 
and the result of different optimization methods are shown in Fig. 10.

Source: Elaborated by the authors.

Figure 10. Comparison of the upper-stage final mass calculated from the simulation of different optimization methods.
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According to the simulation results, Fig. 11 demonstrates that the upper stage of the launcher successfully reached the target 
orbit in both the deterministic optimal and robust optimal approaches, with distinct final parameter values observed in each case. 
The figure also shows the comparison of flight parameters for two deterministic and robust optimal approaches.

Source: Elaborated by the authors.

Figure 11. Comparison of the upper-stage flight parameters for eight optimal and robust optimal design methods: 
A) Altitude, B) Velocity, C) Pitch angle(θ), D) Flight Path Angle(γ), E) Lift-off Mass.

A Monte Carlo simulation is used to demonstrate the impact of uncertainties on an optimal trajectory (Table 1). The results 
are analyzed and presented in Figs. 12–14, which show the altitude, velocity, and flight path angle. The final altitude has a standard 
deviation of approximately 22 km, meaning that a significant amount of energy is required to compensate for this orbital altitude.

Source: Elaborated by the authors.

Figure 12. The effect of uncertainties on upper-stage altitude with deterministic optimal design.
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Due to applying the robust optimal design of the upper-stage trajectory, as depicted in Fig. 1, the impact of uncertainty on the 
design was evaluated using the objective function outlined in Eq. 14. The uncertainty analysis was carried out using Monte Carlo 
simulation, as detailed in Figs. 15–17. The standard deviation of the final Altitude was determined to be approximately 5 km.

Source: Elaborated by the authors.

Figure 13. The effect of uncertainties on upper-stage velocity with deterministic optimal design.

Source: Elaborated by the authors.

Figure 14. The effect of uncertainties on upper-stage flight path angle with deterministic optimal design.

Source: Elaborated by the authors.

Figure 15. Reducing the effect of uncertainties on upper-stage altitude with robust optimal design.
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Based on Figs. 12–17, the impact of the robust optimal design can be observed through the Monte Carlo analysis. This impact 
is also reflected in Tables 9 and 10, which show the deviation from the standard in a deterministic optimum for the altitude 
parameter as 22 km, orbital velocity as 800 m·s–1, and flight path angle as 2.03°. However, in the robust optimum, the deviation 
from the standard for the altitude parameter is only 5 km, orbital velocity is 150 m·s–1, and flight path angle is 0.17°.

Source: Elaborated by the authors.

Figure 16. Reducing the effect of uncertainties on upper-stage velocity with robust optimal design.

Source: Elaborated by the authors.

Figure 17. Reducing the effect of uncertainties on upper-stage flight path angle with robust optimal design.

Table 9. Amount of deviation from the standard in uncertainty analysis for deterministic optimum.

Parameters 3 opt
hσ 3 opt

Vσ 3 opt
γσ

Value 22 (km) 800 (m·s–1) 2.03 (deg)

Source: Elaborated by the authors.

Table 10. Amount of deviation from the standard in uncertainty analysis for Robust optimum.

Parameters 3 opt
hσ 3 opt

Vσ 3 opt
γσ

value 5 (km) 150 (m·s–1) 0.17 (deg)

Source: Elaborated by the authors.
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Therefore, the robustness of the optimal trajectory has caused the altitude error to be reduced by nearly 17 km and the error in 
the orbital velocity of 650 m·s–1, as well as this error in the flight path angle to be reduced by 1.86°. Ultimately, the analysis results 
can demonstrate the efficiency of the robust design algorithm’s performance.

CONCLUSION

In practical flight scenarios, the performance of a SLV often deviates from deterministic simulation results due to inherent 
design uncertainties and external disturbances encountered during the ascent phase. To improve mission success rates, it is 
essential to account for these uncertainties during the design phase. A critical element of this approach is the development of a 
robust trajectory, which mitigates control system complexity and reduces the operational load on actuators. By addressing these 
factors systematically, the overall reliability and efficiency of the mission can be substantially enhanced.

