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INTRODUCTION

The sustained increase of air transportation over the last
decades has led to traffic-saturated situations. To manage
safely and efficiently such traffic, new maneuvering
capabilities are needed on board civil aviation aircraft to
perform advanced 4D trajectories, while predictive tools,
given reference 4D trajectories, are necessary to estimate
accurately their impacts in terms of burned fuel and noise
emissions. Both objectives require the ability of perform-
ing aircraft flight dynamics inversion. Differential flatness,
a concept introduced by the school of Fontainebleau
(Fliess et al., 1995), has provided new opportunities to
design advanced management and supervision schemes
for nonlinear systems. According to this theory, given
the desired trajectory for what is called a flat output, it
becomes straightforward to derive the corresponding input.
Some authors have already given some insight into the
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Abstract: The sustained increase of the air transportation sector over the last decades has led to traffic satu-
rated situations, inducing higher costs for airlines and important negative impacts for airport surrounding
communities. The efficient management of air traffic supposes that aircraft trajectories are fully mastered
and their impacts can be accurately forecasted. Inversion of aircraft flight dynamics, which are essentially
nonlinear, appears necessary. Aircraft flight dynamics is shown to be differentially flat, which is a property that
has enabled the development of new numerical tools for the management of complex nonlinear dynamic systems.
However, since in the case of aircraft flight dynamics this differential flatness property is implicit, a neural
network is introduced to deal with its numerical inversion. Results related to the developed neural network
training are displayed, while potential uses of the proposed tool are discussed.
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differential flatness of aircraft flight dynamics (Lavigne
et al., 2003; Martin, 1992), while others have considered
its potential applications to aircraft trajectory management
(Lu et al., 2004; 2008).

In this communication, firstly, a simplified proof of the
implicit differential flatness of flight guidance dynamics
is displayed. Secondly, a feed-forward neural network
structure is developed to invert the flight guidance dynam-
ics. Issues related to the effective training of such structure
are discussed, and numerical results related to a reference
aircraft model are displayed. These results show that the
proposed approach allows the identification of flatness prop-
erty of flight guidance dynamics, resulting in a numerical
tool for new aircraft trajectory management applications.

DIFFERENTIAL FLATNESS OF NONLINEAR
SYSTEMS

Two definitions of differential flatness are introduced: one
related to systems for which causal relationships of interest
are analytically displayed, and another one where these causal
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relationships are introduced through implicit functions. A
general nonlinear system whose dynamics are given by Eq. 1:

X=FX,U)XER UER" (1)

where: F'is a smooth mapping, explicitly flat with respect to the
output vector Z, if Z is an m™ order vector, which can be expressed
analytically as a function of the current state, the current input and
its derivatives and also such as the state and the input vectors can
be analytically expressed as a function of Z and its derivatives.
There are smooth mappings G, G and G_ as in Eq. 2:

Z=G.(X.U,....U") (2a)
X=6.22...27) (2b)
U= Gu(Z,Z,...,Z“””) (2¢)

where: p and ¢ are integer numbers. Vector Z is called a flat
output for the nonlinear system. Although there is no system-
atical way to determine the flat output, the components of the
flat output usually possess some physical meaning.

The explicit flatness property is of particular interest for the
solution of a management problem when a meaningful flat output
can be related to its objectives, for instance, in many situations,
the management problem can be formulated as a flat-output
trajectory tracking problem. However, for many systems, no
complete analytical models are available to describe their full
dynamics. Some of their components make use of input-output
numerical tables derived both from theory and from experimental
data. In these cases, the available theory provides, in general, the
main mathematical properties of these implicit functions, while
experimental data are used to build accurate input output numeri-
cal devices. This happens, for instance, when flight dynamics
modeling is considered either for control or simulation purposes,
since in practice the involved aerodynamic coefficients are
obtained through interpolation across large sets of look-up tables.

