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ABSTRACT: The present article deals with the identifi-
cation, at the same time, of aircraft stability and control 
parameters taking into account dynamic damping deriva-
tives. Such derivatives, due to the rate of change of the 
angle of attack, are usually neglected. So the damping 
characteristics of aircraft dynamics are attributed only on 
pitch rate derivatives. To cope with the dynamic effects of 
these derivatives, authors developed devoted procedures 
to estimate them. In the present paper, a complete model 
of aerodynamic coefficients has been tuned-up to identify 
simultaneously the whole set of derivatives. Besides, 
in spite of the employed reduced order model and/or 
decoupled dynamics, a six degrees of freedom model has 
been postulated without decoupling longitudinal and lateral 
dynamics. A recursive non-linear filtering approach via 
Extended Kalman Filter is proposed, and the filter tuning is 
performed by inserting the effects of dynamic derivatives 
into the mentioned mathematical model of the studied 
aircraft. The tuned-up procedure allows determining with 
noticeable precision the stability and control derivatives. In 
fact, either by activating maneuvers generated by all the 
control surfaces or by inserting noticeable measurement 
noise, the identified derivatives show very small values of 
standard deviation. The present study shows the possibility 
to identify simultaneously the aircraft derivatives without 
using devoted procedures and decoupled dynamics. The 
proposed technique is particularly suited for on-line para-
metrical identification of Unmanned Aerial Systems. In fact, 
to estimate both state and aircraft parameters, low pow-
er and time are required even using measurement noises 
typical of low-cost sensors.

KEYWORDS: Aircraft dynamic derivatives, Extended Kalman 
Filter, On-line identification, Unmanned Aerial System.

An Extended Kalman Filter-Based 
Technique for On-Line Identification of 
Unmanned Aerial System Parameters
Caterina Grillo1, Fernando Montano1

INTRODUCTION

In spite of their effects on aircraft damping characteristics, 
the alpha-dot derivatives (CLά and Cmά) are often not included 
into the dynamic model of aircraft. Therefore, in developing 
system identification techniques, neither off-line nor 
on-line procedures take into account dynamic stability 
derivatives (Tischler and Remple 2006; Klein and Morelli 
2006; Jategaonkar 2006). 

Usually, due to the strong correlation between pitch rate 
and alpha-dot derivatives, only CLq and Cmq are inserted into 
the mathematical model of the aircraft. In fact, because of 
such derivatives depend either on the aerodynamic transient 
or on the down wash lag, to perform their determination, 
especially devoted tests have to be designed. Besides, the 
alpha rate is a non-measurable variable, therefore on-line 
parameter identification procedures have to perform numerical 
derivation to determine such a quantity. 

Besides, in the application of identification theories to 
Unmanned Aerial Systems (UAS or Remote Piloted Vehi-
cles – RPV), reduced order models of aircraft dynamics 
are employed.

Thus, longitudinal and lateral aircraft parameters, 
usually, are identified separately by using devoted flight 
test procedures.

Rimal et al. (2009) have used the MatLab Neural Network 
Toolbox to develop a neural network model of the six degrees 
of freedom (DoF) Unmanned Aerial Vehicles (UAV) that 
they want to control; such a model can be interpreted as a 
weighted combination of several local models resulting in 
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Figure 1. Studied Unmanned Aerial System.
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a non-linear global model. They have used model reference 
control architecture to simulate the non-linear identification 
and control of the system.

Jameson and Cooke (2012) have proposed a post-maneuver 
parameters estimation with postulated models for the reduced 
order Short Period and Dutch Roll modes. Equation Error 
Method in the frequency domain has been applied and 
validated with Cranfield Jetstream 31 flight data. Kallapur 
and Anavatti (2006) have made a parametrical estimation 
in the time domain through Extended Kalman Filter (EKF) 
but only considering the three moment equations.

Other authors decoupled longitudinal and lateral 
dynamics. Dorobantu et al. (2013) have made parametrical 
identification of a 6-DoF small UAV through frequency 
domain method: they started from flight data and calculated 
parameters in frequency domain; identified models are then 
validated with flight data in the time domain. 

Nicolosi et al. (2010) have estimated aircraft stability 
derivatives from acquired flight data using the Output Error 
Method (OEM) technique; in this study, longitudinal and 
lateral dynamics are decoupled and they have used two of 
the lateral dynamics to determine the derivatives.

