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Abstract: A two-dimensional second-order positivity-
preserving finite volume upwind scheme is developed for a 
semi-coupled algorithm involving the air and droplet flow fields 
in the Eulerian frame, which shares the grid for each phase. 
Special emphasis is placed on the computational modeling, 
which is induced from a strongly-coupled algorithm that 
satisfies the strict hyperbolicity and its numerical scheme 
based on the Harten-Lax-van Leer-Contact solver preserving 
the positivity to handle multiphase flow in the Eulerian frame. 
The proposed modeling associated with the semi-coupled 
algorithm including the Navier-Stokes and droplet equations 
takes into account different boundary conditions on the solid 
surface for each phase. The verification and validation studies 
show that the new scheme can solve the air and droplet flow 
fields in fairly good agreement with the exact analytical solutions 
and experimental data. In particular, it accurately predicted 
the maximum value of the droplet impingement intensity 
near the stagnation region and the droplet impingement area.

Keywords: Computational fluid dynamics, Finite volume 
method, Harten-Lax-van Leer-Contact scheme, Positivity, 
Multiphase flow, Aircraft icing, Supercooled water droplet.
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Introduction

In the atmosphere, an in-flight aircraft icing occurs when 
supercooled water droplets freeze on impact with any part of the 
external structure of an aircraft during flight in icing conditions, 
such as a cloud (Lynch and Khodadoust 2001). Icing also occurs 
on wind turbine blades exposed to low temperatures and water 
droplets (Parent and Ilinca 2011). Such flows can be found in 
the air-mixed supercooled water droplet fields. Exposure to this 
condition for a considerable period can be extremely dangerous 
to aircraft, as the built-up ice can distort the smooth flow of air 
over the wing. This serious aircraft safety concern can be involved 
in diminishing the wing’s maximum lift coefficient, reducing the 
angle of attack for maximum lift coefficient, adversely affecting 
aircraft handling qualities and significantly increasing the drag 
(Lynch and Khodadoust 2001; Bragg et al. 2005). In addition, 
aircraft accidents due to icing have been occasionally reported 
in articles. Representatively, the ATR 72 during an En-route is 
crashed near Roselawn, Indiana, USA, by the loss of controllability 
due to icing in 1994 (Gent et al. 2000). A prediction how the 
water droplets impinge on external structure in such cases can 
be essential to design proper ice protection systems that prevent 
or remove ices accumulated on these structures (Kind et al. 1998; 
Ahn et al. 2015). The design of ice protection systems requires 
knowledge of the local and total impingement intensities in 
order to determine the heat inputs for removing built-up ice 
and the extent of the surface area to be protected. Useful data 
on the local and total impingement intensities can be obtained 
via icing wind tunnel tests, or state-of-the-art computational fluid 
dynamics (CFD) simulations. Although the icing wind tunnel 
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tests can provide detailed information, they are very expensive 
and there are scaling limitations of test models due to wind 
tunnel sizes in most cases. On the other hand, the CFD-based 
simulations are relatively cheap and can handle icing problems 
without limitations (Anderson 2000). Therefore, CFD-based 
simulations have been increasingly spread and have found their 
way into the main stream of computational methods for obtaining 
information about droplet impingement. The numerical simulations 
to predict droplet impingements have been traditionally based 
on the two approaches of modeling particle transport in CFD 
simulations, the Eulerian and the Lagrangian approaches. The 
Eulerian approach treats the particle phase as a continuum and 
develops its conservation equations on a control volume basis in a 
similar form as that for the fluid phase. The Lagrangian approach 
considers particles as a discrete phase and tracks the pathway of 
each individual particle, such as the NASA LEWICE and ONERA 
codes (Hamed et al. 2005; Wright et al. 1997; Morency et al. 1999; 
Silveira et al. 2003; Vu et al. 2002). In the Lagrangian formulation, 
the trajectory of each particle is computed using a force balance 
equation. Meanwhile, the Eulerian approach is more flexible for 
three-dimensional complex geometries. 

