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ABSTRACT
Unmanned aerial vehicles (UAVs) rely heavily on the global navigation satellite system (GNSS) for accurate localization. However, 

GNSS signals are often unavailable or unreliable in contested or cluttered environments. This study presents the optimized pose 
prediction and cross-view (OPsCV), a robust and adaptable navigation framework that integrates deep inertial odometry with a 
simulated cross-view geolocalization module through an error-state Kalman filter. The system enables dynamic switching from 
GNSS-based positioning to a fused solution that combines inertial and vision-based estimates as GNSS signal quality degrades. 
The framework was evaluated using real UAV flight data under persistent GNSS denial, with results demonstrating reliable pose 
estimation and improved positioning accuracy compared to the UAV’s internal navigation system. The OPsCV method maintained 
performance even with sparse cross-view updates, confirming its resilience under conservative operational conditions. These 
findings highlight the potential of fusing learned inertial measurements with statistical vision-based localization for autonomous 
aerial navigation in GNSS-denied environments.

Keywords: Unmanned Aerial Vehicle; Inertial-visual navigation; Air-ground collaboration; Deep inertial odometry; Cross-view 
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INTRODUCTION

The use of unmanned aerial vehicles (UAVs), also known as unoccupied aerial vehicles (Joyce et al. 2021), has grown rapidly 
over the past few decades due to their stability, flexibility, and broad applicability. The UAVs are widely used in defense, agriculture, 
mapping, and various civil and environmental applications (Ab Rahman et al. 2019; Afraimovich et al. 2000; Cobb et al. 1995; Li 
et al. 2025; Velusamy et al. 2021; Williams 2024; Zhou et al. 2024).

Many outdoor UAV applications require fully autonomous navigation, which depends on integrating multiple sensors and 
systems that must operate consistently, robustly, and harmoniously (Chang et al. 2023). Global navigation satellite systems (GNSS), 
including the Global Positioning System (GPS) (United States of America), GLONASS (Russia), Galileo (European Union), BeiDou 
(China), NavIC (India), and QZSS (Japan), are the primary real-time geospatial localization systems (Hegarty and Chatre 2008). 
However, GNSS signals are often vulnerable to jamming, spoofing, and other types of interference or denial (Afraimovich et al. 2000; 
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Almeida et al. 2021; Allauddin et al. 2019; Chiella et al. 2019; Cobb et al. 1995; Torres et al. 2020; Xia et al. 2018; Xu et al. 2023; 
Yi et al. 2025; Yue et al. 2025). For UAVs, accurate localization is critical to mission success and autonomy, and this challenge can 
be addressed through the integration of inertial and visual navigation systems.

Inertial navigation, particularly when powered by tactical-grade inertial measurement units (IMUs) or high-precision sensors 
(Huang et al. 2023), offers a feasible solution for short-duration or small-scale trajectory estimation. However, consumer-grade 
IMUs often suffer from rapid drift in position estimates (Chen et al. 2018b; Li et al. 2012).

To mitigate this drift, deep learning techniques, particularly deep neural networks (DNNs), have demonstrated promising 
results in modeling inertial motion (Brossard et al. 2019; Chen et al. 2018b; Cortes et al. 2018; Esfahani et al. 2020a; T Wang et al. 
2022; Zhou et al. 2022). Deep inertial odometry (DIO) models enable dead-reckoning-based pose estimation using only low-cost, 
off-the-shelf sensors. However, due to the cumulative nature of inertial drift, DIO solutions are generally limited to short-range 
or short-duration navigation tasks (Chen et al. 2018b; Esfahani et al. 2020b; Kim et al. 2021). Long-distance navigation remains 
challenging, as DIO models can reduce the drift amplitude but cannot eliminate it.

Another common approach for UAV navigation is vision-based localization, including techniques such as visual odometry 
(Bhowmick et al. 2021; Dantas 2023; Loianno et al. 2016; Romero et al. 2013; Roos 2018; Xie et al. 2021) and landmark recognition 
(Goltz et al. 2016; Nemra and Aouf 2009; Yang et al. 2022). These methods rely on images captured in flight to estimate global 
position. However, visual navigation methods can be constrained by payload, power, and computational requirements, limiting 
their use in smaller or resource-limited UAV platforms (Giubilato et al. 2020).

A recent advancement in visual navigation is the methodology based on cross-view geolocalization, which involves aligning 
images captured from different perspectives, typically ground-level and aerial views, that depict the same geographic location. 
This technique is often employed in collaborative multi-agent systems (Fervers et al. 2023a; b; Xia et al. 2024; S Zhu et al. 2022). 
The task presents significant challenges, such as extreme viewpoint variation, changes in lighting, occlusions, and seasonal 
differences, all of which must be addressed to reliably match ground-level images with satellite or aerial imagery (Ge et al. 2024; 
Liu and Li 2019; Zhu et al. 2021a). Cross-view geolocalization thus enables vision-based localization from a ground-based system 
to aid or enhance aerial navigation.

Despite advances in inertial and vision-based localization, no existing system robustly integrates the DIO and cross-view 
geolocalization into a unified framework for UAV navigation in GPS-denied environments. This gap motivates our proposed 
solution. In light of the growing interest in alternatives to simultaneous localization and mapping (SLAM) for outdoor UAV 
navigation, a robust sensor fusion framework that combines the DIO with cross-view geolocalization was proposed.

This work builds on our previous developments of both the DIO model and the cross-view geolocalization system, introduced 
and evaluated in earlier studies (Xavier et al. 2025a; b). The DIO model was trained on real UAV flight data using off-the-shelf 
IMU sensors. For the vision-based component, the statistical performance characteristics of a cross-view geolocalization model, 
including its mean localization error and uncertainty, which were previously derived from image-based experiments, are leveraged. 
In the proposed system, named optimized pose prediction and cross-view (OPsCV), the DIO module provides continuous motion 
estimation, while the statistical parameters of the cross-view model are used to inform drift correction. These two components 
are fused using a classic Kalman filter (KF), a well-established and interpretable method for multi-sensor integration.