In a previous paper (Grillo and Montano 2014), the 
authors, by using the Filter Error Method (FEM) approach, 
have developed a procedure to determine aircraft longitudinal 
parameters including the angle of attack variation derivatives. 

The aim of this paper is to identify, without decoupling 
longitudinal and lateral dynamics, the whole set of stability 
and control parameters of a non-linear 6-DoF model of UAV 
including dynamic derivatives. The original contribution of 
the present study is: (i) the simultaneously identification 
of longitudinal and lateral stability and control derivatives; 
(ii) the identification of dynamic derivatives without using 
a devoted procedure. 

Because of the EKF has been successfully employed for 
off-line and on-line identification of stability and control 
derivatives for manned aircraft (Alonge et al. 2015; Shim et al. 
2014, Kokolios 1994; Speyer and Crues 1987; Kobayashi 
et al. 2005; Huang et al. 1996; Jategaonkar and Plaetenschke 
1988, 1989; García-Velo and Walker 1997), by considering 
the augmented computation capability of on-board UAS, a 
procedure based on EKF has been implemented.

Such a procedure could be successfully employed for 
real-time system identification leading to costs and time 
reduction in design and development of UAS.

AIRCRAFT MATHEMATICAL MODEL

As previous stated, the aim of this paper is the identification 
of unknown aerodynamic parameters for an UAS.

The take-off weight of the analyzed vehicle is 24.5 N. It is 
equipped with:

•	 Inertial Measurement Unit (IMU).
•	 Magnetometer.
•	 Altimeter.
•	 GPS.
•	 Pitot tube.
•	 Registration equipment.
The geometrical characteristics of the analyzed vehicle 

(Fig. 1) are:
•	 Wing area S: 0.4464 m2.
•	 Wing chord c: 0.24 m.
•	 Wing span b: 1.86 m.
•	 Aspect ratio: 7.752.
•	 Fuselage length: 1.00 m.

In this study, the rigid body dynamics of a 6-DoF aircraft 
is of interest. The aircraft motion can be described by the 
following equations in body axes (Etkin 1972):
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where:

where:
u, v, and w are velocity components in body reference 

frame; p, q, r are roll, pitch, and yaw angular speeds [rad/s]; φ, 
ϑ, ψ are Euler angles; m is the aircraft mass; Ix, Iy, Iz are aircraft 
moments of inertia; V is the air speed [m/s]; CL, CD, Cm, CT are 
the lift coefficient, drag coefficient, pitch moment coefficient, 
and thrust coefficient; CLα, Cmα, CLq, Cmq, CLἀ, Cmἀ, CYβ, Clβ, Cnβ, 
CYp, Clp, Cnp, CYr, Cnr, CTV, are the stability derivatives; Cl, Cn, CY 
are coefficients of roll moment, yaw moment, and side-force;  
CLδe, Cmδe, CYδr, Clδa, Clδr, Cnδa, Cnδr, CTδth, are control derivatives.

Notice that the over line individuates non-dimensional 
quantities; besides, in Eq. 10, altitude variation is considered.

Finally, instead of modeling the drag coefficient by means of 
stability derivatives, an analytical expression of the drag polar is 
employed. Such equation has been obtained by Computational 
Fluid Dynamics (CFD) analysis of the whole aircraft.

Based on these assumptions, the state of the system is 
given by x = [u v w p q e φ ϑ ψ h]T, while the set of inputs  
in = [δe, δth, δa, δr]

T is made up of the control surfaces and 
throttle deflections, where δe is the elevator deflection; δa is 
the aileron deflection; δr is the rudder deflection and δth is the 
throttle displacement.

Equations 1 – 10 represent the aircraft state equations. Because 
of the on-board instrumentation is located very close to the center of 
gravity of the aircraft, no correction has to be made to the set 
of observation equations. Besides, to avoid errors due to poor 
quality of the pitot probe, instead of using anemometric data, 
the airspeed is obtained by integrating the IMU data. Finally, the 
heading ψ and the altitude h have been measured by using the 
magnetometer and the altimeter, respectively.

The observation equations are:



J. Aerosp. Technol. Manag., São José dos Campos, Vol.7, No 3, pp.323-333, Jul.-Sep., 2015

326
Grillo C, Montano F

(17)

(18)

(19)

(22)

(23)

(24)

(25)

(21)
r = r

ψ = ψ

h = h

(20)

where:
ax, ay, and az are the acceleration of aircraft mass center 

along the body-fixed x-axis, y-axis, and z-axis.
Based on these assumptions, the output vector of the system 

is given by y = [ax ay az V p q r ψ h]T.