In general, multiphase flows are simulated using the strong 
coupled algorithm in which each phase is closely interacted. 
Nevertheless, the multiphase flows around the aircraft flying into 
the cloud can be simulated using a weakly coupled algorithm, 
because the mass loading ratio of the bulk density of the droplets 
over the bulk density of air is on the order of 10–3 under icing 
conditions. It means that the effect of droplets in the air flow can be 
ignored. A number of phenomena and forces may be considered 
while modeling air-droplets flows, but the following assumptions 
are sensible in an aircraft icing: the spherical droplets without 
any deformation or breaking; no droplets collision, coalescence 
or splashing; no heat and mass exchange between the droplets 
and the surrounding air; turbulence effects on the droplets can be 
neglected; the only air drag, gravity and buoyancy forces acting 
on the droplets (Bourgault et al. 2000). This observation can 
justify a weakly coupled algorithm in which the calculations for 
each phase can be independently conducted for the atmosphere 
icing conditions mixed with the air and a supercooled water 
droplet. This assumption is however valid for steady state 
simulations. For unsteady state simulations, such as a moving 
body, the weakly coupled algorithm may not be valid since, at 
every time step, air solver should provide the time-dependent 
primitive variables, such as density and velocity of air flow, to 
the droplet solver taking into account the drag and buoyancy of 

droplet. In such cases, multiphase flows around the aircraft may 
be treated in strongly-coupled or semi-coupled manners so that 
the equations of each phase are interactively solved or the air 
flow affects the droplet flow strongly. For the strongly-coupled 
manner, the full system of equations is based on the strong 
interactions between the phases divided by volume fractions. 
Interestingly, the droplet flow does not affect the air flow due to 
the aforementioned assumption, mass loading ratio of the bulk 
density between each flow. It results that the multiphase flows on 
the aircraft icing do not require the strongly-coupled manner for 
unsteady simulations. In addition, the full system of equations of 
strongly-coupled algorithm is very complex and requires a lot of 
computational resource compared with semi-coupled algorithm. 
Consequently, the semi-coupled algorithm can be an alternative 
way to simulate the unsteady simulations. 

At present, however, critical computational issues remain 
regarding the CFD-based air-mixed droplet simulations as a 
unified solver in which air and droplet solvers are integrated using 
the single numerical scheme. The issues concern the accuracy of 
numerical solutions to the droplet equations and its hyperbolic 
nature. In particular, the liquid water content (LWC) is observed 
around a solid surface after the droplets impinge on the surface 
(Jung and Myong 2013; Jung et al. 2011), as illustrated in Fig. 1. 
Moreover, it consists of various non-linear wave regions: shock 
fronts, rarefactions, contact discontinuities, and transitional 
layers at the interface of the shadow and non-shadow areas. 
Without proper positivity-preserving schemes, the LWC near 
the surface may become negative, resulting in the numerical 
breakdown (Kim et al. 2013). The reason is that the convective 
system of the droplet equations is not strictly hyperbolic. Even 
though the system has real eigenvalues, λi = 1, 2, 3 = u, they are 
not distinct and it results that the system of equations does 

Figure 1. Liquid water content distribution around an airfoil and 
identification of the Riemann problems (Jung and Myong 2013).
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not satisfy the hyperbolic conservation law. This means that the 
well-known numerical methods based on the well-posed strictly 
hyperbolic system such as the approximate Riemann solver may 
not be applicable, and the special schemes based on the kinetic 
approximation (Bouchut et al. 2003) are required. To deal with 
this issue, a two-dimensional second-order positivity-preserving 
finite volume upwind scheme only for the droplet equations was 
developed in the previous study (Jung and Myong 2013). The 
scheme is based on the Harten-Lax-van Leer-Contact (HLLC) 
approximate Riemann solver (Toro 2001; Toro et al. 1994) for 
the so-called shallow water droplet model (SWDM) (Jung and 
Myong 2013). The key component of the scheme is a simple 
technique based on splitting of the original mathematical system 
into a well-posed hyperbolic part and the source term in which 
a vector term involving the divergence of the artificial term is 
added and subtracted to the momentum equation for a purely 
numerical purpose (Jung and Myong 2013). 

