
doi: 10.5028/jatm.v5i3.224

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

Compiler Optimizations Impact the Reliability
of the Control-Flow of Radiation-Hardened
Software
Ronaldo Rodrigues Ferreira1, Rafael Baldiati Parizi1, Luigi Carro1, Álvaro Freitas Moreira1

ABSTRACT: This paper discusses how compiler optimizations
influence software reliability when the optimized application
is compiled with a technique to enable the software itself
to detect and correct radiation-induced control-flow errors.
 Supported by a comprehensive fault-injection campaign using
an established benchmark suite in the embedded systems
domain, we show that the compiler is a non-negligible source
of noise when hardening the software against radiation-
induced soft errors.

KeywoRdS: Compilers, Radiation effects, Single event
 upsets, Software reliability, Software engineering.

INTRODUCTION

Compiler optimizations are taken for granted in modern
software development, enabling applications to execute
more efficiently in the target hardware architecture. Modern
architectures have complex inner structures designed to
boost performance, and if the software developer were to be
aware of all those inner details, performance optimization
would jeopardize the development processes. Compiler
 optimizations are transparent to the developer, who picks
the appropriate ones to the results s/he wants to achieve, or,
as it is more common, allowing this task to be performed
by the compiler itself by flagging if it should be more or less
aggressive in terms of performance.

Industry already offers microprocessors built with
22 nm transistors, with a prediction that by 2026, the
size of the transistor will reach 5.9 nm (ITRS, 2012).
This aggressive technology scaling creates a big challenge
concerning the reliability of microprocessors using
newest technologies. Smaller transistors are more likely
to be disrupted by transient sources of errors caused by
radiation, known as soft-errors (Borkar, 2005). Radiation
particles originated from cosmic rays when strikes a circuit
induces bit flips during software execution, and because
transistors are becoming smaller in size, there is a higher
probability that these transistors will be disrupted by
a single radiation particle with smaller transistors
requiring a smaller amount of charge to disrupt their
stored logical value. The newest technologies are so

1.Universidade Federal do Rio Grande do Sul – Porto Alegre/RS – Brazil

Author for correspondence: Ronaldo Rodrigues Ferreira | Instituto de Informática, Universidade Federal do Rio Grande do Sul | Avenida Bento Gonçalves, 9500,
Campus do Vale – Bloco IV – Agronomia | CEP 91.509-900 Porto Alegre/RS – Brazil | Email: rrferreira@inf.ufrgs.br

Received: 08/01/13 | Accepted: 02/05/13

324
Ferreira, R.R., Parizi, R.B., Carro, L. and Moreira, Á.F.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

sensitive to radiation that their usage will be compromised
at the sea level, as predicted in the literature (Normand,
1996). Rech et al., (2012) have shown that modern graphics
processing unit (GPU) cards are susceptible to such an
error rate that makes their usage unfeasible in critical
embedded systems. However, industry is already investing
in GPU architectures as the platform of choice for high
performance and low power embedded computing, such
as the ARM Mali® embedded GPU (ARM, n.d.).

The classical solution to harden systems against
radiation is the use of spatial redundancy, i.e., the replication
of hardware modules. However, spatial redundancy is
prohibitive for embedded systems, which usually cannot
afford extra costs of hardware area and power. The increase
on power is a severe problem, because it is expected that
21% of the entire chip area must be turned off during
its operation to meet the available power budget, and an
impressive chip area of 50% at 8 nm (Esmaeizadeh, 2011).
This creates the dark silicon problem (Esmaeizadeh,
2011), i.e., a huge area of the circuit cannot be used
during its lifecycle. This problem gets worse when the
microprocessor has redundant units, because system’s
reliability could be compromised if redundant units were
turned off. The current solution to this problem is to use
radiation-hardened microprocessors, which are designed
to endure radiation. The problem with this approach is
the low availability, high unit pricing, and International
Traffic in Arms Regulations (ITAR) restrictions of those
radiation-hardened components. For instance, a 25 MHz
microprocessor has a unitary price of $ 200,000.00 (Mehlitz
and Penix, 2005). This high unit pricing makes the use
of radiation-hardened microprocessors unfeasible for
embedded systems used in aircrafts, not to say about cars
and low-end medical devices, such as pacemakers. For
these critical embedded systems, where cost and ITAR
restrictions are hard constraints, a cheaper, but yet effective
approach for reliability against radiation, is necessary.

Software-Implemented Hardware Fault-Tolerance
(SIHFT) (Goloubeva, 2006) is an approach for
radiation reliability that adds redundancy in terms of
extra instructions or data to the application, keeping
the hardware unchanged. SIHFT techniques work by
modifying the original program by adding checking
mechanisms to it. SIHFT techniques are classified
either as control-flow or as data-flow. The former is

designed to detect when an illegal jump has occurred
during application execution to possibly proceed with
the resolution of the correct jump address or at least
signaling that such an error has occurred. The latter
checks if a data variable being read is correct or not.
While the effects of data-flow SIHFT methods are clear
(usually, the duplication of program variables or the
addition of variable checksums solves the problem),
the impacts of the control-flow ones, are yet not well
understood. Because the control-flow methods modify
the program’s control-flow graph (CFG), which happens
to be the same artifact used by compiler optimizations,
the efficiency of control-flow reliability techniques
might be influenced by the optimizations in an
unpredictable way.