EXTENDED KALMAN FILTER DESIGN

As it is well known, the EKF has been successfully employed 
as recursive non-linear filtering algorithm for aircraft parameter 
estimation (Speyer and Crues 1987; Kobayashi et al. 2005; 
Jategaonkar and Plaetenschke 1988).

As previous stated, in the present study, an EKF has been 
designed to estimate both the state and stability and control 
derivatives for the UAS described by the model outlined in 
“Aircraft Mathematical Model” section.

To obtain joint estimation of state and parameters, the 
state vector has been augmented by defining the unknown 
parameters as additional state variables. Such a process leads 
to the following state vector:

where:
w(t) and wp(t) are, respectively, a 10 x 1 and a 22 x 1 random 

process with unknown statistics and t is time. These have 
been inserted to represent uncertainties in the system model.

For the augmented model, the output equation is:

where:
x = [u v w p q e φ ϑ ψ h]T and p is the set of unknown 

stability and control derivatives that, according to Eqs. 1 – 9, is:

Discrete measurement equations have been used:

with:

where:
ν(t) is the measurement noise vector and T is the sampling 

interval of the instrumentation.
According to the theory (Lewis et al. 2008), the structure 

of the continuous discrete Kalman filter consists of two 
subsystems: a subsystem (predictor) which gives a time update of 
the estimation and a subsystem (corrector) which adjusts the 
prediction by means of measurements.

A first estimate of the state is obtained by means of the 
known dynamics of the system:

This estimate is the corrected using:

X = x
p

Besides, we have postulated the constant system parameter 
p, and the following equations have been inserted into the 
UAS model:

The following augmented dynamic model of the system has 
been obtained by joining Eqs. 1 – 10 and Eq. 20:

p = 0
.

where:
Xpred are predicted states, Xest are esteemed states, z is the 

measurement vector, and ypred is predicted output, with the 
initial condition:

where:

y(t) = h(x, in, p, t)

zk = hk(x, in, p, t) + v(t)

hk(x, in, p, t) = h(x, in, p, t) if t = kT

hk(x, in, p, t) = [01×9] if t ≠ kT
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(27)

(28)

(29)

(30)

(26)

Kk is the gain matrix at step k, which is computed to minimize 
the covariance of the estimation error:

In the present paper, Eq. 24 has been integrated by 
using a second-order Runge-Kutta algorithm; the Jacobean 
matrices A and H have been evaluated by using a numerical 
implementation of the central difference formula; the state 
transition matrix has been obtained by Taylor series expansion:

The estimation error covariance matrix Ppred and Pest are 
given by:

with the initial condition Pestk = P(0) .
where R is the measurement noise covariance matrix, Q 

is the process noise covariance matrix and I is the identity 
matrix.

In the previous equations, ϕk is the discrete time state 
transition matrix:

and, according to Equation (21), Jacobeans Ak and Hk are 
defined as next:

where:
f is a non-linear relation between states, inputs, disturbances 

and time (see Eq. 21).
Equations 24 – 28 describe the EKF for the system given by 

Eqs. 21 and 22. In particular, Eqs. 21 and 27 are the prediction 
equations and Eqs. 25, 26 and 28 are the correction equations.

Obviously, to perform the estimation process of the non-
linear system given by Eqs. 21 and 22, numerical integration 
algorithm has to be used for integration of Eq. 24.

Besides, because of Eqs. 29 and 30 denote the linear-
ization process for the state matrix (Eq. 29) and the mea-
surement matrix (Eq. 30), numerical linearization has to be 
performed.

Finally, the state transition matrix ϕk must be approximated.

The core of the tuning of the EKF is the calibration of 
both measurement and process noise covariance matrix and 
the selection of P(0), which represents the confidence in the 
initial state estimates.

Physical airframe size and cost restrictions limit the 
availability and quality of UAS on-board sensors. Besides, such 
aircraft is often significantly affected by wind disturbance, 
both due to their relatively small dimensions and to their 
mission profiles. Finally, small wind components represent 
relevant non-measured inputs. Therefore, measured flight 
data contain considerable amount of noise.

To take into account either the poor quality of the on-board 
instruments or the relevant effects of the wind disturbance 
on the flight path characteristics, in the present paper, very 
high values have been used for the measurement noise 
covariance matrix R. In particular, instead of inserting into 
the measurement noise covariance matrix the characteristics 
of the on-board instruments, the elements of R have been 
selected by determining errors due to realistic values of the 
wind components. 