In this study, a new two-dimensional second-order positivity-
preserving finite volume upwind solver for the semi-coupled 
algorithm in Eulerian frame has been developed using the 
well-posed hyperbolic part. It will be shown that this numerical 
scheme satisfies the density positivity condition. In addition, 
the second-order unified solver of the semi-coupled algorithm 
in aircraft icing conditions can serve as a basic concept, which 
is extendable to the moving body simulations. In “Governing 
Equations” section, the mathematical model of the semi-coupled 
algorithm for an aircraft icing from a compressible multiphase flow 
(strongly-coupled multiphase algorithm) introduced by Saurel and 
Abgrall (1999) is reviewed, and the well-posed hyperbolic part 
of the eigen structure of the system is presented. In “Numerical 
Methods” section, the second-order finite volume method 
based on the HLLC approximate Riemann solver is presented. 
In “Verification and Validation” section, numerical results of 
one- and two-dimensional test problems, as the verification and 
validation of the new scheme, are presented. 

Governing Equations

Atmospheric multiphase flow for an aircraft icing can be 
treated as a compressible and dilute multiphase flow ignoring 
the droplet effects in air flows since the mass loading ratio of the 
bulk density of the droplets over the bulk density of air is on 
the order of 10–3 in flows. Although the flows can be simulated 
using a weakly-coupled algorithm for a steady state simulation, 

it exposes a limitation for an unsteady state simulation since 
all primitive variables at every time-marching step cannot be 
provided into the droplet solver, through the source terms of 
the droplet equations, due to enormous data size. Consequently, 
strongly-coupled or semi-coupled algorithms should be employed 
to simulate unsteady-depended aircraft icing. In this study, the 
semi-coupled algorithm is proposed by the aforementioned 
reason in introduction section. The convection-type equations 
of semi-coupled algorithm for an aircraft icing can be induced by 
the compressible multiphase flow (strongly-coupled algorithm), 
which is introduced by Saurel and Abgrall (1999). The full system 
of equations of compressible multiphase flow, except for the 
viscous effects of gas phase and the buoyancy and gravity forces 
acting on the droplet of liquid phase, is described as:

where: 
superscripts g and l denote the gas and liquid phases, 

respectively; E is the total energy; P means static pressure; 
I is the identity matrix; V and α are an interfacial velocity and a 
volume fraction, αg + αl = 1; ρ and u are the density and velocity 
of each phase, respectively; µ is the viscosity; λ refers to the drag 
coefficient. The subscript i means an interface between two 
phases. Using the aforementioned assumptions (αg ~ 1, αgρg = ρa, 
αlρl = ρd = LWC, ρlPl = 0 and Vi = Pi = 0), the system of equations 
are summarized as: 

(1)

(2)

where: 
–λ(ul – ug) denotes a drag force of droplet due to the air 

flow; the subscripts a and d represent the air and the droplet, 
respectively. 

Finally, the full system of equations involving the viscous 
effects of air flow and the buoyancy and gravity forces acting 
on the droplet is described as: 
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where: 
aa is a sound of speed of air flow. The matrix A(W) has real 

eigenvalues, λ1 = ua – aa, λ2 = ua, λ3 = ua + aa, λ4 = λ5 = ud , with 
corresponding right eigenvectors:

(3)

(5)

(6)

(4)

where: 

Here, the non-conserved variables τ and Q denote the viscous 
shear stress tensor and the heat flux, respectively. In Eq. (3), 
the symbol [Vua]

(2) in the viscous shear stress tensor stands 
for the traceless symmetric part of the tensor; k is the thermal 
conductivity and depend on the air temperature. For the air flow, 
the ideal equation of state p = ρRT is used in order to close the 
equations. Sb = ρg[0, 0, 1 – ρa/ρw]T, being ρa and ρw the density of 
air and water, is the resultant force of the gravity and buoyancy 
of droplets. The Au(ua - ud) denotes the drag acting on droplets 
caused by the airflow, and g is acceleration due to gravity. Also, 
the MVD is the mean volume diameter of the droplet. Reu and 
CDu are the Reynolds number of droplets and the drag coefficients 
of the spherical droplets, respectively. The drag coefficient can 
be obtained from Lapple (1951) as follows: 

which is valid for Reu < 1,000. In Eq. (3), the first three 
equations are the well-known Navier-Stokes equations for air 
flow and the last two equations are the droplet equations for 
droplet flow, respectively.