The OPsCV approach is validated using post-processed IMU data from a real-world outdoor UAV flight conducted in 
collaboration with the Brazilian Air Force. A real-time kinematic (RTK) system provides ground truth for evaluation, while the 
cross-view error model informs the correction process during fusion. The statistical performance of the cross-view module to assess 
its impact on the fused system was analyzed. This evaluation builds upon earlier work, in which the DIO and cross-view systems 
were independently developed and validated. The present study confirms the robustness and practical value of the integrated 
framework for UAV navigation in GPS-denied scenarios.

In summary, the main contributions of this work are:
• To the best of the authors’ knowledge, this is the first integration of a DIO model with a cross-view geolocalization-based error 
model, using statistical performance metrics to inform an error-state KF (ESKF) for outdoor UAV navigation in GPS-denied 
environments.
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• The implementation of a dynamic switching mechanism that transitions planar position estimation from GNSS to fused 
DIO and cross-view updates when GPS signal quality degrades.
• A demonstration of how the complementary strengths of previously developed DIO and cross-view models can be effectively 
leveraged through integration.
• Validation of the proposed system using post-processed flight data from a real UAV mission conducted in collaboration with 
the Brazilian Air Force, confirming its performance and practical applicability.

DEEP INERTIAL ODOMETRY

The DIO has emerged as a promising solution to address the limitations of traditional inertial navigation systems, particularly 
the drift and error accumulation encountered in pedestrian dead reckoning (PDR). Before the adoption of DNNs, classical 
approaches such as strapdown inertial navigation algorithms (Savage 2007), KFs (Chui and Chen 2017; Huang and Dissanayake 
2007; Kalman 1960), and particle filters (Berntorp et al. 2019) were commonly used to mitigate model uncertainty and sensor 
noise. These methods estimate position and velocity by integrating accelerometer and gyroscope data but are especially prone to 
drift over time, particularly when using low-cost sensors.

To improve robustness, hybrid approaches have emerged that integrate KFs with neural networks. In such systems, the network 
predicts or corrects sensor errors, enhancing navigation performance even with low-cost IMUs (Al-Sharman et al. 2020; Cohen 
and Klein 2024; Or and Klein 2022; Zou et al. 2020).

One of the earliest fully deep learning-based DIO models is the inertial odometry network (IONet) (Chen et al. 2018b), 
which specifically addressed drift in low-cost inertial sensors for pedestrian tracking. Since then, various architectures have been 
proposed, including long short-term memory (LSTM) networks (Chen et al. 2019; Esfahani et al. 2020a; Gong et al. 2021; Kim et al. 
2021; Sun et al. 2021; Wagstaff et al. 2020), support vector machines (SVMs) (Yan et al. 2018), multilayer perceptrons (MLPs) 
(Wang et al. 2023), and other DNNs (Chen and Pan 2024). These models aim to improve odometry accuracy by enhancing sensor 
data processing, reducing noise, and correcting accumulated error.

Building on the Oxford Inertial Odometry Dataset (OxIOD) (Chen et al. 2018b), which includes data from smartphones carried 
in various ways (in hand, in a bag, on a trolley, or in a pocket), several extensions were developed, including MotionTransformer 
(Chen et al. 2019) and the Nine-Axis Extended IONet (Kim et al. 2021). Other research has focused on domain-specific assumptions 
such as zero-velocity updates (Brossard et al. 2019; Cortes et al. 2018; Wagstaff et al. 2020; Yu et al. 2019), heading estimation 
(Wang et al. 2019), sensor noise mitigation (Brossard et al. 2020; Wang 2021), and sensor fusion techniques (Gong et al. 2021; 
Sun et al. 2021; Wang et al. 2020).

While most DIO studies focus on pedestrian scenarios, some have extended these techniques to other platforms such as vehicles 
(Brossard et al. 2019; 2020; Tang et al. 2022), legged robots (Buchanan et al. 2021), and UAVs (Esfahani et al. 2020a; b; Zhang 
et al. 2021). Across these platforms, drift and related challenges persist, particularly when using low-cost, off-the-shelf sensors. 
The UAVs face additional challenges due to their operation in three-dimensional space, nonlinear and underactuated dynamics, 
and natural instability.

Moreover, most UAV datasets include only accelerometer and gyroscope data, often omitting the magnetometer, which is 
essential for accurate attitude estimation, particularly yaw, by resolving ambiguities that cannot be addressed by inertial sensors 
alone. In this study, three UAV-specific models based on LSTM architectures, trained on real-world outdoor flight data, were 
analyzed. These models were previously developed and evaluated in our earlier work (Xavier et al. 2025b), and this study builds 
upon that foundation as a natural continuation of previous research.

Cross-view geolocalization
Cross-view geolocalization is a rapidly advancing field with applications across various domains, including automotive 

(Hu and Lee 2019; Zhao et al. 2023; Zhou and Krahenbuhl 2022), aerospace (Cui et al. 2023; Shetty and Gao 2019), and robotics 
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(Ye et al. 2022), among others (Durgam et al. 2024; Wilson et al. 2023). The two predominant strategies for estimating global 
positions are based on convolutional neural networks (CNNs) and transformers.