Because of the UAS mathematical models are usually 
very inaccurate to take into account both high measurement 
errors in the aircraft outputs and poor knowledge of the 
parameter values, high values have been assumed for P(0). 
In this way, it is possible to test the EKF robustness in 
parameters estimation.

Therefore, the measurement noise has been postulated 
as Gaussian band limited white noise. To simulate the 
influence of the atmospheric turbulence on the UAS flight, 
the amplitude of such a noise is comparable to realistic values 
of atmospheric wind components.

Finally, a trial and error procedure has been employed 
to determine the process noise covariance matrix Q by 
imposing satisfaction of requirements assigned in terms 
of mean value of estimation error for the non-augmented 
state of the aircraft.
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Figure 3. Aileron and rudder deflection.

Figure 2. Elevator deflection.
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FILTER TUNING

The identification procedure has been tuned-up by means 
of simulation of the non-linear model discussed in “Aircraft 
Mathematical Model” section. A first set of stability and 
control derivatives of the studied UAS has been calculated 
by means of analytical relations (Etkin 1972). Such a set 
represents the initial condition of the parameters into the 
augmented state.

To perform the parametrical identification, the non-linear 
model postulated in Eqs. 1 – 10 has been employed to take into 
account every correlation between variables. In order to excite 
both dynamics, elevator, ailerons and rudder, deflections have 
been simultaneously applied. The comparison has been made 
between simulation results and estimates.

Simulation has been performed by selecting a trim condition 
of rectilinear horizontal flight at a reference speed V = 24.63 m/s, 
corresponding to an angle of attack α = 0.0471 rad and an 
elevator deflection δe = –0.2610 rad.

The so-called 3-2-1 input has been selected (alternating 
pulses with time and width in the ratio 3-2-1). 

To cope with transient characteristics of aircraft dyna- 
mic modes, elevator deflection has been chosen constant 
(Δδe = ± 0.1 rad) and scaled on time (3-2-1 seconds). Such an 
input, as it is well known, is the best way to excite the short 
period mode. In fact, the short period and phugoid frequencies 
are: 2.4 x 10-3 Hz and 4.44 x 10-4, respectively. Because of the 
dutch roll frequency is 7.53 x 10-4 Hz, the rolling convergence and 
spiral mode time constants are 0.054 s and 2.04 s, respectively; 
aileron and rudder deflections have been chosen in 3-2-1 ratio 
amplitudes (δa, δr = ± 0.12, ± 0.08 and ± 0.04 rad; duration: 1s). 
The selected inputs are shown in Figs. 2 and 3.

The initial condition of augmented state has been formed 
by the trim value of state variables (x) and the analytical values 

of parameters (p): X(0) = [24.60; 0; 1.16; 0; 0; 0; 0; 0.047; 0; 60; 
3.998; –0.9196; 5.945; –10.28; 0.155; –0.403; 1.369; –3.426; 
–0.274; –0.0565; 0.0054; –0.0122; –0.386; –0.083; 0.134; 0.212; 
–0.059; 0.085; –0.173; 0.004; 0.00296; –0.027].

The measurement vector (z) has been obtained by simulation, 
integrating state equations 1 – 10. To simulate real measurements, 
a Gaussian band limited white noise has been added to the 
obtained results.

Process and measurement noises have been postulated as 
uncorrelated; in this way, either the process noise covariance 
matrix or the measurement noise covariance matrix are 
diagonal.

As previous stated, to cope with poor aerodynamic model 
typical of UAS, high values of first estimation error covariance 
matrix P(0) have been postulated:

P(0) = diag [16; 4; 9; 1; 1; 10; 0.25; 0.36; 0.16; 0.5; 10; 10;  
 10; 10; 10; 10; 10; 10; 10; 10; 10; 10; 10; 10; 10; 10; 
 10; 10; 10; 10; 10; 10] x10-2

By considering the low quality of the on-board sensors of 
UAS, very high values have been used for the measurement 
noise covariance matrix R:

R = diag [0.08; 1; 0.05; 1; 1; 1; 1; 1; 10] x 106

As we said before, a trial and error procedure has been 
carried out to estimate the process noise covariance matrix 
by imposing constrains on the mean error between reference 
and estimated state variables (x).