In this paper, we evaluate how the cumulative usage of
compiler optimizations influence reliability of applications
hardened with the state-of-the-art Automatic Correction
of Control-flow Errors (ACCE) (Vemu, Gurumurthy and
 Abraham, 2007) control-flow SIHFT technique, which is
selected, because it is the current most efficient method in
terms of reliability, attaining an error correction rate of ~70%.
The application set we use in this paper is drawn from the
MiBench suite (Guthaus et al., 2001).

RADIATION EFFECTS ON SOFTWARE RELIABILITY
Highly energized radiation particles are known hazard

sources in electronics since the 1970s (Binder et al., 1975), as
well as the mitigation schemes for such sources. Single-Event
Transient (SET) is the observed physical effect of radiation
on electronics, corresponding to voltage glitches in circuitry,
which by itself does not incur on system hazards. System
hazards originate when SETs are caught up by memories (e.g.,
SRAM’s) and sequential logic (e.g., registers), thus, becoming
a Single-Event Upset (SEU). An SEU is a non- permanent
damage to the systems (i.e., transient) that results in a bit
with logical value 1 that flips to 0 and vice-versa. Mitigation
approaches might be as follows:
• Substrate and gate-level: The reduction of charge

generation and collection.
• Hardware design: The modification of circuit response

through the addition of logical elements or even the
storage of data on spatially separated nodes.

Compiler Optimizations Impact the Reliability of the Control-Flow of Radiation-Hardened Software
325

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

• System level: The addition of redundancy at system level,
e.g., software hardening.

Definitely, the system level mitigation approach is the
most feasible for components off-the-shelf and to overcome
ITAR restrictions.

A bit flip caused by a radiation-induced SEU can compromise
the software in two different ways. Firstly, an SEU can corrupt
data, i.e., the values of program variables. Secondly, an SEU can
corrupt control, i.e., the program flow of execution. To illustrate
these two situations, consider the program presented in Fig. 1,
which corresponds to the Bubble Sort algorithm. Bubble Sort is
a naïve O(n2) solution for sorting an array of arbitrary numbers.

The Bubble Sort algorithm is divided in labeled regions
named basic blocks (identified by the gray and white regions
in the Bubble Sort source code). A basic block is a region of
a program where the contained program instructions does
not contain any branch, i.e., iteration loops (e.g., for and
while commands), if-conditionals, function call, and return.
Therefore, a basic block only contains variable assignments
and logical evaluations. The CFG of a program P is a graph
GP=(V, E), where the set V of vertices contains the program’s
basic blocks and the set E of edges contains the transitions in
the execution flow. To illustrate this, the CFG of the Bubble
Sort algorithm is presented in Fig. 2.

An executed branch of the program P (represented by an
arrow in Fig. 2) is said to be legal, if and only if, it is an element

Figure 1. Bubble Sort algorithm with explicit basic-blocks,
which are represented by the grouped numbered lines.

Figure 2. Control-flow graph of the Bubble Sort algorithm.
The blue arrow is a legal branch (together with the black
arrows), the purple arrow is a wrong branch, and the
red arrow is an illegal branch.

of the set E of GP and the condition to execute it is satisfied (e.g.,
the blue arrow in Fig. 2); it is wrong if the executed branch is an
element of the set E, but its condition to execute cannot be satisfied
(e.g., the purple arrow in Fig. 2); and an executed branch is wrong
if it is not an element of the set E (e.g., the red arrow in Fig. 2).

A control-flow error (CFE) occurs when either a wrong or
illegal branch is executed. Notice that in these two cases, a CFE
cannot exist if the program execution is not corrupted, i.e., an
illegal branch cannot exist in a correct program execution,
because it only executes branches from the set E; a wrong
branch cannot exist, because it is always possible to satisfy
the logical conditions of all branches if program execution is
correct. A CFE can be created by a radiation-induced SEU in
any of the following three scenarios:
• A non-branch instruction being executed changes

into a non-valid branch, i.e., the operation code data is
corrupted.

• The target address of a valid branch is corrupted.
• One of the variables composing a logical expression that

activates a branch is corrupted.

Scenarios (1) and (2) leads to an illegal branch, and
scenario (3) leads to a wrong branch.

A data-flow error (DFE) is caused by a radiation-induced
SEU that corrupts variables within a basic block. A DFE
might lead to erroneous results or even to a CFE, in case the
corrupted variable is used in a logical expression controlling
a branch. The focus of this paper is CFE’s. For an extensive
review of mitigation techniques of CFE and DFE, interested
readers may refer to the work of Goloubeva et al., (2006).