The CNN-based approaches extract features from aerial and ground-view images and learn the correspondence between 
these two feature spaces (Cao et al. 2018; Shi et al. 2020; Workman et al. 2015; Xia et al. 2024). A notable advancement is the 
spatial-aware feature aggregation (SAFA) method (Shi et al. 2020), which introduced polar transformations to facilitate alignment 
between ground and aerial views. Several subsequent works have built upon this concept (Shi et al. 2020; 2022; Zhu et al. 2021a). 
Generative adversarial networks (GANs) have also been used to improve feature extraction through synthetic augmentation, 
increasing robustness and generalization (Regmi and Borji 2019; Regmi and Shah 2019; Toker et al. 2021; Wu et al. 2022).

In contrast, transformer-based models bypass the need for polar transformations and extensive data augmentation. 
The TransGeo (S Zhu et al. 2022) demonstrated that transformers can reduce computational demands, including GPU usage and 
inference time, while maintaining high accuracy. This finding has inspired the development of fully transformer-based models 
(Fervers et al. 2023a; b; Dai et al. 2022; Rodrigues and Tani 2023), as well as hybrid architectures combining transformers and 
CNNs (Shi et al. 2023; Y Wang et al. 2022; Zhao et al. 2023).

Cross-view geolocalization methods also benefit from principles of image retrieval, where localization is achieved by matching 
features based on image similarity (Xia et al. 2024). Recent methods such as GeoDTR (L Zhang et al. 2023) and the feature 
recombination module (FRM) (Zhang and Zhu 2024) enhance spatial alignment by leveraging improved feature representations. 
Alternatively, Sample4Geo (Deuser et al. 2023) focuses on optimizing the architectural pipeline for more robust performance.

Datasets such as CVUSA (Workman et al. 2015), CVACT (Liu and Li 2019), VIGOR (Zhu et al. 2021b), and the Brooklyn 
and Queens subsets (Workman et al. 2015), among others (Wilson et al. 2023), provide diverse ground-view images from 
arbitrarily distributed locations. These datasets pose challenges for models relying on spatial alignment, especially those using 
polar transformations (Xia et al. 2024; Y Zhu et al. 2021; S Zhu et al. 2022).

Combining semantic segmentation with cross-view geolocalization has emerged as an effective strategy to address variability 
in scene content and appearance. Segmentation can simplify neural network architectures, support parallelization, and enable 
real-time operation (Elhashash and Qin 2022; Zhang et al. 2024; Zhou and Krahenbuhl 2022. Semantic maps also allow for 
filtering out dynamic or transient elements such as vehicles, pedestrians, foliage, and seasonal color variations (Elhashash and 
Qin 2022; Y Zhu et al. 2022). Pseudo-segmentation techniques have been applied to align satellite images and bird’s-eye view 
representations (Dai et al. 2022; Wang et al. 2023), while pseudo-labeled pose estimation has improved localization accuracy 
across heterogeneous data sources (Fervers et al. 2023a; Xia et al. 2022; 2024). Additionally, integrating sequential ground-view 
images and segmented satellite imagery into visual odometry frameworks has led to better pose estimation (Balaska et al. 2022). 
Most recently, the CVLocationTrans model (Yuan et al. 2024) introduced a fine-grained cross-view approach by combining self-
attention and cross-attention layers. In this architecture, features are first extracted via ResNet50, then fused to establish spatial 
correspondences, followed by classification and regression heads for final position prediction.

Research applying true semantic segmentation to satellite images for cross-view geolocalization remains limited and was initially 
developed in previous work (Xavier et al. 2025a), specifically using aerial segmentation as ground truth. In that study, a method 
was proposed, in which semantic segmentation maps were used to guide location estimation, even when the street-view samples 
were not spatially aligned with the satellite imagery. The approach was designed to be adaptable to various cross-view datasets.

In this manuscript, the statistical performance results obtained in our previous work are expanded upon. As the current study 
relies on proprietary data provided by the Brazilian Air Force, access to the corresponding images required to implement the full 
cross-view geolocalization pipeline is not available. Therefore, the performance of the visual-based module by using GNSS-RTK 
measurements combined with the statistical parameters derived from our prior experiments was simulated (Xavier et al. 2025a; b). 
These estimated location outputs are then used as inputs to an integrated solution for UAV navigation in GPS-denied environments.

Air-ground collaboration
Collaborative robotics combines multiple intelligent agents to address challenges in complex environments, including physical 

constraints and multi-task execution (C Liu et al. 2022). Air-ground collaboration, in particular, is implemented to compensate 
for the individual limitations of UAVs, unmanned ground vehicles (UGVs), or both.
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The UAVs are widely adopted due to their relatively low manufacturing cost and high operational flexibility. However, their 
payload capacity and battery life are limited, restricting the use of heavy equipment or computationally intensive systems (Giubilato 
et al. 2020; C Liu et al. 2022). UAVs also face sensor performance limitations caused by environmental factors such as proximity 
to buildings, signal interference, and poor coverage in certain areas (Bhowmick et al. 2021; Miller et al. 2022; Ran et al. 2021). 
In contrast, ground platforms offer larger payload capacity, enabling the integration of more powerful computers and complex 
operational systems for long-duration missions. However, they are constrained to a limited field of view and reduced onboard 
sensing capabilities.

By recognizing these complementary strengths and limitations, air-ground collaboration can support a range of strategies, 
including perspective sharing (D Liu et al. 2022; Miller et al. 2022; X Zhang et al. 2023), planning and decision-making (Duan et al. 
2019; Korsah et al. 2013; Peng et al. 2019; Yan et al. 2013; Ulmer and Thomas 2018), and coordinated motion or goal achievement 
(Dong and Hu 2016; Ke et al. 2023; Mohiuddin et al. 2020; Parker 2009), among others (C Liu et al. 2022).