Semi-Coupled Algorithm with Shallow 
Water Droplet Model for Strict 
Hyperbolicity 

A shallow water droplet model based on the Eulerian 
framework developed in the previous work (Jung and 
Myong 2013) was employed for the present semi-coupled 
algorithm. In the present semi-coupled algorithm of Eq. (3), the 
strict hyperbolic conservation law is not satisfied due to a lack of 
distinctive eigen systems. It means that the well-posed numerical 
schemes based on the approximated Riemann solvers may not 
be applied to the equations. In this study, the eigen systems of 
convective fluxes of Eq. (3) are introduced using the primitive 
formulation of a one-dimensional semi-coupled algorithm in 
order to proof the lack of distinctive eigen systems:

Even though the matrix A(W) has real eigenvalues, fourth 
and fifth eigenvalues and eigen vectors exactly corresponding 
to droplet equations are not distinctive. Thus, the formulation 
based on splitting of the droplet equations into the well-posed 
hyperbolic part and the source term, which circumvents the non-
strictly hyperbolic nature of the droplet equations, is applied. 
The modified full system of equations involving the previous 
study can be written as: 

and its primitive form with corresponding eigen systems is 
summarized as:

Wt + A(W)Wx = 0

Wt + A(W)Wx = 0

(7)

where: 
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ad is (gD)1/2. D and g are a diameter named by the MVD 
of droplet and gravity, respectively. The matrix A(W) has real 
eigenvalues, λ1 = ua – a, λ2 = ua, λ3 = ua + a, λ4 = ud – ad, λ5 = ud + ad ,  
with corresponding right eigenvectors:

There are six distinct waves for the well-posed hyperbolic part 
of Eqs. 6 and 7. The solutions in the Star region for each phase 
consist of two constant states separated from each other by a 
middle wave of speed. In the exact Riemann solver, the middle 
wave speed S* can be estimated for the particle velocity in the 
middle state (S* = u*; S is a wave speed and u* is the x-directional 
particle velocity in the middle state). The well-posed hyperbolic 
part of governing equations in two-dimensional and x-spirit 
case can be rewritten as follows with a change of notation 
ψ = v (v is the y-directional particle velocity):

The tangential velocity component ψ(x, t) represents the 
concentration of a pollutant or some other passive scalar. 
The convective flux of Eq. 8 has real and distinct eigenvalues,  
λ1 = ua – aa, λ2 = λ3 = ua, λ4 = ua + a, λ5 = ud – ad, λ6 = ud, λ7 = ud + ad. 
The quantity ψ for each phase gives rise to the middle eigenvalue, 
λ3 = ua and λ6 = ud, respectively. For this hyperbolic system, the 
following HLLC flux for the approximated Godunov method 
can be defined at the interface of left and right cells as:

SL
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t

x
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d
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d
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Figure 2. The HLLC approximate Riemann solver for the 
well-posed hyperbolic part of the semi-coupled algorithm.

Note that Eqs. 6 and 7 satisfy the hyperbolic conservation 
law. In the following section, a numerical method is described 
using the semi-coupled algorithm based on Eqs. 6 and 7.

Numerical Methods
HLLC Approximated Riemann Solver for 
the Semi-Coupled Algorithm 

For the semi-coupled algorithm, a vacuum state caused 
by the rarefaction waves traveling in opposite directions is 
analogous to the shadow area, which refers to the very low 
density of the droplets around a solid surface after the droplets 
impinge on the solid surface. Although various numerical 
methods for preserving the positivity and avoiding the negative 
density have been published in the past, only a few methods 
satisfy the positivity in a vacuum state. In particular, the HLLC 
approximate Riemann solver developed by Toro (2001) and 
Toro et al. (1994) has shown good behavior and satisfies the 
positivity. In fact, the HLLC approximate Riemann solver for 
droplet equations can be archived in two- or three-dimensional 
cases because the HLLC solver basically requires at least three 
equations to complete wave structures reflecting left, right and 
shear waves. For this reason, a two-dimensional architecture 
for the semi-coupled algorithm is derived. 

Figure 2 illustrates the assumed wave structure in the HLLC 
approximate Riemann solver for the semi-coupled algorithm. 

