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ABSTRACT: In this study conservation equations were 
implemented along the boundaries via ghost control-volume 
immersed boundary method. The control-volume finite-
element method was applied on a cartesian grid to simulate 
2-D incompressible flow. In this approach, mass and 
momentum equations were conserved in the whole domain 
including boundary control volumes by introducing ghost-
control volume concept. The Taylor problem was selected to 
validate the present method. Four different case studies of 
Taylor problem encompassing both inviscid and viscous flow 
conditions in ordinary and 45° rotated grid were used for more 
investigation. Comparisons were made between the results 
of the present method and those obtained from the exact 
solution. Results of the present method indicated accurate 
predictions of the velocity and pressure fields in midline, 
diagonal, and all boundaries. The agreement between the 
results of the present method and the exact solution was very 
good throughout the whole temporal domain. Furthermore, 
comparison of the rate of kinetic energy decay in viscous case 
showed same level of agreement between the results.  

KEYWORDS: Immersed boundary method, Control-volume-
based finite element, Sub-control volumes, Conservation of 
mass and momentum equations, Ghost node, Ghost sub-
control volume.
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Introduction

The immersed boundary method (IBM) is known as a 
powerful approach for simulating flows in moving boundary 
and complex geometry problems. In this method, discretization 
of equations is carried out on a Cartesian grid, which is simple 
to generate. However, the boundary does not conform to the 
grid lines, and therefore indirect methods are employed to 
apply the boundary conditions. This creates a range of different 
methods developed in the context of IBM which are applied to 
elastic (Peskin 1972, 1982; Beyer Jr 1992; Fauci and McDonald 
1995; Zhu and Peskin 2003) and solid (Berger and Aftosmis 
1998; Khadra et al. 2000; Tseng and Ferziger 2003; Saiki and 
Biringen 1996) boundaries. The conventional ghost-node 
method is currently used in problems with solid boundaries, 
where the value of ghost-node is set as to meet the boundary 
conditions. In ghost-node methods, finite difference scheme 
is usually used to simulate the flow field and the value of 
ghost-node is determined using a kind of interpolation schemes 
(Mittal and Iaccarino 2005; Majumdar et al. 2001; Ghias 
et al. 2004; Mittal et al. 2008). While these approaches are 
considered fairly fast in convergence and simple in application, 
mass and momentum equations are not conserved in applying 
boundary conditions. However, the so-called cut-cell method 
is a complicated approach based on Cartesian grid (Clarke 
et al. 1986; Udaykumar et al. 2001, 1999, 1996; Ye et al. 1999), 
which implements conservation laws in boundary cells. In 
this method the shape of Cartesian cells in the vicinity of the 
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In figure 16b, the meaning of the green 
line would be “Exact method u up?”
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boundary is changed to fi t the boundary. In cut-cell method, 
cells are divided by the boundary, and conservation laws are 
implemented in divided cells conforming to the boundary. 
Comparing to ghost node methods used in IBM, cut-cell method 
is extremely complicated. Th is is because the boundary may 
cut the Cartesian grids anywhere on the cells and create new 
arbitrary shape. It would make it more diffi  cult to discretize 
the equations and calculation of fl uxes particularly in 2- and 
3-D and moving problems. 

In the present study, an immersed boundary method 
based on CVFE scheme is proposed in the context of ghost 
node concept in which conservation of conserved quantities is 
enforced. Importantly, the present method has the capability to 
conserve mass and momentum equations along the boundary. 
Th e present approach is diff erent from the cut-cell method such 
that boundary cell shapes remain unchanged.  

nuMerIcAl AlGorItHM

Th e governing equations in the present method are solved 
via CVFE scheme, which was presented by Minkowycz et al. 
(1988) to discretize governing equations. Sub-control-volume 
(SCV) and node types are further explained to implement 
boundary conditions.

COnTROl-VOlumE FiniTE-ElEmEnT mEThOD
In this scheme, solution domain is always discretized 

into a number of Cartesian elements. As shown in Fig. 1a,
a local coordinate system (s,t) is defi ned in the middle of each 
element. Th is local coordinate system divides each element into 
4 SCVs. Each SCV is associated with an element node at its 

vertex. Th erefore, as shown in Fig. 1c, the grey area represents 
a control volume made from surrounding 4 SCVs neighbour 
elements. All primitive variables are located at the vertices of
the elements, placing them in the middle of each control volumes.