0 1 2

3

4 5 6

Algorithm Bubblesort(input: n, V)
def n : number of values to sort;
def V[n] : array of size n;
def temp, i, j: integer variables;
1. i := n - 1;
2. while (i >= 1) do
3. j := 0;
4. while (j < i) do
5. if (V[j] < V[j+1])
6. temp := V[j];
7. V[j] := V[j+1];
8. V[j+1]:= temp;
9. end if
10. j := j + 1;
11. end while
12. i := i - 1;
13. end while
14. return V;

326
Ferreira, R.R., Parizi, R.B., Carro, L. and Moreira, Á.F.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

The detection of transient CFE was established in the
literature with techniques that check assertions during
runtime. The general idea is to compute signatures identifying
each basic block, and checking the signatures generated
 during compilation and runtime. If they do not match, an
error is signaled. CFE’s were first identified by the usage of
watchdog processors, which are intrusive in the hardware
design (Saxena and McCluskey, 1990). Lately, techniques
based on the signature checking scheme in software, such as
the Control-flow Checking Approach (CCA) (Kanawati et al.,
1996), were identified, but with a coverage rate of only 38%
and a performance overhead of 50%.

Advances in the signature checking method offered
some improvements on coverage and performance, such as
the Control-Flow Checking by Software Signatures, which
incurs in 50% of overhead in execution time and program
size (Oh et al., 2002). The most efficient technique of
signature checking capable of correcting errors is the
ACCE (Vemu et al., 2007), which incurs in approximately
20% of overhead in execution time to produce an average
70% of correct answers in fault-injection campaigns.
However, ACCE is not capable of correcting errors that
occur within a basic block, i.e., in the data flow; hence,
the use of complementary techniques is required. When
ACCE is enhanced with data-flow correction, its coverage
rate achieves the average of 91.6% (Vemu et al., 2007).

Because the CFG is one of the most important
software artifacts used by compilers when analyzing and
modifying programs, it is important to measure how the
compiler impacts the reliability of the software mitigation
techniques for radiation-induced CFE. The understanding
of these impacts is imperative to employ software mitigation
techniques in real systems. This paper presents a study using
the ACCE mitigation technique, which is briefly reviewed
in the next section.

AUTOMATIC CORRECTION
OF CONTROL-FLOW ERRORS

ACCE (Vemu et al., 2007) is a software technique for
reliability that detects and corrects CFE’s due to random and
arbitrary bit-flips that might occur during software execution.
The hardening of an application with ACCE is done at
compilation, because it is implemented as a transformation
pass in the compiler. ACCE modifies the applications’ basic
blocks with the insertion of extra instructions that perform

the error detection and correction during software execution.
In this section, we briefly explain how the ACCE works in
two separate subsections, one dedicated to error detection and
the other to error correction are discussed in the subsequent
subsections. The reader should refer to the ACCE article for
a detailed presentation and experimental evaluation (Vemu
et al., 2007). The fault model that ACCE assumes is further
described in the “Fault Model and Methodology” section.

Control-Flow Error Detection
ACCE performs online detection of CFE-s by checking

the signatures in the beginning and in the end of each basic
block of the CFG, thus, ACCE is classified as a signature
checking SIHFT technique as termed in the published
literature. The basic block signatures are computed and
generated during compilation; the signature generation
is critical, because it requires computing non-aliased
signatures between the basic block, i.e., each block must be
unambiguously identified. In addition, for each basic block
found in the CFG, two additional code regions are added,
the header and the footer. The signature checking during
execution takes place inside these code regions. Figure 3
shows two basic blocks (labeled as N2 and N6) with the
additional code regions. The top region corresponds to the
header and the bottom to the footer. Still, at compilation,
the ACCE creates two additional blocks for each function,
namely the function entry block and the Function Error
Handler (FEH). For instance, Fig. 3 depicts a portion of
two functions, f1 and f2, both owning entry blocks labeled
as F1 and F2, and FEHs, labeled as FEH_1 and FEH_2,
respectively. Finally, ACCE creates a last extra block, the
Global Error Handler (GEH), which can only be reached
from a FEH block. The role of these blocks will be
presented soon.

At runtime, the ACCE maintains a global signature
register (represented as S), which is constantly updated to
contain the signature of the basic block that the execution
has reached. Therefore, during the execution of the header
and footer code regions of each basic block, the value of the
signature register is compared with the signatures generated
during compilation for those code regions, and if those
 values do not match, a CFE is detected and then the control
should be transferred to the corresponding FEH block
of the function where the execution takes place at that time.
The ACCE also maintains the current function register

Compiler Optimizations Impact the Reliability of the Control-Flow of Radiation-Hardened Software
327

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

(represented as F), which stores the unique identifier of the
 function currently being executed. The current function
register is only assigned at the extra entry function block.
This process encompasses the detection of an illegal and
 erroneous branch due to a soft error.

Figure 3 depicts an example of the checking and update
of signatures performed in execution time that occurs in a
basic block. In this example, the CFE occurs in the block N2
of function F1, where an illegal jump incorrectly transfers
the control flow to the basic block N6 of function F2.
When the execution reaches the footer of the block N6, the
signature register S is checked against the signature generated
at compilation. In this case, S = 0111 (i.e., the previous value

assigned in the header of the block N2). Thus, the branch
test in the N6 footer will detect that the expected signature
does not match with the value of S, and thus, the CFE must
be signaled (step 1 in Fig. 3). In this example, the application
branches to the address f2_err, making the application enter
the FEH_2 block (because the error was detected by a block
owned by the function F2, the FEH invoked is the FEH_2).
At this point, the CFE is detected and ACCE can proceed with
the correction of the detected CFE.