(8)

(9)

(10)

Ut + F(U)x = 0

where: 
superscript k denotes each phase, such as air and droplet 

phases, and F* is an inter-cell flux in the star region for each phase, 
as defined by F*w = Fw + Sw(U*w - Uw) and a subscript w indicates 
left or right directions. The state, U*w, for each phase is given by: 
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where:
wave speeds, SL and SR (L and R subscripts denote the left 

and right states, respectively), for air flows, employ the direct 
wave speed estimation, as suggested by Davis (1988), which is 
the most well-known approach for estimating bounds for the 
minimum and maximum signal velocities in the solution of the 
Riemann problem:

and, for droplet,

Even though the minimum and maximum principals for 
wave speed estimations of left and right sides in Eq. (11) can 
be imposed to droplet equations, the principals may not ensure 
the positivity of density in a vacuum state. For this issue, the 
depth positivity condition proposed by Toro is applied to 
circumvent numerical difficulties via an assumption of density 
in a star region:

In Eq. 12, qw is defined by:

where:
ρd

* is an estimate of the exact solution for ρd in the star 
region. From the depth positivity condition, ρ* in the star region 
is derived as follows:

The middle wave speeds (S*) in the HLLC Riemann solver 
are based on the Rankine-Hugoniot conditions across each of 
the waves, which are basically assumed that all wave speeds are 
known. The speeds S*, purely in terms of the speeds SL and SR, 
defined in Eqs. 11 and 12 for each phase, can be expressed as:

for air,

In order to enhance the accuracy, Monotone Upstream 
Scheme for Conservation Law (MUSCL) proposed by van Leer 
(1979) together with van Albada limiter (van Albada et al. 1982) 
is employed:

where:
W = [ρa, ua, ψa, Pa, ρd, ud, ψd]

T denotes primitive variables. 
The van Albada limiter is defined as ΨL/R = 0.5[(1 + κ)rL/R + 
(1 – κ)]ФL/R and Ф(r) = 2r/(1 + r2). κ represents an 
extrapolation parameter and rR = (Wi+1 – Wi)/(Wi+2 – Wi+1) and 
rL = (Wi+1 – Wi)/(Wi – Wi-1). A general procedure to precisely 
solve the Riemann problem for two-dimensional and x-split air 
and droplet equations is referenced in Toro’s work for air flows 
and previous work for the shallow water droplet model 
(Jung and Myong 2013), respectively. 

Two-Dimensional Finite Volume 
Formulation

The present finite volume formulation for the semi-
coupled algorithm is based on a cell-centered scheme and 
structured grid. The complete set for the two-dimensional 
semi-coupled algorithm can be written as:

(11)

(12)

(13)

(14) (18)

(15)

(16)

(17)

where:
H = cosθF(U) + sinθG(U), and
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where:
dΩ represents the bounding surface of the control volume 

Ω. The two-dimensional finite volume formulation in general 
non-Cartesian domains can be derived by exploiting the 
rotational invariance property of the droplet equations, 
cosθF(U) + sinθG(U) = T–1F(TU), where T = T(θ) represents 
the rotation matrix. Eqs. 18 can then be expressed as:

In the two-dimensional finite volume formulation, the line 
integral dl on the right-hand side can be approximated by a sum 
of the fluxes crossing the faces of the control volume. It is usually 
assumed that the flux is constant along the individual interface 
and is evaluated at the mid-point of the interface. Finally, the 
following discretized equation is:

The value of droplet density at the interface in source terms 
is determined as follows:

The air flow indeed should take into account viscous effects. In 
this study, the Spalart-Allmaras turbulence model is employed to 
simulate the turbulent effect in air flow fields and an ideal state 
of equation is used to close the system of equations.

Boundary Conditions
A collection efficiency, a main feature in the in-flight 

and atmospheric icing, is determined by the droplet density and 
velocity near the solid surface. It is the fraction of the liquid 
water, which is deposited as ice on that component while flying 
in icing conditions. Therefore, the setting of the numerical 
boundary condition on the solid surface is an important 
factor in solving droplet flow fields. When the projection of 
a normal vector on a solid surface and the droplet velocity in 
an adjacent cell on the solid surface are positive, the droplets 
should not collide with the solid surface. On the contrary, 
when the projection is negative, the droplets should collide 
with the solid surface. On the basis of this observation, the 
following simple boundary conditions used in the previous 
study (Jung and Myong 2013) can be imposed for the droplet 
size less than 40 μm (see Fig. 3):