A nonlinear system given by a general implicit n* order
differential representation (Eq. 3):

FX.X,U)=0,XeR . UER" 3)

where: F is a regular implicit mapping with respect to X,
which is said implicitly flat over an interior non-empty domain
A c R"" ifit is possible to find an m" order vector Z that meets
condition (Egs. 1 and 2a) and condition in Eq. 4 (Lévine, 2011):

GX,U,Z,Z,....2") = 0 (4)

where: G is locally invertible over A with respect to X and U,
r is an integer. Again, vector Z is said to be a flat output. The
local invertibility of G is guaranteed if the determinant of the
Jacobian of G is not zero, according to the theorem of implicit
functions, like in Eq. 5 (Lévine, 2011):

det(0G/a(X,U) # 0 ()

In this case, given a trajectory of the flat output Z, it is
possible to map it numerically into the input space to derive
corresponding control signals, so that one of the more interest-
ing properties of differentially flat systems is still maintained.

FLIGHT GUIDANCE DYNAMICS AND DIFFEREN-
TIAL FLATNESS

In this study, only the guidance dynamics of transpor-
tation aircraft, i.e., the temporal trajectory followed by
its center of gravity, is considered. It is assumed that the
aircraft is equipped with a basic augmentation system and
autopilot, which deal efficiently with its fast dynamics and
controls its attitude angles (0,¢,y) with respect to a local
Earth frame, as well as its thrust regime (N1). Here, the
flight variables , and N1 are taken as the inputs for the guid-
ance dynamics. Figure 1 displays the resulting structure for
the whole flight guidance dynamics.

0 X
—_— . —

QS Flight y
———» guidance @——»

N 1 dynamics z
—1l —

Figure 1. Input-output aircraft flight guidance structure.

Thus, in steady wind conditions, the flight guidance
dynamics can be expressed in the aerodynamics reference
frame as Eq. 6 (Lu et al., 2004):

X = V,costcosy (6a)
y = V,sintycosy (6b)
z=—V,siny (6¢)
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where, y is the ground path angle. The modulus of the inertial
and the aerodynamic speeds are given by Eq. 7:

Vo=Je+y 42

(7)

V=G WPt G —w)+ G- w) (7b)

where, w, w and w_ are the wind components.

Assuming that the sideslip angle /3 is very small and that § and
¢ vary slowly, the following equations can be written as Eq. 8:

V,=(=D+ Tcosa)/m

—g(—cosasinf + sina cos ¢ cos ) (8a)
Y« = (L + Tsina)/(mV.)
—(g/V,)(sina@sinf + cos @ cos ¢ cos ) (8b)

where: y_ is the aerodynamic path angle which is related
to y by Eq. 9:

Vesiny —w, = V,sin 7. ©)

In coordinated-turn maneuver, the heading rate is related
to the bank angle through the following relation (Eq. 10):

¥ = (g/V.)tang (10)
The drag and the lift forces, D and L are, respectively,
considered to be functions of altitude, z, airspeed V, and
angle-of-attack, . While the thrust T can be considered func-
tion of altitude z, airspeed and engine regime N1 (Eq. 11).

D =D(zV.,a)
L=L(zV,a) (11)
T= T(Zy‘/tlle)

For local guidance purposes, the flight-path angle y is
usually taken as the control parameter. When f is small, 6, ¢,
f and y are related by Eq. 12:

(sinfcosa — cos ¢ cosOsina)V, — W.

siny = v (12a)
which is reduced to:
a=0-y (12b)

that is, in general, the case for a transportation aircraft. A
unique solution in a corresponds to values of 6 and ¢.
Once x(f), 1(f) and z(¢) are known, it is possible to use them and
their derivatives to express all the guidance variables as follows.
By rearranging the kinematical equations (Egs. 6a, 6b and
6c¢), it is possible to express Eqs. 13 and 14:

y =—sin"(2/V) (13)

¥ = tan"' (y/x) (14)

The state variables V, y and y can obviously be functions
of inertial position of the aircraft, while the control variables
satisfy the relations in Eq. 15:

V,— (= D+ Tcosa)/m

(15a)
+g(— cosasinf + sina@cospcosd) = 0
Y.— (L+ Tsina)/(mV,) (15b)
+(g/V,)(sinasinf + cosa cos ¢ cos ) = 0
¥ — (g/V)tang = 0 (15¢)

where, a and y, can be expressed as functions of ¢, 6 and y
according to the relations in Eqs. 9 and 12.

