
INTRODUCTION
 
 In the last four decades, a great number of numerical 
methods have been developed for computing solutions to 
optimal control problems. These methods are divided into two 
main classes: indirect and direct. The indirect ones involve 
the solution of a nonlinear two-point boundary value problem 
obtained from a set of necessary conditions for a local extre-
mum of the objective function, provided by the Pontryagin�’s 
Maximum Principle (Pontryagin et al., 1962) or the calculus 
of variations (Bliss, 1946; Hestenes, 1966). For instance, 
the quasilinearization method, also known as generalized 
Newton-Raphson method (McGill and Kenneth, 1964), and 
the shooting one (Sage and White, 1977) belong to this class 
of numerical methods. On the other hand, the direct methods 
use only equations of motion and terminal conditions and they 
attempt to minimize the objective function through an itera-

by Kelley (1960) and is referred to as the gradient method.

 Other direct methods are the steepest descent method 
(Bryson and Denham, 1962) and the ones based upon the 
second variation theory (Bullock and Franklin, 1967; Long-
muir and Bohn, 1969; Bryson and Ho, 1975). These direct 
methods use the calculus of variations, but there is another 
class of direct methods that transform optimal control prob-
lems into nonlinear programming ones, such as the direct 
transcription or collocation method (Betts, 1993; 1994) and 
the direct methods based on differential inclusion concepts 
(Seywald, 1994; Coverstone-Carroll and Williams, 1994).
 In this paper, the steepest descent method and the direct 
method based upon the second variation theory, which will 
be referred to as second variation method, are discussed, 
considering different algorithms in comparison to the original 
ones proposed by Bryson and Denham (1962) and Longmuir 
and Bohn (1969). The steepest descent method was developed 

-
ables were considered through the penalty function method 
(Hestenes, 1969; O�’Doherty and Pierson, 1974). A procedure 
to adjust the step size in control space is proposed to improve 
the convergence rate and avoid the divergence of the method 
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as the optimal solution is approached. On the other hand, the 
second order gradient method involves the determination of 
closed-loop solutions of a linear quadratic optimal control 
problem using the Riccati transformation. The algorithm 
was developed for a Bolza problem of optimal control, with 

Legendre condition and avoid the divergence of the method 
(Bullock and Franklin, 1967). In both methods, problems with 

that introduces a new independent variable and an additional 
control one, and transforms a time-free problem in a new 

The methods are applied in solving two classic optimiza-
tion problems �– Brachistochrone and Zermelo problems �–, 
and their main advantages and disadvantages are discussed. 
Finally, an algorithm that combines the main positive charac-
teristics of these methods was presented and applied in space 
trajectories optimization for transference between coplanar 
circular orbits.

STEEPEST DESCENT METHOD

 The steepest descent method is an iterative direct method 
widely used for computing a m-vector of control variables

fttttu 0),( , which minimizes a scalar performance index 
in an optimization problem (Kelley, 1960; Bryson and Denham, 
1962; McIntyre, 1968; McDermott and Fowler, 1977).

was here presented for a Mayer problem of optimal control 

treated by using the penalty function method (Hestenes, 

time were treated by using a transformation approach, which 
introduces new independent and additional control variables 

has two main features: the algorithm is very simple, requiring 
a single numerical integration of the adjoint equations at each 
step, and some of the typical divergence problems described 
by McDermott and Fowler (1977) are circumvented.
 Consider the system of differential equations (Eq. 1):

niuxf
dt
dx

i
i ,...,1),,( ,  (1)

where:
 is a n-vector of state variables; u is a m-vector of control 

variables; f R R Rn m n(.): , fi (.) and ji xf , i and 
j = 1,...,n Rn × Rm. It is assumed 
that there are no constraints on the state or control variables.
 The problem consists in determining the control u*(t) that 
transfers the system (Eq. 1) from the initial conditions (Eq. 2):

(t0) = 0, (2)

tf (Eq. 3):

(tf ) = free, (3)

and minimizes the performance index (Eq. 4):

J[u] = g( (tf )), (4)

with g R Rn:  and ixg , i =1,...,n, continuous on Rn.