(19)

(20)

(21)

(22)

In Eq. 19, the numerical flux Hk at k-th interface is determined 
by the HLLC approximate Riemann solver. Although the 
implementation of explicit schemes is much easier than that 
of implicit schemes, explicit schemes require careful time step 
selection in order to fulfill the stability requirement. The semi-
coupled algorithm in this study is calculated under the maximum 
allowable time steps used in the work of Erduran et al. (2002). 
The local time stepping for the temporal discretization is achieved 
using the fifth stage Runge-Kutta scheme. In case of unsteady 
simulation, the minimum time step, after convergences for each 
phase, should be chosen to guarantee the stability for each phase. 

where:
n = (nx, ny) denotes the normal vector of the solid surface. 

For the boundary conditions on the solid surface of air flows, a 
non-slip condition is applied. For the far-fields, Riemann invariant 
conditions for each phase are applied.

Verification and Validation

Two types of problems are selected to verify and validate 
the second-order positivity-preserving finite volume upwind 

V V

Figure 3. Permeable wall boundary condition for droplet 
impingement (Jung and Myong 2013).

∫
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scheme of the semi-coupled algorithm for air-mixed droplet flow. 
The first problem is intended to compare the exact analytical 
and numerical solutions as a verification study. The second 
problem is the air-mixed droplet flow around an airfoil taken 
from Morency et al. (1999) as a validation study. The conditions, 
which represent the shadow (very low density of droplet) and 
high LWC (very high density of droplet) regions in Fig. 1, as 
the Riemann problems, for the first problem are summarized 
in Table 1. The exact and numerical solutions to the one-
dimensional well-posed hyperbolic part of the semi-coupled 
algorithm are compared in Figs. 4 and 5. The computational 
domain size 50 and 100 grid points with the CFL number 0.2 
are used in these computations. Figure 4 (case 1) shows the 
positivity, which is most vulnerable to the negative density, 
between two identical rarefaction waves traveling in opposite 
directions. The HLLC scheme satisfies the density positivity 
condition of droplet; the density of droplet remains very low 
but always positive in the vacuum region. The new scheme is 
found to be very accurate for resolving rarefaction waves. The 
gap in the velocity of droplet is, nonetheless, found in the vicinity 
of the very low density of droplet. The numerical reason behind 
this shortcoming for the HLLC scheme is well understood 
(Toro 2001) and, under the more pressing need of the positivity 
property, the issue is left for future study. Another Riemann 

Test cases Phase ρL
uL pL ρR

uR pR Time (s) x0

1
Air 1.0 -0.5 1.0 1.0 0.5 1.0

0.3
0.5

Drop 0.0001 -0.5 - 0.0001 0.5 -

2
Air 1.0 0.5 1.0 0.5 -0.1 1.0

0.2
Drop 0.0001 0.5 - 0.00005 -0.1 -

Table 1. The verification cases where x0 and t represent the position of the initial discontinuity and the output time in seconds, 
respectively. Rarefaction (case 1) and shock (case 2) waves traveling in opposite directions.

problem (case 2) and its numerical solutions are illustrated in 
Fig. 5. The case is considered in order to investigate the evolution 
of non-linear waves after the collision of two streams, which 
represents the local high LWC region around a leading edge of 
an airfoil where droplets of the free stream collide with the solid 
surface. It is clearly shown in Fig. 5 that the density of droplet 
increases drastically in the star region, indicating a locally 
high LWC region. The new scheme for this case is found to be 
very accurate in predicting the shock location and resolving 
the shock discontinuities. Prior to validate the new scheme for 
air-mixed droplet flow in the in-flight and atmospheric icing 
conditions, the grid sensitivity tests for the new scheme have 
been conducted by using the fine and coarse grids. Figures 6 
and 7 show the grid topologies and convergence histories, 
respectively. The coarse grid requires less iteration than the fine 
grid; however, the accuracy due to grid topologies shows that 
the pressure coefficient of fine grid is more accurate than the 
coarse grid in Fig. 8. Nevertheless, the new scheme shows the 
robust characteristics with regard to the grid topologies. In order 
to validate the new scheme, experimental test cases are selected 
from the literature (Morency et al. 1999; Silveira et al. 2003; Vu 
et al. 2002). From the literature survey, the local collection efficiency 
is defined as the normalized influx of droplets at a given location, 
β = –ρdVd/ρd,∞Vd,∞ (Bourgault et al. 1999), where the velocity 