Control-Flow Error Correction
The correction process starts as soon as an illegal jump

is detected by the procedure described in the last subsection,

F1 F2

N2 N6

CFE

FEH_1 FEH_2

GEH

F=1
br err_�a==1,�_sxy

F=2
br err_�a==1,�_sxy

br S! = 1110, f2_svv
S=S XOR 1011 S=S XOR 1000

[S=0111] [S=0111]

br S! = 1110, f2_svv

br S! = 0110, f2_svvbr S! = 0110, f1_svv
S=S XOR 1010

1

3

5

2

4

brF!=1, error_handler
err_�ag=0 err_�ag=0
num_err=num_err+1
br num_err > thresh, exit
... ...

...

...

br S == 0111, jmp N2
...
jmpf1_svv

brF!=2, error_handler

num_err=num_err+1
br num_err > thresh, exit

br S == 0110, jmp N6
...
jmpf2_svv

err_�ag=1
br F == 1, F1
br F == 2, F2
num_err=num_err+1
br num_err>thresh, exit
jmp error_handler

...

...

Figure 3. Depiction of how the control is transferred from a function to the basic blocks that ACCE has created when a
control-flow error occurs during software execution. In this figure, there is a control-flow error (dashed arrow) causing the
execution to jump from the block N2 of function F1 to the block N6 of function F2.

328
Ferreira, R.R., Parizi, R.B., Carro, L. and Moreira, Á.F.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

with the control flow transferred to the FEH corresponding
to the function where the CFE is found. The FEH checks if the
illegal jump was originated in the function it is responsible
to handle its detected errors by comparing the value of
the function’s identifier (F1 or F2, in the example of Fig. 3)
with the current function register F. If the error occurred
in the function stored in the F register, FEH evaluates the
current value of the signature register and then transfers
the control to the basic block that is the origin of the illegal
jump (this origin is stored in the S register). On the other
hand, if the illegal jump is not originated in the function
where the detection has occurred, the FEH then transfers the
control flow to the GEH. In this case, the GEH is responsible
for identifying the function where the CFE has occurred and
to transfer the control flow back to this function, so that the
error is correctly treated by the function’s FEH. The GEH
searches the function where the error has occurred and
transfers the control to its entry block, which then sends
the control flow to the proper FEH so that the error can
be corrected, i.e., branching the control to the basic block
where the CFE has occurred.

Recalling the example depicted in Fig. 3, after the CFE
is detected and the control is transferred to FEH_2 (step 1),
the F register is matched against the function identifier of the
function from where the control originated. However, because
the CFE originated in the basic block N2 of the function F1,
F = 1. Therefore, FEH_2 is not capable of finding the basic
block where the CFE originated, and then it transfers the
control to the GEH so that the correct FEH can be found
(step 2). The GEH searches for the function identifier stored
in F, until it finds that it should branch to F1 (step 3). Upon
reaching the entry block F1, the variable err_flag=1, because
it is assigned to 1 in the GEH, meaning that there is an error
that should be fixed, thus, the control branches to FEH_1
(step 4). Now, because F=1, FEH_1 knows that it is the FEH
capable of handling the CFE and, as such, it sets the variable
err_flag to 0. Finally, it searches for the basic block that has the
signature equal to the register S. Upon finding it, the control
branches to this basic block, i.e., N2 in Fig. 3 (step 5). This last
branch restores the control flow to the point of the program
right before the occurrence of the CFE. Notice that inside
all the FEH and the GEH, there is the variable num_error,
counting how many times the control has passed through a
FEH or a GEH. This acts as a threshold for the number of
how many times the correction must be attempted, which is

necessary to avoid an infinite loop in case the registers F or
S get corrupted for any reason. This process concludes the
correction of a CFE with the ACCE.

FAULT MODEL AND METHODOLOGY
The fault model we assume in the experiments is the

 single bit flip, i.e., only one bit of a word is changed when a
fault is injected. The ACCE is capable of handling multiple
bit flip as long as the bits flipped is within a same word.
 Because the fault injection, as it will be discussed later,
guarantees that the injected fault ultimately turned into a
manifested error, it does not matter how many bits are flipped,
i.e., there is no silent data corruption, meaning the faults that
cause a word to change its value neither change the behavior
of the program nor its output. This could happen in the case
that the fault flipped the bits of a dead variable.

The ACCE technique was implemented as a
transformation pass in the Low Level Virtual Machine
(LLVM; Lattner and Adve, 2004) production compiler,
which performs all the modifications in the CFG using
the LLVM Intermediate Representation (LLVM-IR). The
LLVM was selected as our compilation platform, because
of its increased use in the industry, accompanied with
a very detailed documentation and quality of its source
code. The ACCE transformation pass was applied after
the set of compiler optimizations, because executing in the
opposite order, a compiler optimization could invalidate
the ACCE generated code and semantics. Table 1 presents
the LLVM optimization passes used in the experiments.

Because the ACCE is a SIHFT technique to detect and
correct CFE-s, the adopted fault model simulates three
distinct control-flow disruptions that might occur due to a
CFE. Remember that a CFE is caused by the execution of an
illegal branch to a possibly wrong address. The branch errors
considered in this paper are as follows:
• Branch creation: The program counter is changed,

transforming an arbitrary instruction (e.g., an addition)
into an unconditional branch.