The following notations are adopted for the position of the
center of gravity of the aircraft and for the guidance inputs (Eq. 16):
;: (xsyaZ)T andg: (03¢9Nl) (16)
Once the variables in Eq. 15 are replaced with their expres-

sions in Z, and their first two derivatives, these equations can
be rewritten as in Eq. 17:

Gu(Z, Z.2,U,W) =0 (17a)
G(Z,2,Z,U,W) = 0 (17b)
Gy(Z,2,2Z,U,W) = 0 (17¢c)

Here, we suppose that either the wind speed vector is
exactly known or null. Subsequently, the argument I will be
deleted from the G, functions. These implicit functions are
locally invertible with respect to the input vector since, for
normal flight conditions, the determinant of their Jacobian is
not zero (Eq. 18):
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Gy 9Gy 9IGw
a0  9¢p N
3Gy, 3Gy 9Gs |+0 (18a)
a0 9y N
3G, 3G, 3G,
a8 9 ON
Once this condition is equivalent to:
aT aD . oL da
—aN‘.(T+(@.sma+@.cosa)).@¢o, (18b)

which is satisfied since, in general, all of its terms are definite
positive.

Hence, Z=(x,y,1)" is a flat output vector for the considered
flight guidance dynamics. The time evolution of these flat
outputs represents the trajectory followed by the center of
gravity of the aircraft. Then, according to this theory, from the
knowledge of this trajectory, it should be possible to find the
corresponding inputs.

NEURAL NETWORK INVERSION OF THE FLIGHT
GUIDANCE DYNAMICS

As a consequence of the flatness property, given a smooth
reference trajectory for the flat outputs such as:

Z.(7) = (x(7),y.(0), (D)), T € [10,2], (19)

the corresponding reference input values at the instant ¢,
U (y=(¢ (1),6 (N, (1))", are the solutions:

Gu(Z(1),Z(0),Z(1),U.(£)) = 0

(20a)
Gi(Z(0. 20,20, U (1) = 0 (20b)
Go(Z,(1).2.(0.Z,(1. U (1) = 0 (20¢)

Where, Z (1), Zc(t) and Zc(t) are the current parameters.

In general, it will be very difficult to obtain an online numeri-
cal solution to this set of implicit equations, so it is useful to get
an adequate numerical device to solve it. This adequacy can be
specified mainly in terms of complexity and accuracy.

The differential flatness property of a dynamical system
points out, in a reverse way, the causal relation between its
inputs and eventually flat outputs. Since neural networks are
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particularly well adapted to reproduce causal relations, even
in the case of very complex systems, it is interesting to try
building a neural network with this objective. Once correctly
trained, the neural network should be an input-output device
where the inputs are provided by the reference trajectory, while
the outputs are the nominal flight control parameters (Fig. 2).

Z(1) 0.
—_— —_—
7 (.( 4 ) Neural ¢C
. ’ networks N ’
AQ) 1
—_— —

Figure 2. Reference input generator by neural networks.

Multilayer neural networks (MLNN) have been shown to
be able to perform general function approximation through
the selection of a neural network structure associated with
a learning process (Haykin, 1994). The selection of the
structure and of a learning algorithm strongly depends on
empirical rules, while numerous candidate neural networks
structures and learning algorithms are available. In order to
achieve an acceptable accuracy and a sufficient generaliza-
tion capability, a large amount of training data is necessary.
Herein, the training data are composed of sets of trajectories
for Z and U, which can be provided from either flight test data
or even from commercial flight data in which maneuvers are
performed manually or by the autopilot engaged in a basic
attitude-holding mode, in order that no guidance loop is active
at that time (Mora-Camino, 1993).