Although governing equations are finally conserved 
on control volumes such as the one shown in Fig. 1b, their 
formation are done through the assembly of elemental 
equations (Minkowycz et al. 1988). Elemental equations of 
each element include conservation of governing equations 
on the 4 SCVs of that element. Variables and their gradients 
should be evaluated at the integration points (Fig. 1a) to 
determine the flux at each sub-control surface. Variables 
with elliptic nature or of diffusion type such as pressure 
and diffusion can be calculated using bilinear interpolation. 
Minkowycz et al. (1988) presented a bilinear shape function 
to determine the value of variables everywhere in the element 
(Fig. 1a). Accordingly the value of variable φ and its gradients 
can be determined by:

Figure. 1. (a) Defi nitions of the element. Local coordinate system of (s,t) is located in the middle of the element, sub-control 
surface is indicated, and integral points are shown via cross symbols in the middle of sub-control surfaces; (b) The grey area is the
SCV, and surface normal vectors are indicated in its outward direction; (c) The dark grey area in the center of the fi gure is control 
volume made up of 4 surrounding SCVs and the light grey area is SCV.
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where ϕi is the value of φ at the vertices of each element; Ni is 
the ith bilinear shape function. 

Modelling of other variables without elliptic nature or 
diffusion type such as velocity components in mass fluxes 
and convection terms will be discussed in more details 
later. Details of the CVFE method and the formation of the 
system of governing equation were presented by Minkowycz 
et al. (1988).
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SuB-COnTROl VOlumES AnD nODE TYPES
Discretization of governing equations and calculation of 

fl uxes are done on SCVs; hence, the classifi cation of diff erent 
sub-control volumes and nodes is described here. Th ere are 
4 SCVs in each element as previously explained according to 
Fig. 1a. Depending on the location of elements in the domain, 
the SCVs and nodes are classifi ed into 3 types in this paper. 
Th e fi rst type of SCV is the “ordinary” or “fl uid” one that is
in the middle of the solution domain and it has no boundary in
its SCV or in its related element (Fig. 2). An ordinary node is
assigned to each related ordinary SCV. In the second type 
the boundary has crossed the SCV. Th is type of SCV and its 
pertaining node are called ghost SCV type I and ghost node
type I, respectively (Fig. 3). Lastly, as shown in Fig. 4, the third type
is defi ned when the boundary is placed in the SCVs of fl uid 
nodes in the element.  These SCVs are called ghost SCV
type II and accordingly each related node is called ghost 
node type II (Fig. 4). To conclude, in this method, whenever 
the immersed boundary is placed within an element, nodes 
outside of the fl ow fi eld are called ghost nodes (nodes 2 and 3 in
Figs. 3 and 4) and their corresponding SCVs (SCVs 2 and 3
in Figs. 3 and 4) are called ghost SCVs. In this paper boundary 

Figure 2. Ordinary SCV and node. all 4 SCVs and nodes are 
ordinary (fl uid).

Figure 5. SCV and node types classifi cation.
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Figure 4. Ghost SCV and node type II. The grey area indicated 
in SCVs 1 and 4 are ghost SCV type II related to nodes 2 and 3 
(ghost nodes type II). Nodes 1 and 4 are fl uid ones.

Figure 3. Ghost SCV and node type I; grey area indicated in 
SCVs 2 and 3 are ghost SCVs type I, nodes 1 and 4 are fl uid 
nodes and nodes 2 and 3 are ghost node type I.

conditions are applied via ghost SCVs (Fig. 5). Note that 
SCVs of both fl uid and ghost nodes are always considered as 
ordinary SCVs or ghost SCVs, respectively, regardless of the 
boundary location. As noted earlier in conventional IBMs 
(sharp interface methods — Seo and Mittal 2011; Ghias et al. 
2007) boundary conditions are applied via the assignment of 
appropriate values for the fl ow variables to the ghost nodes. 
Th ese values are mostly assigned by a kind of interpolation 
scheme (Mittal and Iaccarino 2005; Majumdar et al. 2001; 
Ghias et al. 2004, 2007). In the present method, however, fl ow 
variables on the ghost nodes are determined by implementation 
of conservation laws and the boundary condition on ghost SCVs. 
Details of the method will be discussed in following section.

GOVERninG EQuATiOnS AnD DiSCRETiZATiOn
In Eq. 3 there is a detail analysis of how Navier-Stokes 

equations were discretized. Th e integral form of the incompressible 
Navier-Stokes equations for 2-D fl ow is given by

(3)

where Q is the vector of conserved quantities; E and F are 
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convection flux vectors; G and H are diffusion flux vectors; 
ν is volume.

The extended form of these vectors is:

location, which is the ip. For the diffusion flux vectors G and 
H, bi-linear interpolation (Eq. 2) is used to directly evaluate 
the components of stress tensor (Karimian and Schneider 
1994b). In the convection flux vectors E and F, pressure 
is evaluated using bilinear interpolation (Eq. 1), and the 
momentum fluxes are linearized with respect to mass fluxes  
and. Velocity components u and v in mass fluxes are called 
integral-point convecting velocities and have been previously 
denoted by (ρu) and (ρv) (Karimian and Schneider 1994a). 
Other values of u and v in the momentum fluxes, which are 
convected by the mass fluxes through the control-volume 
surfaces, are called convected velocities. Convecting and 
convected velocities are cell-face, which are modelled in 
terms of nodal values of velocity and pressure.