 For completeness, a brief description of the steepest descent 
method is presented. The development of the algorithm was 
based on the classic calculus of variations (Bliss, 1946; Hestenes, 
1966; Gelfand and Fomin, 1963; Elsgolts, 1977). Introducing 
the n-vector  of Lagrangian multipliers �– adjoint variables �–, 
the augmented performance index is formed as Eq. 5:

dtxHtxgJ
ft

t

T
f

0

))(( , (5)

where, H is the Hamiltonian function (Eq. 6),

),(),,( uxfuxH T .  (6)

 Let u0(t), t0  t  tf be an arbitrary starting approximation of 
the control u*(t), t0  t  tf  and 0(t), t0  t  tf the correspond-
ing trajectory, obtained by integrating the system (Eq. 1). Let 

fttttututu 0
01 ),()()(  be the second iterate such 

that J [u1 J [u0]. It is assumed that the control variation 
fttttu 0),(  is small, in order that the linearity assump-

tions are valid, and they satisfy the constraint as in Eq. 7:

2

0

)()()( KduWu
ft

t

T , (7)

where, W(
symmetric m × m matrix of weighting functions chosen to 
improve convergence of the steepest descent method, and K is 
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the step size in control space. Both W( ) and K must be chosen 
by the user of the algorithm.
 The control variation u(t),t0  t  tf causes perturbations 
in the state vector so that the corresponding trajectory to the 
control u1(t),t0  t  tf , can be expressed as 1(t)  0(t)  (t). 
Accordingly, the change in J̄ , which is assumed to be 

Eq. 8 (McIntyre, 1968):

uHxHtxtgJ
f

f

t

t
u

T
xff

T
x

0

)()(  , (8)

since (t0) = 0, taking the n-vector  of the Lagrangian 

system of differential equations (Eq. 9):

d
dt

Hx
T , (9)

and the boundary conditions (Eq. 10)

T
xf f
gt )( ,  (10)

 Equation 8 reduces to Eq. 11:
ft

t
u udtHJ

0

.  (11)

calculus of variations, solution of which is given by Eqs. 12 
and 13 (Gelfand and Fomin, 1963; Elsgolts, 1977):

T
uHWu 1

2
1

, (12)

2/1

1

0
2
1 ft

t

T
uu dtHWH

K
,  (13)

where  is the Lagrangian Multiplier corresponding to the 
constraint (Eq. 7).

 Thus, from Eqs. 11 to 13, it follows Eq. 14:
2/1

1

0

ft

t

T
uu dtHWHKJJ ,  (14)

and the new value of the performance index will be smaller 
than the previous ones.
 The step-by-step computing procedure to be used in the 
steepest descent method is summarized as:

point 0 at t0 (tf) at tf , with the 
nominal control u0(t), t0  t  tf ;

tf 
to t0 , with the terminal conditions (Eq. 10);

 from Eq. 13;

fttttu 0),(  from 
Eq. 12;

),()()( 01 tututu  

and repeat the process until the integral 

ft

t

T
uu dtHWH

0

1
 

 It should be noted that as the nominal control un(t) 

approaches the optimal one u*(t), the integral 

ft

t

T
uu dtHWH

0

1
 

approaches zero and the Lagrangian multiplier  tends to 
u(t), obtained from Eq. 12, 

can become too large and the process diverges. In order to 
avoid this drawback, the step size in control space K must 

suppose that Km is the step size in control space at the m-th 

iterate, if 

ft

t

T
uu dtHWH

0

1
< L , where L is a critical value 

for this integral, then K mm KK 1 , with 
0 <  < 1 as a reduction factor. L and  must be chosen by the 
user of the algorithm. Numerical experiments have shown that 
this approach provides good results.