Since, for modern aircraft, onboard navigation systems are
able to estimate with good accuracy the current aircraft position,
inertial speed and wind speed, their records can be used as a basis
for the training of the neural network. A simulation model of a
light aircraft, the Navion (Schmidt, 1998), with a piston-propeller
engine and a basic controller for attitude holding, has been used
for the generation of training data and validation purposes.
Preliminary simulation results have been obtained in the case of
maneuvers in the vertical plane. In this study, the conventional
Error-Back-Propagation neural network with only one hidden
layer has been selected to perform the inversion of flight guid-
ance dynamics, although many other neural network structures
have been investigated (Lu, 2005). Figure 3 displays some of the
trajectories that have been considered to generate training data.

The structure of the retained neural network comprises
seven inputs nodes, about 30 neurons in the hidden layer
with a hyperbolic tangent activation function, and three
output nodes with linear transfer functions. The seven
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Flight Trajectories
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2000 x(m)
Figure 3. A set of training trajectories.

inputs are: altitude, three components of inertial velocity,
and three components of inertial acceleration. The three
outputs are the pitch 6, the roll ¢ and N,, the engine regime.
Figures 4 and 5 display examples of training performances
for different structures and sizes of the training database.
Once the weights of a neural network have been
optimized, the training of the neural network must be vali-
dated using an independent validation database. Table 1
displays an example of validation data performances,
where L(E) is the total mean square error of the neural
network for a given inter-neurons weighting pattern and
computed either over training data or validation data, S
is the number of neurons in the hidden layer, and # is the
number of effective connections between neurons.

Table 1.  Example of training and validation data.
S n L(E) training L(E) Validation
15 271 4.15%10+ 3.87 x10°
17 322 3.99 x10* 2.72 x10°3
18 349 3.42 x10* 1.20 x107
19 377 2.59 x10* 1.75 x10°
25 566 1.85 x10* 3.52 x10°?

A relevant validation of the neural network is obtained
when, in nominal conditions (nominal flight model, no wind
variation), the outputs of the neural networks are submitted as
reference values to an autopilot operating in basic modes (atti-
tude angles and engine regime tracking). Figure 6 displays the
resulting reference and response trajectories of the simulated
aircraft, as well as the trajectory error.
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Figure 4. Training performance with different number of neurons
in the hidden layer.
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Figure 5. Training performance for different sizes of the training
database.
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Figure 6. Example of open-loop control performance for flight

trajectories.
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CONCLUSIONS

This paper has shown how neural networks can be used
to take profit of the implicit differential flatness property of
the aircraft flight guidance dynamics. Differential flatness is
a characteristic shared by many nonlinear systems and, in
the case of complex systems, this property may appear in an
implicit way. In this study, to make this property valuable for
aircraft trajectory management, a feed-forward neural network
structure has been proposed to invert the flight guidance
dynamics. The performed numerical experiments show that
by adopting classical neural networks structures and learning
schemes, it is possible to achieve quite easily this objective.
This approach allows an adequate identification of the inverse
input-output relations associated with the flatness property of
flight guidance dynamics.

This approach results in a useful numerical tool for many
applications, such as: new trajectory tracking flight control
structures as displayed in Fig. 7; and new sound exposure level
computation schemes, such as the ones displayed in Fig. 8.

However, many issues remain open for further research works:
* definition of a minimum set of trajectories for generation

of adequate training data;

* search for more efficient dynamics inversion neural
network structures;

» setting of a clear balance between the neural inversion
accuracy and the amount of computation for training; and

« generation of efficient reference trajectories.

Neural |, Xe Ye Ze Trajectory .
network generation :
1
1
0 ¢ N, i Xyz
v 1
; i
Auto pilot > d thh,t —_—l
ynamics
A

Fast control feedback

Figure 7. Trajectory tracking, including neural inversion.
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