• Branch deletion: The program counter is set to the next
program instruction to execute independently if the
current instruction is a branch.

• Branch disruption: The program counter is disrupted
to point to a distinct and possibly wrong destination
instruction address.

Compiler Optimizations Impact the Reliability of the Control-Flow of Radiation-Hardened Software
329

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

Table 1. Set of Low Level Virtual Machine optimization
passes used for experimental evaluation in this paper.

-adce -loop-reduce

-always-inline -loop-rotate

-argpromotion -loop-simplify

-block-placement -loop-unroll

-break-crit-edges -loop-unswitch

-codegenprepare -loweratomic

-constmerge -lowerinvoke

-constprop -lowerswitch

-dce -mem2reg

-deadargelim -memcpyopt

-deadtypeelim -mergefunc

-die -mergereturn

-dse -partial-inliner

-functionattrs -prune-eh

-globaldce -reassociate

-globalopt -reg2mem

-gvn -scalarrepl

-indvars -sccp

-inline -simplifycfg

-instcombine -simplify-libcalls

-internalize -sink

-ipconstprop -sretpromotion

-ipsccp -strip

-jump-threading -strip-dead-debug-info

-lcssa -strip-dead-prototypes

-licm -strip-debug-declare

-loop-deletion -strip-non-debug

-loop-extract -tailcallelim

-loop-extract-single -tailduplicate

We implemented a software fault injector, using the GDB
(GNU Debugger), in a similar fashion as implemented by
Krishnamurthy et al., (1998), which is an accepted fault-injection
methodology in the embedded systems domain, to perform
the fault-injection campaigns. The steps of the fault-injection
process are the following:
• The LLVM-IR program resulting from the compilation

with a set of optimization and with ACCE is translated to
the assembly language of the target machine.

• The execution trace in assembly language is extracted
from the program execution with GDB.

• A branch error (branch creation, deletion, or disruption)
is randomly selected. On an average, each branch error
accounts for 1/3 of the amount of injected errors.

• One of the instructions from the trace obtained in step
2 is chosen at random for fault injection. In this step,
a histogram of each instruction is computed because
instructions that execute more often have a higher
 probability to be disrupted.

• If the chosen instruction in step 4 executes n times,
choose at random an integer number k with 1 ≤ k ≤ n.

• Using GDB, a breakpoint is inserted right before the k-th
execution of the instruction selected in step 4.

• During program execution, upon reaching the breakpoint
inserted in step 6, the program counter is intentionally
corrupted by flipping one of its bits to reproduce the
branch error chosen in step 3.

• The program continues its execution until it finishes.

A fault is only considered valid, if it has generated a CFE,
i.e., silent data corruption and segmentation faults were not
considered to measure the impacts of the compiler optimizations
on reliability. All the experiments in this paper were performed
in a 64-bit Intel Core i5 2.4 GHz desktop with 4 GB of RAM
and the LLVM compiler version 2.9. For all program versions,
where each version corresponds to the program compiled with
a set of optimizations plus the ACCE pass, 1,000 faults were
injected using the aforementioned fault-injection scheme. In
the experiments we considered ten benchmark applications
from the MiBench (Guthaus et al., 2001) embedded benchmark
suite as follows: basicmath, bitcount, crc32, dijkstra, fft, patricia,
quicksort, rijndael, string search, and susan (comprising susan
corners, edge, and smooth).

IMPACT OF COMPILER OPTIMIZATIONS ON
SOFTWARE RELIABILITY

This section studies the impacts on software
reliability when an application is compiled with a set of
compiler optimizations and further hardened with the
ACCE method. Throughout this section, the baseline
for all comparisons is an application compiled with the
ACCE method without any other compiler optimization.
The ACCE performs detection and correction of CFE-s,

330
Ferreira, R.R., Parizi, R.B., Carro, L. and Moreira, Á.F.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

thus all data discussed in this section considers the
correction rate as the data to compute the efficiency
metric. In this analysis, we use 58 optimizations
provided by the LLVM production compiler. Finally, the
 results were obtained using the fault model and fault
 injection methodology described in the section “Fault
Model and Methodology”.

The impact of the compiler optimizations when compiling
for reliability is measured in this paper using the metric
Relative Improvement Percentage (RIP; Pan and Eigenmann,
2006). The RIP is presented in Eq. 1, where Fi is a compiler
 optimization, E(Fi) is the error correction rate obtained for
a hardened application compiled with Fi, and EB is the error
correction rate obtained for the baseline, i.e., the application
compiled only with ACCE and without any optimization.

%100)()(.−=

B

Bi
iB E

EFE
FRIP (1)

Figure 4 shows a scatter plot of the obtained RIP for each
application, with each of the 58 LLVM optimizations being
a point in the y-axis. Each point represents the hardened
application compiled with a single LLVM optimization at
a time, with each application compiled with 58 distinct
optimizations. Figure 4 shows that several optimizations
increase the RIP considerably, sometimes reaching a RIP of
~10%. This is a great result, which shows that reliability can
be increased for free by just picking appropriate optimizations
that facilitates for ACCE the process of error detection and
correction. However, we also find that some optimizations
totally jeopardize reliability, reaching a RIP of -73.27%
(bottom filled red circle for bitcount).