SECOND VARIATION METHOD

 The direct method based upon the second variation is 
also an iterative method used for computing a m-vector of 
control variables fttttu 0),( , which minimizes a scalar 
performance index in an optimization problem (Bullock and 
Franklin, 1967; Longmuir and Bohn, 1969; Bryson and Ho, 
1975; Imae, 1998). In the present work, this method will be 
simply referred to as a second variation method.
 The second variation method is developed for a Bolza 

proposed by Longmuir and Bohn (1969) is applied for solv-
ing the linear two-point boundary value problem, associated 
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with the accessory minimization problem obtained from the 
second variation of the augmented performance index of the 
original optimization problem. Therefore, the algorithm here 
presented is different from the one described by Bullock and 
Franklin (1967), which was developed for a Mayer problem and 
involves a different set of transformation matrices for solving 
the linear two-point boundary value problem associated with 
the accessory minimization problem. The present algorithm is 
also different from the one proposed by Bryson and Ho (1975), 
since it does not include the stopping condition for time-free 
problems, which are treated by a transformation approach as 
mentioned. However, the algorithm is closely based on the 
approach for second variation methods described by Longmuir 

-
ed by Bullock and Franklin (1967) in their algorithm in order to 
assure the convergence and to satisfy Legendre�’s condition.
 For completeness, a brief description of the development 
of the second variation method is presented. Consider the 
system of differential equations (Eq. 15):

niuxf
dt
dx

i
i ,...,1),,( , (15)

where,  is a n-vector of state variables and u is a m-vector of 
control variables, nmn RRRf :(.) , fi (.) e ji xf  , i and 
j =1,...,n Rn×Rm. It is assumed 
that there are no constraints on the state or control variables.
 The problem consists in determining the control u*(t), which 
transfers the system (Eq. 15) from the initial conditions (Eq. 16):

(t0) = 0, (16)

tf (Eq. 17):

( (tf )) = 0, (17)

and minimizes the performance index (Eq. 18):

),())((][
0

dtuxFtxguJ
ft

t
f ,  (18)

with g: Rn  R and g i, i =1,...,n, continuous on Rn . F(.) 
and F i , i =1,...,n
Rn×Rm, and : Rn  Rq, q<n, i (.) and i j, i=1,...,q, and 
j=1,...,n Rn. Furthermore, it is 

assumed that the matrix 
x

 has maximum rank.

 The second variation method is an extension of the 
steepest descent one already presented and it is also based on 
the classic calculus of variations. The main difference is the 
inclusion of the second-order terms in the expansion of the 
augmented performance index about a nominal solution. By 
virtue of this fact, the method is also known as second-order 
gradient method (Bryson and Ho, 1975).
 Introducing the n-vector  of Lagrangian multipliers �– 
adjoint variables �– and the q-vector  of Lagrangian multipliers, 
the augmented performance index is formed by Eq. 19:

ft

t

T
f

T
f dtxHtxtxgJ

0

))(())(( . (19)

 Here, the Hamiltonian function H is defined as 
H( , ,u) = -F( ,u) + T�ƒ ,u .
 In order to derive the algorithm of the second variation method, 
one proceeds as in the steepest descent method. Let  u0(t), t0 t t�ƒ 
be an arbitrary starting approximation of the control u*(t), t0 t t�ƒ ; 

0(t), t0 t t�ƒ , the corresponding trajectory, obtained by integrating 
the system (Eq. 1) and 0 be an arbitrary starting approximation 
of the Lagrange multiplier  . And, u1(t) = u0(t) + u(t), t0 t t�ƒ, 
be the second iterate such that J[u1 J[u0]. The control variation 
u(t), t0 t t�ƒ causes perturbations in the state vector (t), as well 

in the adjoint vector (t) and in the Lagrange multiplier , so that 
the nominal values of (t), (t) and , corresponding to the control 
u1(t), t0 t t�ƒ can be expressed as Eq. 20:

1(t) = 0(t) + (t), t0 t t�ƒ
1(t) = 0(t) + (t), t0 t t�ƒ
1  0  . (20)

 It is assumed that the perturbations , , u and  are 
small. Therefore, the change in J̄, which is assumed to be 
twice differentiable, to second order in the perturbations, is 
given by Eq. 21 (Longmuir and Bohn, 1969):

.
2
1

2
1

)()()(
2
1

)(

0

0

0

dtxuHuuH

uHxHxxHx

txtxgtx

dtuHHxxH

xtxgJ

T
uu

T
u

T

t

t
xu

T
x

T
xx

T

fx
T

fxx
T

xx
T

f

t

t
u

T
x

T

t

t

TT
fx

T
x

f

f

f

 (21)
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 Considering that the state equations (Eq. 15) is as in Eq. 22:

TH
dt
dx

, (22)

with the initial conditions (t0)= 0

adjoint equations (Eq. 23)

d
dt

Hx
T , (23)

with the boundary conditions (Eq. 24)

(tf) = -(gx + T )T; (24)

and taking Eq. 25

x x(tf) = - ( (tf)), (25)

Eq. 21 reduces to 26:

,
2
1

2
1

)()(
2
1

0

dtxuHuuH

uHxHxxHxuH

txgtxJ

T
uu

T
u

T

t

t
xu

T
x

T
xx

T
u

fxx
T

xx
T

f

f

 (26)

since (t0) = 0. Notice that (t
equation (Eq. 27):

 = H   H u u. (27)

 The change in the performance index, including the second 
order terms, can be written as Eq. 28:

,
2
1
2
1

)()(
2
1

0

dtuHuuHx

xHxuH

txtxJ

ft

t

uu
T

xu
T

xx
T

u

fxx
T

f

 (28)

 Where (Eq. 29):

 = g  + T . (29)

u(t
the following new problem of optimal control, known as 
accessory problem (Bullock and Franklin, 1967): determine 
u(t), t0 t t�ƒ to minimize the performance index  J̄ 

by Eq. 28, subject to Eqs. 30 to 32:

 = H   H u u, (30)

(t0)= 0, (31)

x x(tf) = - ( (tf)). (32)

 Following the Pontryagin�’s Maximum Principle 
(Pontryagin et al., 1962), the n-vector p of adjoint variables 
is introduced and the Hamiltonian function H ( , p, u) is 
formed by using Eq. 30:

uHxHp

uHuuHxxHxuHupxH

ux
T

uu
T

xu
T

xx
T

u 2
1

2
1),,(~

.
 (33)

 The optimal control u*(t) (Eq. 34) must be chosen to 
maximize the Hamiltonian H (Eq. 33):

].[1 pHxHHHu uux
T
uuu  (34)

 The adjoint vector p(t) must satisfy the differential Eq. 35:

p= -H  p - (H   H u u), (35)

with the boundary conditions (Eq. 36):

p(tf) = - (tf) - T , (36)

where  is the Lagrangian multiplier corresponding to the 
constraint (Eq. 32). Note that Equations 35 and 36 are the 
linear perturbation ones corresponding to Eqs. 23 and 24, 
respectively; thus, p(t)= (t) and  = .
 Substituting *(t) into Eqs. 30 and 35, the following two-
point boundary value problem is obtained (Eq. 37):

 =   B   
 = C  - T   , (37)  

where the matrices , B, C, ,  are given by Eq. 38:

 = H  - H uHuu

-1
Hu

B = -H Huu

-1
Hu

C = H uHuu

-1
Hu  - H  (38)

 = - H uHuu

-1
Hu

 = H uHuu

-1
Hu ,
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with the boundary conditions (Eqs. 39 to 41):

(t0) = 0, (39)

(tf) = - ( (tf)), (40)

(tf) = - (tf) - 
T , (41)

with 0 < k < 1.