Karimian and Schneider (1994a) reported the implementa- 
tion of the corresponding governing equations of flow to 
derive cell-face velocities (convected and convecting velocities) 
(Karimian and Schneider 1994a). In this method convected 
velocity is obtained from the following equation:

where ρ represents density; u and v are velocity in x and y 
directions, respectively; τ is shear stress; μ is viscosity; p means 
pressure.

Upper-case letters were used to indicate nodal values and 
the lower-case ones, to show the values of variables on integral 
points (ip). After substituting stress tensor within G and H, the 
simplified form would be as shown in Eq. (5).

Firstly the ordinary SCV is explained. Navier-Stokes 
equations should be discretized in all of the four SCVs of each 
element in order to form element-level equations. In a case of 
ordinary SCV, the process of discretizing is straightforward as 
described in Karimian and Schneider (1994a). This process 
is explained in more details as follows. SCV 1 in Fig. 1a is 
considered here where Eq. 3 is written for this SCV as follows:

where SS stands for the inner sub-control surface shown in 
Fig. 1a; dsx and dsy are the components of normal surface vector 
in the outward direction. 

The volume integral of the transient term is estimated 
using a lumped approach. Surface-integrals of E, F, G, and H 
are calculated by their average values over SS at the midpoint 

In Eq. 7 the convection term is represented in stream 
wise direction and q = (u2 + v2)1/2. Expression for convected 
velocity u is obtained on integration points which encompass 
all relevant variables related to flow condition. The convecting 
velocity u ˆ on ip is obtained from Eq. 8 as follows: 

(4)

(5)

(7)

(8)

(6)

For details about the modeling of cell-face velocities 
and their role in resolving pressure velocity decoupling in 
incompressible flow, see (Karimian and Schneider 1994a).

In the current research after completing the discretization 
of Navier-Stokes equations, a fully coupled algorithm is used 
to solve the resulted system of equations to obtain the flow 
variables (pressure and velocity components: p, u, and v). This 
system of equations is solved simultaneously using a band solver.

Boundary Conditions and Ghost 
Sub-Control Volumes

In IBM, flow variables are assigned so that their value 
guarantees satisfaction of boundary condition on the immersed 
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boundary. As mentioned before, in the present method fl ow, 
variables on the ghost nodes are determined by implementation 
of conservation laws and the boundary condition on ghost 
SCVs. Th erefore, the key-point in the present method is to 
clearly implement conservation laws on ghost SCVs along 
the boundaries. Th is process is explained here for the ghost 
SCVs types one and two.

Ghost Sub-Control Volume Type I
In Fig. 6 an element with ordinary SCVs 1 and 4, and ghost 

SCVs 2 and 3 is presented. Implementation of Eq. 3 on ordinary 
SCVs 1 and 4 is done as described in previous section. Th us, mass and 
momentum conservation equations on ordinary SCV 1 would be:

Figure 6. Ghost SCV type I (grey area in SCV 2 is considered); 
SSl is the left part of sub-surface 2; SS2r is the right part 
of sub-surface 2 along the grey area; SSb is the boundary 
portion in SCV 2; v2 is the volume of the grey area; dsb is 
normal surface vector of boundary in SCV 2 in direction to 
outward of the grey area; dsx

2 
1
 is the normal surface vector of

sub-surface1; dsy
2 
2r
 is normal surface vector related to right 

part of sub-surface 2; ∆x and ∆y are grid dimensions; points 
1, 2, 3, and 4 indicated with cross symbols are ip.

Ghost node 2

2
2r

s
t

y

x

b  ×

1

3 4Ghost node

SSI

Fluid node

× 1

× 
4

2
× 

3 × 

 Fluid node

Boundary 
location  × ×

∆x

∆y

v2

dsb

dsy 2r
2

dsx 1
2where: ν1 is the volume of ordinary SCV 1; the superscript

“ o  ” denotes value from the previous time step; ∆t is the time
step. Lower and upper numeric indices in the normal surface 
vector components, for instance dsx 2 

1 
, denote that dsx is 

calculated on sub-surface 1 for the SCV 2. Similar equations 
can be obtained for other ordinary SCVs in the domain, e.g., 
SCV 4 in this element.