Effective air-ground collaboration often relies on sensor fusion techniques that integrate data from heterogeneous sources 
such as IMUs, cameras, and radar systems (Jin et al. 2024). These systems typically involve architectural considerations such as 
sensor availability, communication bandwidth, and time synchronization. Based on these factors, various algorithms, such as KFs 
(Carrillo-Arce et al. 2013; Ko et al. 2018; Rigatos 2012; Shen et al. 2017), graph-based optimization methods (Wen et al. 2020; 
Xu et al. 2022), and particle filters (Minetto et al. 2020; Sottile et al. 2011; Zocca et al. 2021), can be employed to enable reliable 
multimodal state estimation. In this study, a KF was adopted due to its robustness, interpretability, and real-time applicability for 
fusing motion- and vision-based localization estimates was adopted.

An air-ground collaborative scenario was conceptualized in which a ground-based system supports the UAV by handling 
computationally intensive geolocation tasks. This system captures and processes ground-level imagery to aid aerial localization via 
cross-view geolocalization. Building upon the previously described DIO and cross-view modules, a fused system integrating the 
DIO and a simulated cross-view correction through a KF was evaluated, forming a practical and continuous localization solution 
for UAV navigation in GPS-denied environments.

PROBLEM STATEMENT

In a UAV mission, GPS-denied scenarios can occur for various reasons, such as environmental obstructions or intentional 
signal jamming. Yet the mission must still be completed using alternative methods. The UAV is equipped with a Nine-Axis IMU, 
including accelerometers, gyroscopes, and magnetometers, operating at a fixed frequency of 100 Hz. This sensor exhibits noise 
and bias characteristics comparable to widely available commercial units.

During the mission, the UAV captures nadir-oriented aerial images, with each image’s center aligned to the UAV’s latitude 
and longitude. The cross-view geolocalization module relies on ground-level imagery obtained in one of two ways: (i) real-
time capture by a mobile ground vehicle equipped with an imaging system operating collaboratively with the UAV, or (ii) 
pre-captured and georeferenced images from existing databases covering the operational area. In both cases, this ground-level 
dataset is paired with aerial imagery to enable absolute position estimation without GNSS. When real-time ground capture is 
available, the processing can be offloaded to the ground system; otherwise, the UAV performs the processing onboard using 
its preloaded dataset.

The proposed solution combines the DIO, which estimates the UAV’s pose from IMU data, with simulated cross-view geolocation 
data derived from one of the two acquisition modes described above. These are fused using a KF to provide robust pose estimation 
and enable autonomous aerial navigation in environments where GPS signals are unavailable.

Implementation details
Figure 1 presents an overview of the proposed method addressing the previously stated problem. This study focuses on UAV 

autonomous navigation in GPS-denied environments, integrating inertial odometry and cross-view geolocalization into a unified 
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framework. IMU data are processed using the DIO model, responsible for propagating the UAV’s state in a KF and predicting 
its location.

Source: Elaborated by the authors.

Figure 1. Proposed UAV navigation framework for GPS-denied environments. The OPsCV integrates onboard inertial navigation 
via DIO processing IMU data with a simulated ground-based cross-view geolocalization module. A KF fuses IMU and location 

estimates to enhance navigation accuracy.
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In parallel, a simulated cross-view geolocalization module has access to the UAV’s nadir-oriented aerial images as well as 
geotagged street-view images that spatially overlap with the aerial images. It estimates the absolute position corresponding to the 
center of each nadir-oriented aerial image. This estimated position is then used by the KF as a measurement update, refining 
the predicted pose.

Due to the proprietary nature of the image dataset provided by the Brazilian Air Force, the cross-view module was implemented 
as a simulation using the statistical performance obtained from our previous work (Xavier et al. 2025a). The objective was to evaluate 
the feasibility and performance of this integration under realistic operational conditions, emphasizing practical implementation 
aspects in a GPS-denied scenario.

Unmanned aerial vehicle flight data
The UAV flight data used to validate this work was collected using a DJI Matrice 600 Pro hexacopter (DJI 2022), equipped 

with an A3 flight control system, multiple IMUs, GPS, and GNSS-RTK. The flight was conducted during the General Integrated 
Exercise for Emergency Response and Nuclear Physical Security (Exercício Geral Integrado de Resposta à Emergência e Segurança 
Física Nuclear) in 2023, in Angra dos Reis, Brazil, coordinated by the Brazilian Air Force (Cunha 2017). While a government press 
release (GSI 2023) provides general context for the exercise, this manuscript focuses on the technical aspects relevant the present 
study. Further details regarding the flight setup, model configurations, sensor settings, and related information can be found in 
our previous work (Xavier et al. 2025b).

Kalman filter
The KF, introduced by Rudolph Emil Kalman, in 1960 (Kalman 1960), is widely regarded as one of the most important 

tools for state estimation in dynamic systems. Based on statistical and probabilistic foundations, the algorithm seeks to provide 
optimal estimates of a system’s states, even in the presence of uncertainty and noise (Chui and Chen 2017). Its significance is well 
documented and is considered a landmark theoretical development in the fields of estimation and control (Teixeira et al. 2010).
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The filter operates by modeling linear dynamic systems subject to stochastic noise. Its classical formulation considers a state-
space model described by Farrell and Farrell (2008):

                                                                              	 (1)

                                                                                         	 (2)

where , , and  represent the state, observation, and control input vectors, respectively. The term  
denotes the process model noise, and  represents the sensor measurement noise. The matrices  and  
define the state transition and observation matrices, respectively, while  describes the control input model. All components 
are indexed by the discrete time step k.

The UAV’s states are denoted as , where  and θ represent the UAV’s position and orientation, respectively, in 
the global frame. The KF also considers the process and measurement noise are assumed to be zero-mean Gaussian and mutually 
independent:

                                                                                           	 (3)

                                                                                          	 (4)

where  is the process noise covariance matrix and  is the measurement noise covariance matrix.
The KF operates in two main stages: prediction and update.
Prediction step: In the prediction phase, the state and expected output are estimated based on information available up to the 

previous time step. For linear systems, this step is defined as:
                                                                          	 (5)

                                                                            	 (6)

The notation  refers to a prior estimate (based on data from step ), while  refers to a posterior estimate 
(after incorporating the current measurement).