 Equation 40 means that on each step, �“partial corrections�” 
are obtained. The parameter k must be chosen by the user of the 
algorithm. Numerical experiments show that this parameter 
can be used to avoid the method diverges.
 The solution of the two-point boundary value problem 

method, which uses the generalized Riccati transformation 
(Longmuir e Bohn, 1969; Bryson and Ho, 1975), as in 
Eqs. 42 and 43:

(t) = R(t) (t) + L(t)  + s(t), (42)

0 = LT(t) (t) + Q(t)  + r(t), (43)

where:

R is a n × n symmetric matrix,
L is a n × q matrix,
Q is a q × q symmetry matrix,
s is a n × 1 matrix,
and r is a q × 1 matrix.

 In order that Eqs. 42 and 43 be consistent with Eqs. 37 

differential equations (44 to 48):

-R = R  + TR + RBR - C, (44)

-L = ( T + RB)L, (45)

-Q = LTBL, (46)

-s = ( T +RB)s + R  - , (47)

-r = LT(  + Bs), (48)

with the boundary conditions (49 to 53):

R(tf )=-  , (49)

L(tf )=- T
 , (50)

Q(tf )=0 , (51)

s(tf )=0 , (52)

r(tf )=-k  . (53)

 The step-by-step computing procedure to be used in 
the second variation (or second order gradient) method is 
summarized as follows:

point 0 at t0 (tf) at tf, with the 
starting nominal control u0(t),t0  t  tf ;

0;
tf to 

t0, with the boundary conditions (24);
-

tion H - Hu, Huu, H u, H , H  and H u ;
tf to t0, with the 

R(t), L(t), Q(t), s(t) and r(t);
=-Q(t0)

-1[LT(t0) (t0)+r(t0)];

=( +BR) +BL +Bs+ , obtained from Eqs. 37 and 42;
(t) using Eq. 42;

u* using Eq. 34;
u1(t)=u0(t)+ u(t), t0  t tf, and 

the Lagrange multiplier 1= 0+ ;

 It should be noted that the algorithm of the second 
variation method diverges if the Legendre condition Huu < 0, 
computed for the nominal solution over the whole time 
interval t0  t  tf 

ft

t

T udtWuu
0

2
2

2
1

2
1

, which further constraints the 

control effort, the resulting functional J -
dre condition if the m × m matrix W2 is chosen large enough. 
Therefore, Huu must be replaced by Huu+W2 in the algorithm 

constraint (Eq. 7) introduced in the steepest descent method 
(Bullock and Franklin, 1967).
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THE COMBINED ALGORITHM

 As discussed in the book by Bryson and Ho (1975), the 
main characteristic of the steepest descent method is the great 

-
gence as the optimal solution is approached. On the other hand, 
the second variation method presents excellent convergence 
characteristics as the optimal solution is approached, but it 

convexity conditions, numerical experiments have shown that 
the accuracy of the solution is very sensitive to the choice of 
matrix W2

 Considering these remarks, an algorithm that combines 
the best characteristics of each method is implemented: at the 

nominal solution to a point where it is convex; then, at the second 
one, the second variation method is applied, using the value of u 

of the second one. The point where the algorithm commutes 

by the user and is based on the value desired for the integral:

HuW
-1Hu

Tdt.

 The resulting algorithm will be simply referred to as the 
combined algorithm and its implementation is a combination of 
the step-by-step computing procedure. As it will be later presented, 

steepest descent and second variation methods described in the 
preceding sections provides good results, which have motivated 
its application to the analysis of optimal low-thrust limited-power 
transfers between coplanar circular orbits.

SIMPLE NUMERICAL EXAMPLES

 In order to clarify some of the algorithms aspects of the 
methods described, two classical examples were considered: 
the Zermelo and the Brachistochrone problems.