The selected constrains are presented in Table 1.
At the end of the tuning procedure, the following 

values of the process noise covariance matrix have been 
obtained:
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State variable Maximum error Mean error

u 1.35 –0.23
v 2.548 0.0333
w 0.52 0.0046
p 1.3 –0.0073
q 0.678 0.0027
r 0.2091 0
φ 0.4935 6.76 x 10-4

ϑ 0.1396 0.0065
Ψ 0.5258 0.2725
h 6.89 –0.425

Table 2. Estimated state errors.

Q = diag [1; 1; 10; 1; 1; 1; 1; 1; 1; 1; 0.1; 0.01; 10; 
 10; 1; 1; 10; 10; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 
 10; 1] x 10-2

The non-augmented state variables estimated with the 
tuned-up filter parameters are shown in Figs. 4 – 13. 

In these figures, the values of the state variables calculated 
by simulation (drawn in green line) and those obtained by 
performing state estimation (drawn in red line) are compared.

Figures 4 – 13 show very good estimation accuracy for 
all states. Mean errors are largely below the maximum values 
admitted by the imposed specification. Besides, the maximum 
estimation error is very small. 

State variable Mean estimation error

u 2 m/s
v 0.2 m/s
w 0.2 m/s
p 0.05 rad/s
q 0.05 rad/s
r 0.05 rad/s
φ 0.07 rad
ϑ 0.04 rad
Ψ 0.7 rad
h 5 m

Table 1. Imposed specifications.

Figure 5. y-axis speed component (v). Figure 8. Pitch rate (q).

Figure 4. x-axis speed component (u). Figure 7. Roll rate (p).

Figure 6. z-axis speed component (w).

The obtained values of maximum and mean error are 
shown in Table 2.
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Figure 13. Altitude (h).

Figure 9. Yaw rate (r).

Figure 10. Bank angle (φ).

Figure 11. Elevation angle (ϑ).

Figure 12. Heading angle (ψ).

RESULTS

The tuned-up EKF has been employed to determine the 
unknown aircraft parameters. To verify robustness properties of 
the tuned-up procedure, a Gaussian white noise has been added 
to the true outputs in order to better simulate real measurement.

The standard deviations of the measurement errors have 
been set as follows:

05.9
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C
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30 40 50 60

Figure 14. Time evolution of CLq.

In spite of the very poor qualities of the postulated 
measures, for the non-augmented state, the obtained mean 
errors are smaller than those shown in Table 2. The obtained 
results confirm the suitability of the tuning procedure. In fact, 
as it is known, small values of the process noise covariance 
matrix correspond to a better filtering of high-frequency 
disturbances.

The time evolution of the estimated aircraft damping 
parameters is shown in Figs. 14 – 19.
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Figure 16. Time evolution of Cmq.

Figure 17. Time evolution of Cmἀ.

Figure 18. Time evolution of Clp.

Figure 19. Time evolution of Cnr.Figure 15. Time evolution of CLα. 

Notice that these parameters are shown because of their 
relationship with the time constant of aircraft dynamic modes. 
These figures clearly show that the parameters go to their 
asymptotic value after few seconds.

To demonstrate the suitability of the proposed procedure, 
Figs. 20 and 21 show the fundamental aircraft parameters CLα 
and Cmα.

Table 3 shows the identified values of the parameters 
compared with their analytical values, as well as the standard 
deviations.

Figure 21. Time evolution of Cmα.

Figure 20. Time evolution of CLα.
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Table 3. Identified parameters.

Parameter
Analytical 

value
Identified 

value
Standard 

deviation (σ)
CLα 3.9984 3.9980 1.0457 x 10-4

Cmα –0.919632 –0.9191 7.3456 x 10-5

CLq 5.9449 5.9338 5.70 x 10-4

Cmq –10.2831 –10.2729 0.0032

CLδe 0.1554 0.1575 0.0113

Cmδe –0.40287 –0.4011 0.0062

CLἀ 1.3689 1.3689 4.9975 x 10-6

Cmἀ –3.4263 –3.4285 5.6124 x 10-5

CYβ –0.274 –0.2737 2.7406 x 10-4

Clβ –0.05653 –0.0598 0.0014

Cnβ 0.0054 0.0074 0.0029

CYp –0.0122 –0.0124 7.9124 x 10-4

Clp –0.3861 –0.3871 7.3572 x 10-5

Cnp –0.0832 –0.0868 3.9226 x 10-4

CYr 0.13394 0.1339 4.5624 x 10-5

Clr 0.21175 0.2098 3.9655 x 10-4

Cnr –0.0588 –0.0630 4.5311 x 10-4

CYδr 0.0851 0.0855 1.4039 x 10-5

Clδa –0.1726 –0.1753 4.2772 x 10-5

Clδr 0.0041 0.0014 4.2672 x 10-5

Cnδa 0.002957 –5.83 x 10-4 2.2098 x 10-4

Cnδr –0.0266 –0.0270 2.1125 x 10-5

The parametrical identification has been carried out 
by using low computational power and considering sensor 
characterized by high measurement noise.