The prediction of the state covariance matrix Pk is given by:

                                                                     

 

 

The UAV’s states are denoted as 𝑥𝑥� � �𝑝𝑝�, 𝜃𝜃���, where 𝑝𝑝 and 𝜃𝜃 represent the UAV’s 

position and orientation, respectively, in the global frame. The KF also considers the 

process and measurement noise are assumed to be zero-mean Gaussian and mutually 

independent: 

 

𝑤𝑤� ∼ 𝑁𝑁�0,𝑄𝑄��, (3) 

 

𝑣𝑣� ∼ 𝑁𝑁�0,𝑅𝑅��, (4) 

 

where 𝑄𝑄� ∈ 𝑅𝑅��� is the process noise covariance matrix and 𝑅𝑅� ∈ 𝑅𝑅��� is the 

measurement noise covariance matrix. 

The KF operates in two main stages: prediction and update. 

Prediction step: In the prediction phase, the state and expected output are estimated based 

on information available up to the previous time step. For linear systems, this step is 

defined as: 

 

𝑥𝑥�|��� � 𝐹𝐹�𝑥𝑥���|��� � ��𝑢𝑢�, (5) 

 

𝑦𝑦�|��� � ��𝑥𝑥�|���. (6) 

 

The notation �. ��|��� refers to a prior estimate (based on data from step � � 1), while 

�. ��|� refers to a posterior estimate (after incorporating the current measurement). 

The prediction of the state covariance matrix 𝑃𝑃� is given by: 

 

𝑃𝑃�|��� � 𝐹𝐹�𝑃𝑃���|���𝐹𝐹� � 𝑄𝑄�.  (7) T
	 (7)

Update step: Given a new sensor measurement zk, the innovation (or residual) rk is computed as the difference between the 
actual and predicted outputs:

                                                             	 (8)
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In the proposed framework, the cross-view geolocalization module generates a discrete probability distribution (DPD) over 
candidate ground locations, with the peak value indicating the most likely position where the ground-level image was taken. 
Since each ground image is geotagged, it is possible to estimate the corresponding aerial view center point, which is treated as 
the predicted UAV position. This information serves as a global position measurement zk and is used to correct the drift from the 
inertial prediction within the KF.

Additional sensor inputs, such as magnetometer data, can be incorporated into the measurement model to improve orientation 
updates and enhance overall pose estimation. By combining magnetometer and accelerometer readings, it is possible to estimate 
all attitude angles, with particular emphasis on yaw, as it is the most critical for navigation.

This residual is then used to correct the predicted state:

                                                                         	 (9)

where, Kk is the Kalman gain, which optimally weights the residual to minimize estimation error. It is computed as:

                                                                                  T 	 (10)

where Sk is the innovation covariance:

                                                                         T 	 (11)

Finally, the state covariance matrix is updated:

                                                                     	 (12)

The KF enables robust state estimation for IMU-based navigation systems, even in the presence of sensor noise and uncertainty. 
The following sections describe its real-world implementation, highlighting challenges such as initialization, calibration, and 
long-term accuracy degradation.

Deep inertial odometry model
Three DIO models were considered: IONet, AbolDeepIO, and Nine-Axis Extended IONet, all adapted to use Nine-Axis IMU 

sensor data as input and trained specifically for UAV systems. The performance of each model is presented in our previous work 
(Xavier et al. 2025b).

The original IONet model (Chen et al. 2018a) is a deep inertial solution that proposes a planar error reduction method for 
low-cost inertial sensors, originally applied to pedestrian tracking. This solution utilizes a single LSTM cell, which retains temporal 
information from 200 sequential data frames to track movement and heading variations.

The original AbolDeepIO (Esfahani et al. 2020a) is the first DIO solution developed for UAVs, using the indoor ASL EuRoC 
MAV dataset (Burri et al. 2016). Similar to IONet, this model relies solely on accelerometer and gyroscope sensors.

Finally, the Nine-Axis Extended IONet (Kim et al. 2021) incorporates magnetometer data to enhance attitude tracking. Unlike 
IONet and AbolDeepIO, this approach includes 3-axis magnetometer data as an additional input to the neural network, improving 
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orientation estimation. Similar to AbolDeepIO, the IMU data are first processed through two layers of one-dimensional 1D-CNNs, 
followed by a max-pooling layer to reduce computational complexity and extract relevant features. These features are then passed 
through two bi-directional LSTM (bi-LSTM) layers with dropout layers interspersed to capture temporal dependencies from both 
forward and backward sequences. The final dense layer estimates position and quaternion variations.

In this study, updated versions of these DIO models, as detailed in our previous work (Xavier et al. 2025b), were employed. 
All DIO implementations are responsible for estimating delta position and delta attitude at a frequency synchronized with the 
IMU and are implemented as dead-reckoning solutions.

Cross-view geolocalization model
The cross-view geolocalization performance presented in our previous work, which was implemented and evaluated across 

multiple datasets, was considered. The implemented model performs semantic segmentation of satellite imagery and calculates the 
DPD corresponding to a ground-view image taken within the same aerial region. This study emphasizes the statistical performance 
derived from these DPDs rather than relying on full image-to-image matching.

The evaluation metrics included multiple accuracy scenarios in a baseline method, categorized as “positive” and “semi-
positive,” based on the alignment of the street-view position with the aerial image. A ground view is classified as semi-positive if 
the corresponding aerial image covers only a portion of the scene. Specifically, a street-view position is deemed positive if it falls 
within the central region of size L/2 x L/2; otherwise, it is classified as semi-positive (Zhu et al. 2021b). These metrics informed 
our assessment of the transformer architectures described below.