Zermelo problem

 It is a classical minimum-time navigation problem 
(Leitmann, 1981). Consider a boat moving with velocity v 
of constant magnitude v =1 relative to a stream of constant 
velocity s. The problem consists in determining the steering 

program that transfers the boat from a given initial position to a 
given terminal position in minimum time. The statement of the 
optimization problem is as follows: determine the control (t) 
that transfers the system described by differential equations (54):

s
dt
dx

cos1 sin2

dt
dx

13

dt
dx

, (54)

from the initial (55)

i(t0)= i
0 ,i = 1,2,3, (55)

1(tf )= 1
f              2(tf )= 2

f, (56)

and minimizes the performance index (57)

J= 3(tf ). (57)

 In order to solve this time-free problem by means of the algo-
rithms of the steepest descent and the second variation methods, 
a transformation approach must be used. This time-free problem 

[0,1] and auxiliary 
control variables  through the Eq. 58

t = , (58)

s
d
dx

cos1 sin2

d
dx

d
dx3  (59)

 In order to apply the algorithm of the steepest descent method 

function method (Hestenes, 1969; O�’Doherty and Pierson, 

by the state equations (59), the initial conditions (55), and a new 
performance index obtained from Eqs. 56 and 57:

2
222

2
1113 )1()1()1( ff xxkxxkxJ , (60)

where k1,k2 >> 1 must be chosen by the user of the algorithm. 
In the penalty function method as described by O�’Doherty and 
Pierson (1974), the penalty constants k1 and k2 are progres-
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value for these constants as adopted by Lasdon et al. (1967) in 
the conjugate gradient method.
 Both methods use the partial derivatives of the Hamiltonian 
function H, which is given by H= [ 1(cos +s)+ 2sin + 3].
 As an example, consider s=

of this problem is tf=
control variables is chosen as Eqs. 61 and 62 for both algorithms:

( ) = 0.5, [0,1], (61)

( ) = 2.0, [0,1], (62)

 The numerical results are shown in Table 1 and Figs. 1 to 3. 
In both cases, the convergence criterion is given by 
|I n+1

 -I n| < 1.25×10-7.

Table 1. Numerical results for Zermelo problem.

Optimization 
method J 1(1) 2(1) Number of 

iterations | I |

Steepest 
descent

3.4556 3.9982 1.0023 69 8.41×10-4

Second 
variation

3.4565 3.9999 0.9999 5 �–

Combined 
algorithm

3.4565 3.9999 0.9999 6 �–

 For the steepest descent method, the numerical results are 
obtained with the following set of parameters: weights of the 
penalty function, k1=k2=500; reduction factor for the step size in 
control space, =0.50; initial step size in control space K0=0.05; 

critical value of the integral 
ft

t

T
uu dtHWH

0

1
 , L=1000. For the 

second variation method, the numerical results are presented 
with the following set of parameters: reduction factor for partial 

k=1.0; 
reduction factor for u  corrections (0<  1), =1.0; 
elements of the diagonal matrix W2, Wii,2= -2000. For simplicity, 
W2 has been chosen as a diagonal matrix. For this set of param-
eters, the second variation method requires less iterations than 
the steepest descent method and the accuracy of the solution is 
much better. The last column provides a difference between the 
value of the performance index obtained through the algorithms 
and the exact solution. In Fig 1, the rates of convergence for 
steepest descent and second variation methods are presented. 
Figures 2 and 3 show the time history of the optimal control and 

trajectory for both methods.
 The results of the combined algorithm are also presented in 

-
rithm provides a very accurate solution in few iterations. In this 
example, the performance is the same of the second variation 
method. We could note that the algorithm will be more effective in 
the next example, in which the Brachistochrone problem is solved.
 The number of iterations obtained in all algorithms is closely 
related to the choice of the starting approximation, which is �“poor�”. 

is chosen. For instance, when one takes the starting approximation 
as ( )=0.3 and ( )=3.0, , the number of iterations obtained 
by the steepest descent method with the same set of parameters 

0 20 40 60 80
Number of iterations

2.00

2.40

2.80

3.20

3.60

Pe
rfo
rm
an
ce
ind
ex
-x
3(
tf)

Second variation

Combined algorithm

Steepest descent

Figure 1. Convergence rates of the steepest descent and second 
   variation methods for Zermelo problem.