Next the implementation of Eq. 3 on ghost SCVs is 
explained. Ghost SCVs 2 and 3 are type I. The grey area in 
Fig. 6 represents the ghost SCV 2 in the flow field. This is an 
“effective” volume of ghost SCV 2 denoted by ν2 this part. 
Substituting these parameters in Eq. 3 for SCV 2 it results in:
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On SSb, fl ux vectors E, F, G, and H are evaluated on ipb. 
Th ese fl ux vectors are evaluated for SS2 on ip2. Th e discrete 
form of Eq. 12 is given by

where q ˆ b = (u ˆ 2 
b
 + v ˆ 2 

b
 )1/2 is the convecting velocity vector;

→ 
dsb is the normal surface vector in the outward direction and
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dsxb and dsyb are the components of → dsb in x and y directions, 
respectively.

Depending on the boundary condition, appropriate 
constraints can be forced in Eqs. 13 to 15. For instance, if the 
boundary b is solid, then (

→ 
pq ˆ b . → dsb) = 0, ub = 0 and vb = 0; pb

is described based on the nodal pressures of element using 
bi-linear interpolation. Moreover, velocity gradients of
                                and         are evaluated using bilinear interpola-
ion defi ned in Eq. 2.

Ghost Sub-Control Volume Type II
In Fig. 7 an element with 2 fluid nodes and two ghost 

nodes is shown. As mentioned in the section “Sub-Control 
Volumes and Node Types”, SCVs 1 and 4 are considered 
ordinary SCVs, and SCVs 2 and 3 are ghost SCVs type II. 

Since it is important to remain in the IBM general framework, 
any point within the flow field (i.e. inside the boundary) 
and its SCV are considered ordinary. Here Eq. 3 is applied 
to the whole area of SCV 1, i.e. the area between SS1, SS4, 
and node 1. Conservation laws for an ordinary SCV were 
introduced by Eqs. 9-11 in section ghost SCV type I. The 
actual area within the flow field is the dotted area between 
SSb, SS4, and node 1 which is shown by grey area in Fig. 6.
This area is assigned to ghost node 2 and is called ghost SCV 2.
Conservation laws (Eq. 3) are written for this ghost SCV, 
and boundary condition is applied in these equations. In 
the present study, boundary condition is applied via ghost 
SCVs, and not necessarily via the SCVs containing the 
boundary. Combination of conservation laws for ordinary 
SCV 1 and ghost SCV 2 will result in the conservation of 
conserved quantities for the dotted area in SCV 1, which is 
actually within the flow filed. Implementation of Eq. 3 on 
ghost SCVs is explained next. Mass conservation equation 
for the grey area is written as:

dsx

dsy 2

1
1

ds

v2 v1

bh

Ghost node 2

4r4l

y

x

1

1

3 4Ghost node

Fluid node

 1 ×

× 
4

× 
2

 Fluid node

Boundary 

×

s
t

  × b

 1 ×

× 
4

Nodes 2 and 1, as well as
scν2 and scν1 are considered

Figure 7. Ghost SCV type II (SCV 1 and SCV 2 are considered); 
the grey area is ghost-SCV type II assigned to node 2; the dotted 
area is the difference area between complete SCV 1 area
and the grey area which contains fl uid; 4r is the right part of 
sub-surface 4; 4l is the left part of sub-surface 4 along the 
grey area; SSb is the boundary portion in SCV 1; v2 is volume 
of the grey area; v1 is complete volume of SCV 1; dsbh is 
normal surface vector of boundary in SCV 1 in the direction 
outward from the grey area; dsbd is the normal surface vector 
on SSb in the direction outward from the dotted area; dsx1

 
1

is normal surface vector of sub-surface 1; dsy1 
4l
 is normal surface

vector related to the left part of sub-surface 4; 1,2,3, and 4 
points indicated with cross symbol are ip.

where: 
→ 
dsbh is the normal surface vector on SSb. As shown 

in Fig. 6 surface 4 is divided into 2 parts where the left  side 
is denoted by 4l and the right side denoted by 4r. Mass 
conservation equations of SCV 1 and SCV 2 are written in 
the system of equations, and solved simultaneously. In order 
to obtain the fi nal solution of this method, the 2 following 
equations are combined: 
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(16)

(17)

where 
→ 
dsbd is the normal surface vector on SSb and is equal

to –
→ 
dsbh. 

Equation 17 is in fact the mass conservation equation 
for the dotted area with the actual SCV related to node 1. 
Depending on the boundary condition of the problem, 
appropriate constraints can be forced in Eq. 16. For instance, 
if boundary b is solid, then (

→ 
pq ˆ b . → dsbh) = 0.