The previous study also evaluated the top-ranked regions of the predicted discrete distribution by filtering probabilities below 
specific quantile thresholds: 68.27% (1σ), 95.45% (2σ), and 99.73% (3σ).

Two Vision Transformer (ViT) (Dosovitskiy et al. 2020) implementations were considered. The first, the Multi-Scale Transformer 
(MST), based on the Crossformer architecture (Wang et al. 2024), extracts embeddings from multiple scales via successive patch 
embedding stages and fuses the information with a fusion module. This method also captures global local features through 
sequential attention blocks at the end of each stage.

The second implementation, FeatUp, differs from previous approaches by aiming to produce a high-resolution feature output, 
maintaining consistency across multiple low-resolution feature maps (Fu et al. 2024). It employs joint bilateral upsampling (JBU) 
(Kopf et al. 2007) as an upsampling strategy. Results show that the downsampled features and the transformed original images 
are comparable, enabling the model to reconstruct a high-quality, high-resolution feature map.

To enable integration with the KF, the discrete probability output from the cross-view geolocalization model was simplified 
to a Gaussian-like representation. Specifically, the distribution was approximated by computing a weighted mean and covariance 
matrix over the predicted coordinates, restricted to regions within a selected confidence threshold, typically the 1σ quantile 
(68.27%) of the cumulative probability mass. This simplification allows the geolocation output to be treated as a pseudo-
measurement with associated uncertainty, compatible with the update step of the KF. The resulting pseudo-observation includes 
the estimated position (mean) and a corresponding measurement covariance matrix, which reflects the spatial spread of the 
top-ranked predictions. This approach balances model expressiveness with computational tractability, enabling seamless fusion 
with the inertial navigation pipeline.

EXPERIMENTAL SETUP

The UAV platform used was the DJI Matrice 600 Pro, as detailed. The onboard IMU data was were processed using three 
updated DIO models, IONet, AbolDeepIO, and the Nine-Axis Extended IONet, all trained on UAV flight data. In the absence 
of reliable GPS signals, a KF was used to propagate the UAV state based on DIO predictions and to incorporate measurement 
updates from simulated geolocation inputs derived from the statistical model of cross-view geolocation performance. The 
proposed method was evaluated against the UAV’s internal navigation system, which utilizes all available onboard data, 
including the degraded GPS signal.
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Figure 2 presents a 3D comparison between the GNSS-RTK trajectory (red) and the trajectory estimated by the UAV’s internal 
navigation system (black). The GPS availability was assessed based on dilution of precision indicators, namely position dilution of 
precision (PDOP) or geometric dilution of precision (GDOP) (Kartal et al. 2023; Liu et al. 2017). However, in the flight log used for 
this analysis, it was not possible to determine the exact moment or degree of signal degradation, as the information is recorded in a 
binary format that only indicates whether the GNSS signal was available or unavailable. As observed, GNSS signals were unavailable 
for most of the flight, remaining lost for approximately 9 min, with only a few intermittent peaks of valid signal. This behavior 
is illustrated in the north and east plots, where intermittent GNSS availability, referred to as GPS glitches, is highlighted in cyan.

Source: Elaborated by the authors.

Figure 2. Comparison of UAV flight trajectories under GNSS-denied conditions. The GNSS-RTK (red), UAV internal navigation 
(black), and GPS glitch intervals (cyan) were highlighted.
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The flight dataset is proprietary to the Brazilian Air Force and cannot be publicly shared due to its sensitive nature, including 
restricted flight trajectories and operational details. A specific flight was selected in which continuous GPS denial was observed 
throughout the mission. Notably, no intentional GPS blocking or spoofing was configured; rather, the UAV naturally operated in 
an environment where GPS signals were persistently unavailable. As a contingency, the flight was manually controlled by a ground 
pilot and a copilot. The UAV’s onboard log includes both internally predicted motion and GNSS-RTK data. However, the RTK 
information is not part of the UAV’s internal navigation solution and was only partially recorded during the flight.

It is important to emphasize that this flight was not used during training or validation phases. Due to its distinctive characteristics, 
it was reserved exclusively for testing. All performance evaluations and analyses presented in this work are based on post-processed 
data collected independently of the model development stage.

For the proposed integration, an ESKF (Dai et al. 2022; Deilamsalehy and Havens 2016; Lupton and Sukkarieh 2009) based on 
IMU measurements was implemented. The state vector includes the UAV’s position ( ), velocity ( ), and attitude represented 
by a quaternion (q). The ESKF formulation also models IMU biases, specifically the accelerometer bias (ba) and gyroscope bias 
(bω). The complete state vector х at time t is defined as:

                                                                          T T T T T T 	 (13)

To simulate the geolocation updates, samples were drawn from a multivariate Gaussian distribution centered on the ground 
truth (GNSS-RTK) location, using the error mean and covariance obtained in prior work. Updates were performed periodically 
to emulate realistic cross-view estimation intervals.
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In the implemented solution, the distance error associated with the geolocation measurements in planar coordinates was 
modeled using a normal distribution , where the mean corresponds to 23.49 m and the standard deviation 
to 10 m. These statistical parameters represent the typical localization error observed in cross-view matching evaluations and are 
used to define the measurement noise covariance in the filter.

The system was designed to perform a seamless switching transition in the event of GNSS signal loss, automatically replacing 
GNSS updates with predictions from the DIO and cross-view geolocation modules. The commutation process can be guided by 
GNSS quality indicators, such as the number of available satellites, PDOP, and GDOP (Kartal et al. 2023; Liu et al. 2017).