0.00 0.20 0.40 0.60 0.80 1.00
Normalized time

2.90E-1

2.92E-1

2.94E-1

Co
nt
ro
lv
ar
iab
le
(ra
dia
ns
)

Steepest descent

Second variation

Combined algorithm

Figure 2. Time history of optimal control for Zermelo problem.
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Figure 3. Optimal trajectory for Zermelo problem.

Brachistochrone problem

 One of the most famous issue in the Mathematics history 
is the Brachistochrone problem, which consists of determining 
the curve y( ) that a m mass particle will slide from point  to a 
lower B, without friction, in the minimum time. The statement 
of the problem is as follows (Williamson and Tapley, 1972; 
Bryson and Ho, 1975). Determine the control u(t) that transfers 
the system described by the differential equations:

ux
dt
dx

cos2
1 ux

dt
dx

sin2
2 13

dt
dx  (63)

from the initial conditions:

i(t0 ) = i
0 ,i = 1, 2, 3, (64)

1(tf ) = 1
f                  2(tf ) = free, (65)

and minimizes the performance index:

J = 3(tf ). (66)

 In order to solve this time-free problem by means of the 
algorithms of the steepest descent and the second variation 
methods, one proceeds as described in the previous section. 
Introducing a new independent variable , [0,1] and an 

auxiliary control variable  through the equation 67

t = , (67)

ux
d
dx

cos2
1 ux

d
dx

sin2
2

d
dx3 . (68)

 The penalty function method (Hestenes, 1969; O�’Doherty 
and Pierson, 1974) must be used in order to apply the algorithm 
of the steepest descent method derived for a Mayer problem 

and a new performance index obtained from Eqs. 65 and 66:

2
1113 )1()1( fxxkxJ , (69)

where k1>>1 must be chosen by the user of the algorithm.
 Both methods use the partial derivatives of the Hamiltonian 
function H, which is given by Eq. 70:

3212 sincos uuxH .  (70)

 As an example, consider the following boundary conditions 
(Williamson and Tapley, 1972):

1(0) = 0.015134313 2(0) = 0.059647112

3(0) = 0.5  1(1) = 1.0 .

 The exact solution to these boundary conditions is 

2(tf )=0.634974 and 3(tf 
of the control variables is chosen as Eqs. 71 and 72 for the 
two algorithms.

u( ) = 0.5, [0,1], (71)

( ) = 1.5, [0,1], (72)

 The numerical results are shown in Table 2. In both cases, 
the convergence criterion is given by |I n+1 - I n| < 1.0×10 

- 6.
 The numerical results are obtained taking: k1 = k2 = 1000; 

 = 0.95; K0 = 0.02; L = 400, for the steepest descent method, 
and k = 0.25;  = 0.75; Wii,2 = -2000, for the second variation 
method. For this set of parameters, the second variation 
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method requires less iterations than the steepest descent 
method, but the accuracy of the solution is worse. In Fig 4, the 
rates of convergence for steepest descent and second varia-
tion methods are presented. For the steepest descent method, 
Fig. 4 shows an oscillatory behaviour, which is produced by 
the change of the step size in control space. Figures 5 and 
6 shows the time history of the optimal control and trajec-
tory for both methods. For the sake of simplicity, 2- axis 
is upwards. The results for the combined algorithm are also 
presented in Table 2. It should be noted that the algorithm 
converges in less iterations and presents a good accuracy of 

shown in Fig. 4 is produced by the change of the step size 

descent method).