Similar procedure is applied for momentum conservation 
equations. The x-momentum conservation equation for the 
grey area in Fig. 6 is written as follows:
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Here ν2 is the volume of grey area in Fig. 6. As mentioned 
for the mass conservation equation, Eqs. 10 and 18 are written 
in the system of equations and solved simultaneously. In order 
to obtain the final solution of this method, the 2 following 
equations are combined:

Since the boundary b is solid, then momentum flux 
(
→ 
pq ˆ b . → dsbh)ub  would be 0; pb is evaluated using bilinear 

interpolation, and velocity gradient terms of           and 
         are evaluated using bilinear interpolation. Identical 
procedure can be applied to obtain a similar equation to Eq. 20 
for y-momentum conservation equation. 

The key-point of the present method is to remain in 
the IBM context while implementing conservation laws 
all over the domain including boundary control volumes. 
Therefore control volumes of nodes within the flow field are 
always considered ordinary and complete. In this method, 
boundary conditions are implemented via the ghost control 
volumes where conservation laws are applied to determine 
variables values on ghost nodes. This is in contrast to other 
IBM methods in which interpolation functions (Mittal and 
Iaccarino 2005; Majumdar et al. 2001; Ghias et al. 2004), or 
cut cell methods (Clarke et al. 1986; Udaykumar et al. 2001, 
1999, 1996; Ye et al. 1999) are used to determine variables 
values of ghost nodes to satisfy boundary conditions. The 
application of this method can be extended to moving 
boundary problems in IBM context to reduce the spurious 
pressure oscillations. This is due to local mass conservation 
errors observed in simulations of moving boundary problems 
with typical immersed boundary methods (Seo and Mittal 
2011). 

Results

Taylor problem (Alisadeghi 2012; Alisadeghi and Karimian 
2011; Mahesh et al. 2004; Darbandi and Vakilipour 2008) 
is selected to evaluate the present method. This problem 
corresponds to periodic and counter-rotating vortices whose 
strength decays in time at a rate determined by the viscosity. 
The Exact solution for Taylor problem (Alisadeghi 2012; 
Alisadeghi and Karimian 2011; Mahesh et al. 2004; Darbandi 
and Vakilipour 2008) for velocity components, pressure, and 
kinetic energy at square domain of unit size is given as:

After substitution, Eq. 19 will become:

This is the equation of x-momentum conservation for 
the dotted area which is the actual SCV of node 1, if U1 
and U2  are assumed to be the same in transient term. Here 
(ν1 – ν2 ) is equal to the volume of the dotted area. Conservation 
equation of y-momentum for the grey area in Fig. 6 can be 
obtained from the following equation:

(18)

(19)

(20)

(21)

(24)

(23)

(22) (   )     (  )    (  )  (   
    ⁄ ) (19) 

 (   )       (  )    (  )  (   
    ⁄ ) (20) 

 (   )      [   (   )      (   )] (   
    ⁄ ) (21) 

  (   )     [    (  )    (  )      (  )    (  )]  (   
    ⁄ ) (22) 

   ∑(√
(     )  

  
      )

 

 

(23) 

     ∑(√
(       )  

   
      )

 

 

(24) 

 

 

 (   )     (  )    (  )  (   
    ⁄ ) (19) 

 (   )       (  )    (  )  (   
    ⁄ ) (20) 

 (   )      [   (   )      (   )] (   
    ⁄ ) (21) 

  (   )     [    (  )    (  )      (  )    (  )]  (   
    ⁄ ) (22) 

   ∑(√
(     )  

  
      )

 

 

(23) 

     ∑(√
(       )  

   
      )

 

 

(24) 

 

 

 (   )     (  )    (  )  (   
    ⁄ ) (19) 

 (   )       (  )    (  )  (   
    ⁄ ) (20) 

 (   )      [   (   )      (   )] (   
    ⁄ ) (21) 

  (   )     [    (  )    (  )      (  )    (  )]  (   
    ⁄ ) (22) 

   ∑(√
(     )  

  
      )

 

 

(23) 

     ∑(√
(       )  

   
      )

 

 

(24) 

 

 

 (   )     (  )    (  )  (   
    ⁄ ) (19) 

 (   )       (  )    (  )  (   
    ⁄ ) (20) 

 (   )      [   (   )      (   )] (   
    ⁄ ) (21) 

  (   )     [    (  )    (  )      (  )    (  )]  (   
    ⁄ ) (22) 

   ∑(√
(     )  

  
      )

 

 

(23) 

     ∑(√
(       )  

   
      )

 

 

(24) 

 

 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(11) 

   (      )
   (  ̂      )   (  ̂       )   (  ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  )                 

      | 
           | 

          | 
          | 

        

(12) 

  ̂         ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )     (13) 

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    

  

  ̂        (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )   

 

 

(14) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(15) 

   (      )
      (      )

    (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(16) 

{   (      )
      (      )

  }  (  ̂       )   (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                |  
     

      |  
           | 

        

(17) 