Figure 4. The HLLC and the exact solutions of the density and velocity of each phase. Air (a and c); Droplet for semi-coupled 
algorithm – test case 1 (b and d).
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magnitude V is determined by a scalar product (ud∙nx + vd∙ny). 
Thus it can quantitatively measure the potential of droplets to 
collect and the subsequent ice accretion, since the collection 
efficiency plays an essential role in understanding the droplet 
impingement and in designing ice protection systems. The test 
model is a NACA 0012 airfoil with 0.9144 m of cord. The free-
stream flow velocity is 44.39 m/s and the angle of attack is 0°. The 
LWC is 0.78 g/m3, the free-stream temperature is 265.5 K and 
the MVD of the droplets is 20 µm. The MVD values are assumed 
to have a monodisperse distribution instead of a Langmuir 
distribution. The test data is a log-normal distribution fitting 
the original wind tunnel data. For the numerical simulation, a 
structured grid with an O-type topology and a size of 200 × 74 

Figure 5. The HLLC and the exact solutions of the density and velocity of each phase. Air (a and c); Droplet for semi-coupled 
algorithm – test case 2 (b and d).

Figure 6. Mesh topologies (a) 421 x 65; (b) 150 x 35.

Figure 7. Convergence graphs for fine (a) and coarse grid (b), 
and the convergence limit for each variable is equal to 10-3.

rho: density.
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are used. Figure 9 shows the structure mesh distribution around 
the NACA0012 airfoil and the mesh near the solid surface 
are clustered to capture viscous effects. Figure 10 shows the 
distributions of pressure coefficient and the collection efficiency 
on the solid surface for each phase, respectively. The present 
computational results of each phase are in close agreement 
with experimental data, demonstrating that the present semi-
coupled algorithm code is capable of producing the air and 
droplet information. Figure 11 shows the pressure and LWC 
distributions around the test model with an angle of attack 

(a) (b) (c) (d)
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of 0.0°. In particular, a very low density of LWC is shown in the 
shadow area near the upper and lower side of the airfoil. The 
area of shadow zone at both the upper and lower sides of the 
airfoil is almost the same, mainly due to the effect of the free 
stream angle of attack and symmetrical shape. Furthermore, in 
order to check the low LWC results compared with free stream 
flow LWC, the low LWC values in the shadow area around 
the middle point of airfoil are presented in Fig. 12. In the 
shadow areas, the low LWC values show the 1.4465e–05 g/m3 

and 7.3195e–06 g/m3 around the upper and lower surfaces, 
respectively. Those values are less than 0.0002% compared with 
the free stream flow LWC.

Figure 8. Comparisons of fine and coarse grids with the 
experiment data.
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Figure 9. Far field (a) and clustered (b) grid distributions 
near the NACA0012 airfoil.

Figure 10. Present and experimental results of pressure 
coefficient (a) and collection efficiency (b) for the NACA 0012. 

Figure 11. Pressure coefficients (a) and LWC (b) 
distributions around NACA 0012 airfoil.
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Figure 13. Pressure distributions on the surfaces of 
MS-0317 (a) and NLF-0414 (b) Airfoils.

AoA: angle of attack.