Table 2. Numerical results for Brachistochrone problem.
Optimization 
method J 1(1) 2(1) Number of 

iterations | I |

Steepest 
descent

2.0063 0.9993 0.6382 477 5.97×10-4

Second 
variation

2.0363 0.9999 0.6463 59 2.94×10-2

Combined 
algorithm

2.0070 1.0000 0.6293 20 6.00×10-5
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Figure 4. Convergence rate of the steepest descent method 
   for Brachistochrone problem.
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Figure 5. Time history of optimal control for Brachistochrone 
   problem.
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Figure 6. Optimal trajectory for Brachistochrone problem.

APPLICATION TO SPACE TRAJECTORIES OPTI-
MIZATION TRANSFER BETWEEN COPLANAR 
CIRCULAR ORBITS

 Low-thrust limited power propulsion systems are char-

impulse (Marec, 1976). The ratio between the maximum 
thrust and the gravity accelerations on the ground ma /g0 is 
between 10-4 e 10-2. For such system, the fuel consumption is 
described by the variable J
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dtJ
t

t0

2

2
1

,  (73)

where  is the magnitude of the thrust acceleration vector , 
used as a control variable. The consumption variable J is a 
monotonic decreasing function of the mass m of the space 

vehicle: 
0

max
11
mm

PJ , where max is the maximum 

power and m0 is the initial mass. The minimization of the 
Jf is equivalent to the maximization of mf or the 

minimization of the fuel consumption.
 The optimization problem concerning simple transfers (no 
rendezvous) between coplanar orbits is formulated as: at time 
t, the state of a space vehicle M
r from the center of attraction, the radial and circumferential 
components of the velocity, u and v, and the fuel consumption 
J. In the two-dimensional formulation, the state equations are 
given by Eq. 74:

 (74)

R
rr

v
dt
du

2

2

S
r
uv

dt
dv

u
dt
dr

22

2
1 SR

dt
dJ

,

where,  is the gravitational parameter, R e S are, respectively, 
radial and circumferential thrust acceleration vectors, from 
initial conditions t0

u(0) = 0          v(0) = 1          r(0) = 1          J(0) = 0, (75)

tf

0)( ftu
f

f r
tv )( ff rtr )( ,  (76)

such that Jf be minimum. The performance index is given by 
Eq. 77:

I  = J(tf ). (77)

 All variables are taken nondimensionally and we suppose 
there are no restrictions in the acceleration vector.
 As an example of the application of the proposed method 
for orbit transfer problem described, consider Figs. 7 and 
8, which present the consumption variable J as function of 

1
0r
rf  and <1, respectively, for nondimensional times of 
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Figure 7. Consumption for  >1
   from 2 to 5.
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Figure 8. Consumption  >1 and non-dimensional time of 
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obtained with the proposal algorithm (combined algorithm) and a 
linear theory (Silva Fernandes and Golfetto, 2007). One can verify 
that the curves match almost precisely, presenting good agreement 
between the numerical and analytical results. The method provides 
a good approximation for the solution of low-thrust limited power 
transfer to coplanar circular orbits in a central Newtonian gravitational 

 In Figs. 9 and 10, respectively, one can verify the radial 
and circumferential acceleration evolutions for tf - t0 = 3 and 
 = 1.523 (Earth-Mars).
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Figure 9. Radial acceleration history for =1.523 and tf-t0= 3.
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Figure 10. Circumferential acceleration history for =1.523 and 
   tf-t0= 3.

CONCLUSIONS

 In this paper, two classic direct methods �– steepest descent 
and second variation �– for computing optimal trajectories are 
reviewed, and the main advantages and disadvantages of these 
methods are discussed. An algorithm that combines the good 
characteristics of each method is also presented. The algorithms 
are applied for solving two classic optimization problems: 
Zermelo and Brachistochrone problems. Finally, the proposed 
algorithm is used to solve the problem of optimization of space 
trajectories transference between coplanar circular orbits with 

that the algorithm can provide.
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