   (      )
    (  ̂      )   (  ̂       )    (  ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )                  

      | 
           |  

           |  
           | 

        

(18) 

 
           ⁄   
 

Page 4 

 
 ̂ ⃗⃗⃗⃗    
 

Page 5 

 
 ̂    ̂    ̂     ⁄   
 

Page 5 

 
 ρ ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗       
 

Page 6 

 
      
 

Page 6 

 
      
 

Page 6 

 
  
  | ,     | 

,     | ,     | 
 

 
 

Page 6 

 
 𝜌𝜌 ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗        
 

Page 7 
 

 
  
  |    
 

Page 7 

 
  
  |  

  

 
Page 7 

 
 𝜌𝜌 ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗      
 

Page 8 

 
(𝜌𝜌 ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    
 

Page 8 

 
   
  |         

 
Page 10 

 
   
  |  

       

 
Page 10 

 
   
  |         

 
Page 10 

 
   
  |  

       

 
Page 10 

 
 

 
           ⁄   
 

Page 4 

 
 ̂ ⃗⃗⃗⃗    
 

Page 5 

 
 ̂    ̂    ̂     ⁄   
 

Page 5 

 
 ρ ̂ ⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗       
 

Page 6 

 
      
 

Page 6 

 
      
 

Page 6 

 
  
  | ,     | 

,     | ,     | 
 

 
 

Page 6 

 
 𝜌𝜌 ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗        
 

Page 7 
 

 
  
  |    
 

Page 7 

 
  
  |  

  

 
Page 7 

 
 𝜌𝜌 ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗      
 

Page 8 

 
(𝜌𝜌 ̂ ⃗⃗⃗⃗    ⃗⃗⃗⃗   )    
 

Page 8 

 
   
  |         

 
Page 10 

 
   
  |  

       

 
Page 10 

 
   
  |         

 
Page 10 

 
   
  |  

       

 
Page 10 

 
 



J. Aerosp. Technol. Manag., São José dos Campos, Vol.9, No 3, pp.287-300, Jul.-Sep., 2017

294
Hosseini SN, Karimian SMH

In inviscid case where Reynolds number is infinite, the 
exponential terms in Eqs. 22-25 can be ignored. Pressure 
contours and streamlines of the exact solution for inviscid 
Taylor problem are plottet in Fig. 8. The solution of the 
flowfield will be constant with time if numerical solution is 
used in inviscid case. For the first test problem, the present 
method is applied to investigate this fact. Figure 9 shows grid 
structure and domain boundary used for the present method. 
Grid spacing in both directions are uniform and equal to 0.05.

Domain boundary, denoted by blackline, is immerssed 
within the elements close to boundary. Thus, domain size 
will be 0.93 by 0.93, which is less than unity. In this case, the 
outer grid nodes, depicted by the black squares, are ghost 
nodes. SCVs of these ghost nodes are type II (as Fig. 4). 
Boundary conditions are implemented in conservation 
equations of mass and momentums for ghost control volumes. 
In the mass conservation equation (Eq. 16), boundary mass 
flux  (

→ 
pq ˆ d . → dsbh) is known. In x-momemtum conservation 

equation (Eq. 18), (
→ 
pq ˆ b . → dsb h)ub is also calculated from 

known values of the exact solution; pb is evaluated from 

Figure 8. Pressure contours and streamlines of the exact 
solution for inviscid Taylor problem.
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bilinear interpolation from the nodal values of pressure. 
The same method is used for y-momemtum conservation 
equation. In the inviscid Taylor problem, solution is initially 
proceeded for the fist hundered time using Δt = 1e−6 s. 
Then velocity components calculated by the present method 
are compared with those of the exact solution along the 
midlines and diagonal of the domain shown in Fig. 10. As 
can be observed the present results have remained constant 
throughout the time and exactly the same as the results of 
the exact solution. 

To obtain the difference between the results of the exact 
solution and the present method we introduce the following 
equations for P and KE:

Figure 9. Grid structure, domain boundary (blackline), and 
ghost nodes (black nodes) for the solution of Taylor problem.

where N is the number of fluid nodes in the domain; subscripts 
n and e indicate numerical and the exact solutions, respectively. 

Figure 10. Velocity diagrams of Taylor problem. Comparison 
with the exact solution: (a) u and v along the horizontal and 
the vertical midlines; (b) u and v along the diagonal from south 
west to northeast.
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P and KE errors reached 0.004 and 9.7e−7%, respectively, 
and their values did not change during the first 100 time 
iterations. Error between the results of numerical and the 
exact solutions shows the high strenght of the present method. 