The ESKF manages this transition by maintaining continuous and robust state estimation, fusing dead-reckoning outputs with 
cross-view pseudo-measurements under degraded navigation conditions. The filter’s process and measurement noise covariances 
were empirically tuned to reflect the expected characteristics of the IMU sensors and the statistical performance of the geolocation 
module. The DIO models provide corrections to the north-east-down (NED) velocity components, while the cross-view module, 
when available, updates the NED position.

Evaluation metrics
The system performance is evaluated using the mean position error and the frequency of cross-view updates as metrics. 

These metrics were selected to capture both the accuracy of the estimated position and the temporal reliability of geolocation 
updates, which are key factors for robust navigation in GPS-denied environments.

The mean position error is defined as the Euclidean distance between the estimated UAV position and the ground truth 
provided by GNSS-RTK, averaged over the entire flight. The update frequency is calculated relative to the IMU sampling rate of 
0.01 s. In the experiments, cross-view corrections were allowed at intervals of up to 30 s, representing a conservative scenario 
where updates are relatively sparse. Such long intervals may occur in real operations due to limited visual overlap, restricted 
communications, or occlusions.

To assess robustness, the system was evaluated under different update intervals, analyzing how delayed corrections affect drift 
and overall accuracy. Infrequent updates increase reliance on dead reckoning, which may lead to accumulated error, especially in 
the presence of noisy or degraded measurements.

The performance of the proposed solution is also compared with the UAV’s internal navigation system, extracted from the onboard 
log. The analysis focuses primarily on the horizontal components (north and east), since the altitude and attitude can typically be 
supported by auxiliary sensors such as barometers and magnetometers, which remain functional even in GPS-denied conditions.

RESULTS AND ANALYSIS

Figure 3 compares the GNSS-RTK reference trajectory (red) with the trajectory estimated by the UAV’s internal navigation 
system (black) and by the integrated frameworks. The proposed approach is shown with cross-view corrections applied every 10 s, 
using updated DIO models: IONet (blue), AbolDeepIO (orange), and Nine-Axis IONet (green). The results are illustrated for the 
north and east coordinates, as well as for yaw orientation. Intervals of intermittent GNSS availability, referred to as GPS glitches, 
are highlighted in cyan. To further support the analysis, the cumulative sum error (CumSum), computed as the accumulated 
distance error values, is also presented for performance comparison.

As observed, GNSS signals were unavailable for most of the flight, except for a few seconds before takeoff when limited GPS 
data were still recorded. It was not possible to precisely determine the moment of complete signal loss, as the log continued to 
register occasional GPS readings even when PDOP and HDOP values were low. By integrating the DIO with simulated cross-
view updates, the predicted trajectory showed a substantial improvement compared to the UAV’s internal navigation system. 
All DIO-based solutions reduced the positional error by approximately 15–25 m, assuming a 10-second cross-view update interval.

In yaw estimation, the OPsCV performance remained considerably lower, consistent with limitations previously reported for 
DIO-based methods (Xavier et al. 2025b). Nonetheless, positional predictions outperformed the UAV’s internal navigation system 
across all architectures. An improvement in yaw estimation was observed around the 5-minute mark of the flight; however, no 
specific measurement anomalies were identified or investigated that could explain the degraded yaw performance before this point.
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Table 1. Comparison of median, mean, and maximum errors (in meters for position and in radians for yaw) 
over the entire UAV flight test.

Direction Metrics UAV system Updated IONet
Updated 

AbolDeepIO
Updated Nine-

Axis IONet

North (m)

Median 37.23 14.32 14.71 14.90

Mean 12.83 9.75 9.35 11.06

Max 184.16 65.17 58.84 58.85

East (m)
Median 188.52 25.54 20.18 19.39
Mean 65.52 21.74 17.08 20.96
Max 465.36 91.55 80.83 62.35

Height (m]
Median 0.67 6.46 6.23 7.50
Mean 0.42 4.00 3.82 3.33
Max 19.76 52.17 52.40 56.18

Yaw (rad)

Median 0.000 0.547 0.994 0.995

Mean 0.000 3.136 3.140 3.141

Max 0.001 3.136 3.140 3.141

Note. For each metric, the best performance is highlighted in bold, and the second best is underlined. 
Source: Elaborated by the authors.

The cumulative errors of the integration techniques were similar throughout the flight. A crossing point between the predicted 
trajectories and the UAV’s internal navigation system occurred around the 5-minute mark, coinciding with the observed 
improvement in yaw estimation. This suggests that, despite comparable overall positional performance among the integration 
approaches, temporal variations in orientation accuracy can influence the relative trajectory predictions.

As a qualitative analysis, Table 1 summarizes the median, mean, and maximum errors obtained throughout the UAV flight 
test for both position and orientation. As shown, all proposed DIO-based integration approaches significantly outperformed the 
UAV’s internal navigation system in the horizontal plane. In the north axis, the integrated solutions reduced median errors from 

Source: Elaborated by the authors.

Figure 3. Comparison of UAV flight trajectories under GNSS-denied conditions. GNSS-RTK (red), UAV internal navigation 
(black), and GPS glitch intervals (cyan) were highlighted. Proposed framework with cross-view updates every 10 s: Updated 
IONet (blue), Updated AbolDeepIO (orange), and Updated Nine-Axis IONet (green) were highlight. The plots also include the 

cumulative sum error (CumSum).
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37.23 m to around 14-15 m and maximum errors from 184.16 m to approximately 59-65 m. AbolDeepIO achieved the lowest 
mean error in the north axis (9.35 m), while IONet Adapted reached the lowest median error (14.32 m). In the east axis, median 
errors decreased from 188.52 m to 19-20 m and maximum errors from 465.36 m to 62-81 m, with Nine-Axis IONet Adapted 
showing the lowest maximum error (62.35 m). For altitude estimation, the UAV’s internal system maintained the lowest median 
and mean errors (0.67 m and 0.42 m), whereas the integrated methods exhibited higher variability, with Nine-Axis IONet Adapted 
reaching a maximum error of 56.18 m. Regarding yaw estimation, the internal system remained superior, with median and 
mean errors close to zero, while the integrated approaches presented median values around 0.55 rad and maximum errors up to 
3.14 rad. Overall, these results confirm that all updated DIO models improved horizontal positional accuracy compared to the 
UAV’s internal system, with AbolDeepIO providing the most balanced performance across axes.