It is also possible to gather evidence that the structure of
the application also influences how an optimization has an
impact on the RIP of reliability. Let us consider the block-
placement optimization, which is represented by the white
diamond in Fig. 4. In the case of the qsort application,
block-placement has a RIP of -42.75% and a RIP of +11.68%.
The reader can notice that other optimizations also show
this behavior (increasing RIP for some applications and
decreasing it for others). It also happens that some hardened
applications are less sensitive to compiler optimizations, as it

is the case of the crc_32 one, where the RIP is within the ±5%
interval around the baseline.

Figure 5 depicts the RIP of a selected subset of the 58
LLVM optimizations, making it clear that even within a
small subset, the variation in the RIP for reliability is far from
 negligible. For instance, the always-inline LLVM optimization
has an error correction RIP interval of [-4.55%, +9.24%].

Usually compiler optimizations are applied in bulk, using
several of them during compilation. Therefore, it is also
important to examine if successive optimization passes could
compromise or increase software reliability of a hardened
application. Figure 6 presents the error correction rate RIP,
where the hardened application was compiled with a subset of
the 58 LLVM optimizations. In this experiment, we used six
sizes of subsets: 10, 20, 30, 40, 50, and 58. The RIP shown in
Fig. 6 is the average of five random subsets, i.e., it is an average
of distinct subsets of the same size. Taking the average and
picking the optimizations at random, reproduces the effects
of indiscriminately picking the compiler optimizations, or at
least, selecting optimizations with the object of optimizing
performance without previous knowledge of how the selected
optimizations together influences the software reliability.

It is possible to see that the cumulative effect of compiler
optimizations in the error correction RIP is in most of the
cases deleterious, but for a few exceptions. Figure 6 confirms
that some applications are less sensitive to the effects of
compiler optimizations, e.g., the crc32 has its RIP within
the interval [-1.11%–0.73%]. On the other hand, basicmath,
bitcount, and patricia, are jeopardized. It is interesting to
notice that the RIP in case of picking a subset of optimizations
is not subject to the much severe reduction that was measured
when only a single optimization was used (Fig. 4), providing
an evidence that the composition of distinct optimization
may be beneficial for reliability.

Based on the data and experiments discussed in this
section, it is clear that selection of compiler optimizations
requires the software designer to take into the consideration
that some optimizations may not be adequate in terms of
 reliability for a given application. Moreover, data also shows
that a given optimization is not only by itself a source of
 reliability reduction; reliability is also dependent of the
application being hardened, and how a given optimization
facilitates or not the work of the ACCE technique.

Compiler Optimizations Impact the Reliability of the Control-Flow of Radiation-Hardened Software
331

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

Figure 4. Relative Improvement Percentage for the error correction rate of applications hardened with ACCE under further
compiler optimization. Each hardened application was compiled with a single optimization at a time, but all applications
were compiled with the 58 Low Level Virtual Machine optimizations, thus, each hardened application has 58 versions.
The baseline (Relative Improvement Percentage = 0%) is the error correction rate of the hardened application compiled
without any Low Level Virtual Machine optimization.

10.00
8.00
6.00
4.00
2.00
0.00

-2.00
-4.00
-6.00Re

la
tiv

e
Im

pr
ov

em
en

t P
er

ce
nt

ag
e

basicmath
bitcount

qsort
dijkstra

patricia

strin
g_search

susan
rinjdael �

crc_32

always-inline inline loop-unroll tailduplicate

Figure 5. Relative Improvement Percentage of a selected subset of the 58 Low Level Virtual Machine optimizations. The base-
line (Relative Improvement Percentage=0%) is the error correction rate of the hardened application compiled without any Low
Level Virtual Machine optimization.

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

R
el

at
iv

e I
m

pr
ov

em
en

t P
er

ce
nt

ag
e

basicmath
bitcount

qsort
dijkstra

patric
ia

strin
g_search

susan
rinjdael �

crc_32-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

Re
la

tiv
e

Im
pr

ov
em

en
t P

er
ce

nt
ag

e

332
Ferreira, R.R., Parizi, R.B., Carro, L. and Moreira, Á.F.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

RELATED WORK
Much attention has been devoted to the impact of

compiler optimizations on program performance in
the published literature. However, the understanding
of how those optimizations work together and how they
influence each other is a rather recent research topic. The
Combined Elimination (CE) (Pan and Eigenmann, 2006)
is an analysis approach to identify the best sequence of
optimizations for a given application set using the GNU
Compiler Collection (GCC). The authors discuss that
simple orchestration schemes between the optimizations
can achieve near-optimal results as if it has performed an
exhaustive search in all the design space created by the
optimizations. CE is a greedy approach that first compiles
the programs with a single optimization, using this version
as the baseline. From those baseline versions, the set of RIP
is calculated, which is the percentage that the program’s
performance is either reduced or increased. With the RIP
at hand for all baselines, the CE starts removing the
optimizations with negative RIP, until the total RIP of
all optimizations applied into a program do not reduce.
CE was evaluated in different architectures, achieving an
average RIP of 3% for the SPEC2000, and up to 10% in case
of the Pentium IV for the floating point applications.