Also, the validation tests are extended and simulated via 
the existing experimental results, which are conducted by the 
NASA in USA, in order to compare the present results, including 
other existing codes, which are provided from the literature (Vu 
et al. 2002). In particular, the effects of higher angles of attack, 
different droplet sizes and airfoil shapes are presented and the 
test conditions are summarized in Table 2. Figure 13 shows the 
pressure coefficients on the surfaces of MS-0317 and NLF-0414 
airfoils. In case of the LEWICE, the angles of attack in computations 
were slightly adjusted by approximately –2.0° to 2.5° depending 
on the test model, in order to match the experimental pressure. 
The proposed method, however, does not match the experimental 
pressure. Nevertheless, the present results are in relatively good 
agreement with experimental results. Figure 14 shows the effects 
of higher angles of attack of the MS-0317 airfoil with other fixed 
test conditions. The droplet impingement limits are moved from 
the upper surface to the lower surface around a leading edge, 
and maximum impingement intensities are slightly decreased 
in case of an angle of attack of 8°. Regarding the MVD effects, 
the maximum impingement intensity and droplet impingement 
limit are proportional to the size of droplet diameters. Figure 15 
clearly shows that small droplet size is less effective than the large 
droplet size. Figures 16 and 17 present the airfoil shape effects 
with other fixed test conditions. In fact, the shape effects may 
be considered as an influence of the leading edge radius shown 
in Fig. 16, where the MS-0317 airfoil has a larger leading-edge 

Test model Angle of attack (°) Velocity (m/s) Chord (m) MVD (μm) LWC (g/m3) Re (1.0e+6)
MS-0317

0; 0.8 78.66 0.9144 11; 21.5 0.04; 0.15 4.83
NLF-0414

Table 2. Test models and conditions. 

Figure 12. The low LWC values around middle points of upper 
and lower sides of the NACA0012 airfoil in the shadow area.
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Figure 14. Effects of higher angle of attack of the MS-0317 airfoil.
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Figure 15. MVD effects of the MS-0317 airfoil.

Figure 16. Different airfoil shapes. MS-0317 and NLF-0414 
airfoils.

Conclusions

A semi-coupled algorithm was proposed and its two-
dimensional second-order positivity-preserving finite volume 
upwind solver was developed for the semi-coupled algorithm 
of air and droplet flows in atmospheric icing conditions. 
Much attention was paid to the mathematical descriptions 
of semi-coupled algorithm and preservation of density 
positivity in the numerical scheme, as well as the verification 
and validation study of the scheme. From the previous study 
(Jung and Myong 2013), the positivity-preserving property 
was achieved by the splitting of the original mathematical 

Figure 17. Airfoil shape effectiveness. MS-0317 (a) and 
NLF-0414 (b) airfoils.
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system into the well-posed hyperbolic part and the source 
term and then applying the positivity-preserving HLLC 
approximate Riemann solver to the semi-coupled algorithm. 

In the verification and validation studies, it was shown 
that the new scheme can solve the air and droplet flow fields 
in fairly good agreement with the exact analytical solutions 
and experimental data, respectively. For the verification, the 
vacuum state and the shock wave due to two rarefaction waves 
and the collision of two waves were tested. In particular, a shock 
wave due to the collision of two waves could be considered as 
a droplet path line intersection, which represents the locally 
high LWC region around a leading edge of an airfoil where 
droplets of the free stream collide with the solid surface. It is 
clearly shown in Fig. 5 that the density of droplet increases 
drastically in the star region, indicating a locally high LWC 
region. The new scheme for this case is found to be very accurate 
in comparisons of exact solutions with the shock location and 
the shock discontinuities. In addition, Fig. 11 shows the locally 
high LWC distributions around the leading edge of the airfoil. 
From Figs. 5 and 11, the present scheme for the droplet path line 
intersection may circumvent the local accuracy limitations due 
to the numerical instability in the Eulerian framework. For the 

validation, various test models were chosen and the new scheme 
showed the applicability for air-mixed in-flight icing conditions 
in comparisons of existing wind tunnel droplet impingement 
test results. In particular, it accurately predicted the maximum 
value of the droplet impingement intensity near the stagnation 
region and the droplet impingement area. Such capability may 
be due to the second-order accuracy of numerical scheme in 
spatial discretization, while satisfying the positivity-preserving 
requirement. It should be noted that, without proper positivity-
preserving schemes, to slow the appearance of breakdown due 
to negative density, the numerical code should remain first-
order instead of second-order, typical in CFD, which in turn 
may cause the underprediction of impingement intensity near 
the stagnation region.

   In this study, a construction of the semi-coupled algorithm 
and its numerical approaches were mainly considered; 
nonetheless, there is still a room of improvement in the 
computational modeling of the moving body techniques for 
unsteady simulations. For example, periodically up and down 
motions of airfoils in order to simulate a section of helicopter 
rotor blades. The study of the problem will be the subject of 
a future paper.
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