To present the capability of the present method in handling 
immersed boundaries, Taylor problem is solved on a grid 
rotated 45° with respect to the solution domain as depicted 
in Fig. 11. Uniform grid spacing in both directions equal to 
0.0707 m. Domain boundary, denoted by the black line in 
Fig. 11, is immerssed within the elements. Therefore, domain 
size will be 0.85 by 0.85, which is less than 1 unity. In this case, 
the outer grid nodes, denoted by the black color in Fig. 12, 
are ghost nodes. SCVs of these ghost nodes (Fig. 13) are type 
I and II, as previously defined.

Boundary conditions are implemented using conservation 
equations of mass and momentums of ghost control volumes. 
Implementation of conservation equations for ghost SCV 
type II (Fig. 13b) is similar to the one in the previous test 
case. For the ghost subcontrol volume type I (Fig. 13a) a 
similar procedure is followed. This means that boundary 
mass flux (

→ 
pq ˆ b . → dsb h) in Eq. 13 is calculated by known 

values of the exact solution. In x-momemtum conservation 
equation introduced by Eq. 14, (

→ 
pq ˆ b . → dsb)ub is calculated 

using known values of the exact solution; pb is calculated 
by bilinear enterpolation using the element nodal values; 
1e−6 s is used as time step for the first 100 time steps.

Streamlines obtained from the present method are plotted 
in Fig. 14. Note that 4 triangles around the central square 
domain in Fig. 14 are outside the flowfield. In general, 
streamlines in Fig. 14 are similar to those of Fig. 8. Errors 
for pressure and kinetic energy, Ep and EKE, were 2.24 and 
4.5e−6%, respectively. Similar to the previous test case, KE 
keeps constant in time as the problem is non-viscous.	

Velocity profiles derived from the present method are 
compared with the results of the exact solution in the middle of 
the flow field and along the diagonal from south west to north 
east in Fig. 15, and along left, right, up, and down boundaries 
in Fig. 16. The results show very good agreement with the 
results of the exact solution. Therefore it is seen that, in cases 

Figure 12. Positions of ghost nodes (blacknodes) with respect 
to solution domain (blackline).

Figure 11. Schematic of Taylor problem (blackline) on a grid 
rotated 45°.
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Figure 13. SCVs of ghost nodes of Fig. 12. (a) Type I; (b) Type II.
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where grid structure is not aligned with domain boundary, 
the present method is still able to solve flowfield accurately. 
The differences between profiles in first and second test cases 
in Figs. 10 and 14 are due to the difference between sizes of 
solution domains in the 2 cases.

As our third test case, Taylor problem with Reynolds 
number of 1,000 is solved using the present method on regular 
grid domain. This case is chosen to investigate the capability 
of the present method to solve viscous transient problems. 
Schematic of the solution domain is similar to Fig. 9, but 
the location of the boundary is different as shown in Fig. 17. 
In the viscous case, pressure and velocity fields decay in time 
at a rate determined by the viscosity. As verified in Eq. 25, 
KE is a function of t/Re. So the higher the Reynolds number, 
the lower the rate of KE decay. 

This test is solved using the present method. Ghost control 
volumes in Fig. 17 is type I and is considered as described 
before. In this case, viscosity terms should be calculated at 
the boundary. Therefore,                               and                              can be 
found using known values of the exact solution. All the 

other terms in mass and momentum conservetion equations 
are calculated in a similar way as explained in the previous 
test case, although grid configuration is different from the 
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Figure 15. Velocity diagrams of Taylor problem with 45° grid 
rotation. Comparison with the exact solution: (a) u and v along 
the horizontal and the vertical midlines; (b) Velocity components 
along the diagonal from southwest to northeast.

Figure 16. Velocity diagrams of Taylor problem with 45° grid 
rotation. Comparison with the exact solution: (a) u and v along 
the left and right boundaries; (b) u and v along the up and down 
boundaries.

Figure 17. Grid structure for the solution of viscous Taylor 
problem on regular grid, domain boundary by black line, and 
ghost nodes by black nodes.
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previous test case. Solution proceeds until the pressure and 
velocity fields are completely decayed by viscosity. In this case, 
Δt = 0.005 s and the solution is itereted in every time step 
until the solution converges. Decay of the temporal kinetic 
energy is compared with the exact solution in Fig. 18. The 
result of the present method has excellent agreement with 
that of the exact solution. Grid independency study was 
carried out in present research. Viscous Taylor problem on 
regular grid was solved on 21 × 21, 31 × 31, and 41 × 41 
grids. As a sample chosen from the results, pressure variations 
along the diagonal of the solution domain on 3 grids are 
compared with each other in Fig. 19. As can be seen, after 
a small change between results of grid 21 × 21 and grid 
31 × 31, no significant changes can be notified between the 
results of grids 31 × 31 and 41 × 41. The same trend was 
observed on other results of these 3 grids. So all results are 
obtained on grid 31 × 31.