The Compiler Optimization Level Exploration (COLE)
(Hoste and Eeckhout, 2008) is another approach to achieve
performance increase by selecting a proper optimization
s equence. COLE uses a population-based multi-objective
 optimization algorithm to construct a Paretto optimal set
of optimizations for a given application using the GCC
compiler. The data found with COLE give some insightful
results about how the compiler optimizations behave when
they are applied with several of them at the same time.
For instance, 25% of the GCC optimizations appear in at
most one Paretto set, and some of them appear in all sets.
Therefore, 75% of all the optimizations do not contribute
to improve the performance, meaning that they can be
safely ignored! COLE also shows that the quality of an
optimization is highly tied with the application set.

The Architectural Vulnerability Factor (AVF) (M ukherjee
et al., 2003) is a metric to estimate the probability that the bits
in a given hardware structure will be corrupted by a soft error
when executing a certain application. The AVF is calculated
as the total time the vulnerable bits remains in the hardware
architecture. For example, the register file has a 100% AVF,
because all of its bits are vulnerable in case of a soft error. The
AVF metric is highly influenced by the application due to liveness
of program’s variables. For instance, a dead variable has a 0%

5.00

0.00

-5.00

-10.00

-15.00

Re
la

tiv
e

Im
pr

ov
em

en
t P

er
ce

nt
ag

e

basicmath
bitcount

qsort
dijkstra

patricia

strin
g_search

susan
rinjdael �

crc_32

of optimizations 10 20 30 40 50 58

Figure 6. RIP of random subsets of the 58 Low Level Virtual Machine optimizations with a varying number of optimizations for
each different subset: 10, 20, 30, 40, 50, and 58 optimizations. The Relative Improvement Percentage for each subset was
measured taking the average of six random subsets for each subset size. Hence, distinct possible optimizations for subsets
were considered. The baseline (Relative Improvement Percentage=0%) is the error correction rate of the hardened application
compiled without any Low Level Virtual Machine optimization.

Compiler Optimizations Impact the Reliability of the Control-Flow of Radiation-Hardened Software
333

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

AVF, because it is not used in a computation. The impact of the
GCC optimizations in the AVF metric is evaluated by trying to
reduce the AVF-delay-square-product (ADS), introduced by the
authors (Jones et al., 2008). The ADS considers a linear relation
of the AVF between the square of the performance in cycles,
clearly prioritizing performance over reliability. It is reported
that the -O3 optimization level is detrimental both to the AVF
and performance, because the benchmarks that are considered
(MiBench) have increased the number of loads executed. Again,
it was found that the patricia application was the one with the
highest reduction in the AVF at 13%.

Bergaoui and Leveugle (2011) analyzed the impact of
compiler optimizations on data reliability in terms of variable
liveness. Liveness of a variable is the time period between the
variable that is written and it is last read before a new write
operation. The authors concluded that the liveness is not
related only with the compiler optimization, but it also depends on
the application being compiled, which is in accordance with the
discussion of this paper. This paper shows that some optimizations
tend to extend the time a variable is stored in a register instead of
memory. The goal behind this is obvious, i.e., it is much faster to fetch
the value of a variable when it is in the register than in the memory.
However, the memory is usually more protected than registers
because of cheap and efficient error correction code (ECC) schemes,
and thus, thinking about reliability, it is not a good idea to expose a
variable in a register for a longer time. The solution to that could be the
application of ECC, such as Huffman to the program variables
itself. Decimal Hamming (DH) (Argyrides et al., 2011) is a software
technique that performs this for a class of programs where the
program’s output is a linear function of the input. The generalization
of the efficient data-flow SIHFT techniques, such as DH (i.e.,
ECC of program variables) is still an open research problem.

CONCLUSION

In this paper, we characterized the problem of compiling
embedded software for reliability, given that compiler
optimizations impact the coverage rate. The study presented in this
paper makes clear that selecting optimizations indiscriminately,
can decrease software reliability to unacceptable levels, probably
avoiding the software to be deployed as originally planned.
Embedded software and systems deployed in space applications
must always be certified with evidence that they support harsh
radiation environments, and given the increasing technology
scaling, other safety critical embedded systems might have to
tolerate radiation-induced errors in a near future. Therefore,
the embedded software engineers must be very careful while
compiling the safety critical embedded software.

Future research work is focused on the formalization of
the ACCE transformation pass to generate automatic proofs
about the correctness of programs compiled with the ACCE.
This step is important to allow the certification of software
hardened with ACCE.

ACKNOWLEDGEMENTS

This work is supported by the CAPES foundation of
the Ministry of Education, CNPq research council of the
 Ministry of Science and Technology, and FAPERGS research
 agency of the State of Rio Grande do Sul, Brazil. R. Ferreira was
 supported with a doctoral research grant from the Deutscher
Akademischer Austauschdienst (DAAD) and from the
Fraunhofer-Gesellschaft, Germany.

REFERENCES

Argyrides, C., Ferreira, R., Lisboa, C. and Carro, L., 2011, “Decimal
Hamming: A Novel Software-Implemented Technique to Cope with Soft
Errors”, Proceedings of the 26th IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems, pp.
11-17, doi: 10.1109/DFT.2011.35

ARM, n.d. 2012, “ARM Mali Graphics Hardware”, Retrieved in
December 21, 2012, from http://www.arm.com/products/
multimedia/mali-graphics-hardware/index.php.