A detailed analysis of sensor measurements or flight conditions was not conducted to investigate the anomalies during flights 
and their influence on the observed error amplitude. In addition, the GPS-denied periods occurred naturally, with no controlled 
or previously expected operation.

Cross-view contribution to navigation performance
In general, because the cross-view estimates are anchored to the UAV’s true position, even when incorporating the Gaussian 

error model, the integrated frameworks consistently outperformed the UAV’s internal navigation system. This section focuses on 
evaluating the specific impact of cross-view corrections on navigation accuracy. As observed, all combinations of DIO and cross-
view modules led to measurable improvements in position and orientation estimation, demonstrating the effectiveness of the 
switching mechanism and highlighting the contribution of cross-view integration to reducing navigation errors.

The robustness of the OPsCV methodology is illustrated in Fig. 4, which shows the distance error for different cross-view 
geolocation update intervals, ranging from 0.01 s to 30 s. As a reference, the UAV’s internal navigation system, when operating 
under GPS failure, exhibits a mean error of approximately 66 m, according to Table 1. As shown, the proposed frameworks maintain 
comparable error performance for update intervals shorter than 3 s. Within this range, mean errors increase up to approximately 
15 m with a standard deviation of around 5 m. For longer intervals, errors gradually rise to approximately 25 m with a standard 
deviation of ± 10 m at a 15 s update interval. For even longer update periods, the growth of the mean error occurs at a slower rate.

Source: Elaborated by the authors.

Figure 4. Mean distance error of the proposed frameworks with updated DIO models, Updated IONet (blue), Updated 
AbolDeepIO (orange), and Updated Nine-Axis IONet (green), were highlighted, under varying cross-view update intervals, 
from 0.01 s to 30 s. The black line represents the average error of the UAV’s internal navigation system. Shaded regions indicate 

the standard deviation.
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Overall, the methodology using the Nine-Axis IONet Adapted DIO technique exhibits slightly lower errors than AbolDeepIO 
Adapted and IONet Adapted, in that order. Considering both the mean and standard deviation values, even at a 30 s update interval, 
all approaches still achieve errors smaller than the mean error of the UAV’s internal navigation system.

The presented results demonstrate consistent and comparable performance across all updated DIO models. The simulated 
cross-view geolocation error, derived from a statistical performance model, indicates that the proposed framework would provide 
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meaningful improvements for UAV navigation even in real-world scenarios. Notably, under conservative conditions with relatively 
sparse position updates, the framework still outperforms the UAV’s internal navigation system. It is important to highlight that 
the primary goal of this study is to benchmark the proposed method against the UAV’s native navigation solution, which serves 
as a well-established baseline. Furthermore, the temporary loss of GPS did not compromise the flight, as it was safely managed 
by trained pilot and copilot from the Brazilian Air Force.

CONCLUSION

This study presented a robust and adaptable navigation framework for UAVs operating in GNSS-denied environments, 
integrating DIO techniques with a simulated cross-view geolocalization module through an ESKF, referred to as OPsCV. 
The system automatically transitions from GNSS-based updates to a fusion of DIO predictions and cross-view position estimates 
as GPS signal quality degrades. The results demonstrate that this approach maintains reliable state estimation even in the absence 
of satellite signals, validating its effectiveness for resilient UAV navigation in contested or constrained environments.

Three updated DIO models, Updated IONet, Updated AbolDeepIO, and Updated Nine-Axis IONet, were evaluated using real 
flight data collected under persistent GPS denial. These models build upon our previous work (Xavier et al. 2025b). The proposed 
system showed consistent improvements over the UAV’s internal navigation solution, particularly in north-east positioning. 
The statistical cross-view geolocation model is also based on our prior study (Xavier et al. 2025a), resulting in an integrated solution 
for UAV navigation. The performance achieved by the proposed framework outperforms the UAV’s native system across all tested 
scenarios, even with sparse cross-view update intervals of up to 30 s. Such large update intervals reflect conservative scenarios, 
likely caused by limited visual overlap, restricted communication with ground systems, or camera occlusion.

These results validate the effectiveness of integrating learned motion priors with image-based geolocation, confirming that 
even under degraded conditions, the framework preserves navigational performance. Overall, these findings support the viability 
of the proposed approach for deployment in operational scenarios where GNSS availability cannot be guaranteed, contributing 
to resilient and autonomous aerial navigation.

It is important to highlight that the primary goal of this study was to benchmark the proposed method against the UAV’s native 
navigation system, which serves as a well-established baseline. Furthermore, despite GPS signal loss, flight safety was maintained 
throughout, as the aircraft was manually controlled by trained pilot and copilot from the Brazilian Air Force.

Looking ahead, there are several avenues for continued research with OPsCV, including:
• Investigating additional extended multi-sensor fusion techniques to further enhance navigation robustness.
• Exploring hybrid approaches that combine complementary methods for improved accuracy.
• Incorporating alternative computer vision techniques to complement the cross-view geolocalization module.
• Deploying the developed models on embedded platforms to facilitate real-time operation.
• Planning and executing fully autonomous UAV missions in GNSS-denied environments.
• Investigating novel strategies to mitigate inertial drift more effectively.
• Conducting comprehensive ablation studies on training hyperparameters to optimize model performance.
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