This study evaluates four metaheuristic robust optimization algorithms—GA, PSO, GWO, and IWO—to optimize the pitch 
program, aiming to enhance the robustness of the SLV and its upper stage against existing uncertainties.

It is crucial to identify an optimal trajectory that is robust against uncertainties. This leads to better flight performance, reduced 
steering-control system workload, and increased SLV reliability.

To achieve the objective, a comprehensive analysis was conducted to design an effective and efficient trajectory for a two-
stage SLV. This entailed developing an optimal trajectory for both stages of the SLV. Then, the upper stage trajectory was designed 
assuming that the trajectory for the SLV’s first stage had already been fixed and could not be changed. The goal was to ensure that 
the final trajectory of the SLV and upper stage was robust, safe, and optimized for maximum payload mass, with three-dimensional 
equations of motion as constraint equations.

Based on the simulation results, it is evident that the first approach is more efficient. This is because the trajectory of the 
first stage of the SLV can be designed and adjusted, enabling better optimization. The percentage of improvement in the robust 
optimization methods is higher in the first approach.

According to the first approach, the IWO algorithm delivered the best deterministic performance, achieving the highest payload 
of 3545.8 kg, while the GA provided the most robust optimization outcome with a payload of 3182.8 kg. In the second approach, 
the deterministic optimization yielded the best results using PSO and GWO, both attaining payloads of 3268.9 kg, whereas for 
robust optimization, PSO achieved the most efficient result with a payload of 3162.5 kg.

A deeper evaluation of algorithmic complexity, convergence behavior, and scalability shows that PSO achieved the fastest 
convergence and lowest computational cost (≈ 100 s for the full SLV and ≈ 9 s for the upper-stage deterministic run); GA 
exhibited moderately fast but stable convergence (≈ 56 and 8 s for deterministic cases, respectively), maintaining consistency in 
both deterministic and robust modes; GWO demonstrated balanced but slower convergence (≈ 270 s and 19 s for deterministic 
runs), while IWO required the highest computational effort due to its iterative seed propagation process (≈ 400 s and 60 s for 
deterministic runs). Under robust conditions, the computational load increased significantly; GA and PSO reached acceptable 
results after < 3,000 s, whereas GWO and IWO required > 9,000 s and > 11,000 s respectively.

Overall, GA achieved the best trade-off between robustness and precision, maintaining smaller deviations in altitude and 
orbital velocity under uncertainty, while PSO delivered superior speed and computational efficiency, suitable for preliminary 
trajectory design. GWO proved algorithmically scalable and accurate but slower, and IWO, though the most thorough, exhibited 
the highest complexity and least scalability. These findings validate that convergence speed and robustness are inversely correlated: 
algorithms with greater population diversity (like GA) ensure higher stability against uncertainty at the cost of execution time, 
whereas swarm-based methods (like PSO) yield faster solutions but are more sensitive to local minima.

The optimizer model was subjected to Monte Carlo simulation for 300 iterations to account for uncertainties and improve the 
optimization process. The simulation results showed that the robust optimal trajectory improved the altitude error of the upper 
stage by nearly 77%, the orbital velocity error by 68%, and the flight path angle error by nearly 90%. Similarly, for the SLV, the 
robust optimal trajectory improved the altitude error by nearly 80%, the orbital velocity error by 78%, and the flight path angle 
error by nearly 95% in the presence of uncertainties. Based on the simulation results, it can be concluded that the claim is valid.
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Considering the simulation execution time and based on Tables 4 and 8, it should be acknowledged that the results are similar 
across almost all methods. However, some of the methods used in this study reach the solution in significantly shorter times 
compared to others.

Finally, it is suggested that GA and PSO methods be used in research because they provide acceptable answers and the time 
to reach the answer.
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