Bergaoui, S. and Leveugle, R., 2011, “Impact of Software Optimization
on Variable Lifetimes in a Microprocessor-Based System”, Proceedings
of the 6th IEEE International Symposium on Electronic Design, Test and
Application, pp. 56-61, doi: 10.1109/DELTA.2011.20

Binder, D., Smith, E.C. and Holman, A.B., 1975, “Satellite
Anomalies from Galactic Cosmic Rays”, IEEE Transactions on
Nuclear Science, Vol. 22, No. 6, pp. 2675-2680, doi: 10.1109/
TNS.1975.4328188

334
Ferreira, R.R., Parizi, R.B., Carro, L. and Moreira, Á.F.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 3, pp.323-334, Jul.-Sep., 2013

Borkar, S., 2005, “Designing Reliable Systems from Unreliable
 Components: The Challenges of Transistor Variability and
Degradation”, IEEE Micro, Vol. 25, No. 6, pp. 10-16, doi: 10.1109/
MM.2005.110

Esmaeizadeh, H., Emily, B., Renee, A. and Sankaralingam, K., 2011,
“Dark Silicon and the End of Multicore Scaling”, IEEE Micro, Vol. 32,
No. 3, pp. 122-134, doi: 10.1109/MM.2012.17

Goloubeva, O., Rebaudengo, M., Sonza Reorda, M. and Violante,
M., 2006, “Software-Implemented Hardware Fault Tolerance”, Ed.
 Springer, New York, NY, USA, p 228.

Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge,
T. and Brown, R.B., 2001, “MiBench: A Free, Commercially
 Representative Embedded Benchmark Suite”, Proceedings of the
IEEE International Workshop of Workload Characterization, pp. 3-14,
doi: 10.1109/WWC.2001.990739

Hoste, K. and Eeckhout, L., 2008, “Cole: Compiler Optimization Level
Exploration”, Proceedings of the 6th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pp. 165-174,
doi: 10.1145/1356058.1356080

ITRS, 2012, “ITRS 2009 Roadmap”, International Technology
 Roadmap for Semiconductors.

Jones,T.M., O’Boyle, M.F.P. and Ergin, O., 2008, “Evaluating the Effects
of Compiler Optimisations on AVF”, Proceedings of the Workshop on
Interaction Between Compilers and Computer Architecture, 6p.

Kanawati, K., Krishnamurthy, N., Nair, S. and Abraham, J.A.,
1996, “Evaluation of Integrated System-level Checks for On-Line Error
 Detection”, Proceedings of the 2nd International Computer Performance
and Dependability Symposium, pp. 292-301, doi: 10.1109/
IPDS.1996.540230

Krishnamurthy, N., Jhaveri, V. and Abraham, J.A., 1998, “A Design
Methodology for Software Fault Injection in Embedded Systems”,
Proceedings of the Workshop on Dependable Computing and its
applications, pp. 12

Lattner, C. and Adve, V., 2004, “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”, Proceedings of the
International Symposium on Code Generation and Optimization, pp.
75-86, doi: 10.1109/CGO.2004.1281665

Mehlitz, P.C. and Penix, J., 2005, “Expecting the unexpected –
radiation hardened software”, NASA Ames Research Center, pp. 10.

Mukherjee, S.S., Shrewsbury, M.A., Weaver, C., Emer, J. and
 Reinhardt, S.K., 2003, “A Systematic Methodology to Compute
the Architectural Vulnerability Factors for a High-Performance
 Microprocessor”, Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 29-40,
doi: 10.1109/MICRO.2003.1253181

Normand, E., 1996, “Single Event Upset at Ground Level”, IEEE
Transactions on Nuclear Science, Vol. 43, No. 6, pp. 2742-2750,
doi: 10.1109/23.556861

Oh, N., Shirvani, P.P. and McCluskey, E.J., 2002, “Control-flow
 Checking by Software Signatures”, IEEE Transactions on Reliability, Vol.
51, No. 1, pp. 111-122, doi: 10.1109/24.994926

Pan, Z. and Eigenmann, R., 2006, “Fast and Effective Orchestration
of Compiler Optimizations for Automatic Performance Tuning”,
 Proceedings of the International Symposium on Code Generation and
Optimization, pp. 319-332, doi: 10.1109/CGO.2006.38

Rech, P., Aguiar, C., Ferreira, R., Silvestri, M., Griffoni, A., Frost,
C. and Carro, L., 2012, “Neutron-Induced Soft Errors in Graphic
Processing Units”, IEEE Radiation Effects Data Workshop, pp. 1-6,
doi: 10.1109/REDW.2012.6353714

Saxena, N. and McCluskey, E., 1990, “Control Flow Checking
using Watchdog Assists and Extended-Precision Checksums”,
IEEE Transactions on Computers, Vol. 39, No. 4, pp. 554-559,
doi: 10.1109/12.54849

Vemu, R., Gurumurthy, S. and Abraham, J.A., 2007, “ACCE:
Automatic Correction of Control-Flow Errors”, IEEE International Test
Conference, pp. 1-10, doi: 10.1109/TEST.2007.4437639