The tuned-up procedure affords:
•	 The simultaneous identification of longitudinal and 

lateral stability and control derivatives.
•	 The identification of dynamic derivatives without 

using a devoted procedure.
•	 The reduction of costs and time in performing 

parametrical identification.
The second item represents a very interesting result. In 

fact, as it is well known, in off-line identification procedures 
(based on filter error methods or output error method, for 
example), the parametrical identification is performed by 
minimizing the selected cost function. Such a function is 
related to the measurement noise. Obviously, is not measurable 
in a simple way; therefore, devoted flight test campaign or 
devoted instruments are necessary to obtain valuable values 
of such a quantity.

Similarly, in on-line identification procedures to determine 
dynamic derivatives, it is necessary to identify first the angle 
of attack change rate.

By using the proposed procedure, it is sufficient to evaluate 
numerical values of  by using measured values of α. The 
obtained results show that the implemented algorithm affords 
to determine aircraft parameters with noticeable precision.

Very similar values of the estimated aircraft parameters 
have been identified by varying the measurement noise 
characteristics. In particular, very small standard deviations 
have been obtained even in presence of noticeable measurement 
noise.

The tuned-up procedure is particularly suited for UAS 
because a low computational power is required; besides, low-
cost sensors may be employed.

Because a non-linear 6-DoF mathematical model of 
the aircraft has been used, the tuned-up maneuvers afford 
to determine the whole set of aircraft stability and control 
derivatives, leading to reduction of costs and time in performing 
parametrical identification.

Moreover, the implemented algorithm has good robustness 
properties. In fact, by adding a Gaussian white noise with 
noticeable standard deviation to the system output, the 
obtained results show very small errors. 

Finally, the ἀ derivatives (CLά and Cmά), which often are 
not included into the dynamic model of aircraft, have been 

The obtained results show that it is possible to identify at 
the same time the whole set of the aircraft derivatives; besides, 
it is not necessary to tune-up dedicated procedure to estimate 
the dynamic damping derivatives. In fact, the obtained values 
of  and , that are shown in Table 3, have very small values of 
standard deviation.

It is noticeable the negative value of the parameter , which 
is usually positive for conventional aircraft. This means that it 
will be necessary, in performing flight test campaign, to study 
devoted manoeuvres in order to determine the real sign of 
the mentioned derivative.

CONCLUSIONS

The identification process of a 6-DoF UAS model has been 
performed developing a procedure based on the Extended 
Kalman Filter.
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identified without uncertainty (very small σ). Notice that 
the obtained results highlight that neglecting these damping 
derivatives leads to noticeable modelling errors.
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LIST OF SYMBOLS

ax, ay, az: acceleration of aircraft mass center along the body-fixed x-axis, y-axis, z-axis

CL, CD, Cm, CT: lift coefficient, drag coefficient, pitch moment coefficient, thrust coefficient

Cl, Cn, CY: coefficients of roll moment, yaw moment, side-force

CLα, Cmα, CLq, Cmq, CLἀ, Cmἀ, CYβ, Clβ, Cnβ, CYp, Clp, Cnp, CYr, Clr, Cnr, CTV: stability derivatives

CLδe, Cmδe, CYδr, Clδa, Clδr, Cnδa, Cnδr, CTδth: control derivatives

h: aircraft altitude

I: identity matrix

Ix, Iy, Iz: aircraft moments of inertia

m: aircraft mass

p, q, r: roll, pitch, yaw angular speeds (rad/s)

S: wing surface

t: time

T: thrust 

u, v, w: velocity components in body reference frame

V: air speed (m/s)

Xpred: predicted states

Xest: esteemed states

ypred: predicted output

z: measurement vector

α: angle of attack

β: angle of sideslip

ρ: air density

δe: elevator deflection

δa: aileron deflection

δr: rudder deflection

δth: throttle displacement

φ, ϑ, ψ: Euler angles

Further development of the present research will be devoted 
to the on-board implementation of the identification algorithm 
on the studied UAS.