KE decays faster as Reynolds number decreases. Decay 
of temporal KE are compared with the exact solution for 2 
Reynolds numbers of 100 and 1,000 in Fig. 20. The results show 
very good agreement with the exact solution. As observed, 
fast decay of KE clearly occurs for Reynolds number of 100. 

Velocity profiles resulted from the present method are 
compared with the results of the exact solution in the middle 
of the flow field, and along the diagonal from southwest to 
northeast in Fig. 21. Results are presented at different times 
of of 0.0, 25, and 50 s. Again, as observed, all of the results 
match excellently with the exact solution obtained from Eqs. 
22 and 23. 

In addition to the above comparisons, rates of pressure at 
the center of the solution domain and average of pressure 
over the solution domain with time are very similar to results 
of the exact solution as shown in Fig. 22. 

Here again, viscous Taylor problem is solved on a 45° 
rotated grid to present capability of present immersed 
boundary method on grids skewed with respect to solu- 
tion boundary. Solution domain and grid structure of this 
fourth test case are shown in Fig. 23. The only difference 
between Figs. 12 and 23 is the location of the boundary. 
In Fig. 23 the domain size is exactly 1 × 1 square, which is 
smaller in Fig. 12. In both cases the type of the ghost control 
volmes are the same as shown in Fig. 13, and a 31 × 31 grid 
is used in both cases. The outer grid nodes, denoted by black 
color in Fig. 23, are ghost nodes.

Boundary conditions are implemented through conserva- 
tion equations of mass and momentums of ghost control 
volumes. Implementation of conservation equations for ghost 
subcontrol volumes in this case is exactly the same as the one 
applied in the second case with its grid in Fig. 13. The only 

Figure 19. Pressure variation along the diameter for the 
purpose of grid convergence study. Grids with 21 × 21, 31 × 31 
and 41 × 41 nodes.

Figure 18. Decay of temporal KE: comparison between results 
of the present method and the exact solution for Reynolds 
number of 1,000 on a regular grid.

Figure 20. Decay of temporal KE for 2 Reynolds numbers of 
100 and 1,000. Comparison with the exact solution.
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Figure 21. Velocity profiles of viscous Taylor problem in 3 
instances of 0.0, 25, and 50.0 s. Comparison with the exact 
solution: (a) u and v along the horizontal and vertical midlines; 
(b) u and v along the diagonal from southwest to northeast.
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Figure 22. Time variation of pressure at the center of the solution 
domain and average of pressure over the solution domain: 
comparison of the present method with the exact solution.

difference in this case is the fact that viscosity terms are calculated 
at the boundary. Therefore,                                 and                                 are  
calculated from known values of the exact solution. Solution 
is proceeded until velocity and pressure fields completely decay 
with time and is proceeded in time using time steps of 1e−3 s.

Figure 23. Grid structure for the solution of viscous Taylor 
problem on 45° rotated grid: domain boundary by black line 
and ghost nodes by black nodes.

Figure 24. Decay of temporal KE: comparison between results 
of the present method and the exact solution for Reynolds 
number of 1,000 on a 45° rotated grid.

Decay of temporal KE and its comparison with the exact 
solution are illustrated in Fig. 24.  Result of the present 
method follows the exact solution of KE decay. Velocity 
profiles derived from the present method are compared with 
the results of the exact solution in the middle of the flow 
field and along the diagonal from southwest to northeast 
in Fig. 25. Results are presented at various times of 0.0, 
25, and 50 s. In all profiles excellent agreement is verified 
between results of the present method and those of the 
exact solution. Here again, rates of pressure at the center 
of the solution domain and the pressure average variations 
over the solution domain with time also agree very well 
with the results of the exact solution as shown in Fig. 26.

Now it is possible to claim with confidence that the 
present method can solve the flow filed in both viscous and 
non-viscous cases with high accuracy in comparison with 
the exact solution. The accuracy of the present method is 
not challenged even on grids not aligned with the boundary 
domain. 
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Figure 25. Velocity profiles of viscous Taylor problem in 3 
instances of 0.0, 25, and 50 s. Comparison with the exact 
solution: (a) u and v along the horizontal and vertical midlines; 
(b) u and v along the diagonal from southwest to northeast.

Figure 26. Time variation of pressure at the center of the solution 
domain and average of pressure over the solution domain: 
comparison of the present method with the exact solution.

Conclusion

In this paper a new immersed boundary method using control 
volume finite element scheme was introduced for discretization 
of governing equations. The advantage of this method is that 
boundary conditions are implemented by conservation of 
conserved quantities along the boundaries. In typical immersed 
boundary methods conservation equations are only satisfied 
within the boundary but not necessarily along the boundary. 
However, in this study, a new approach for the implementation 
of boundary conditions was presented in which mass and 
momentum conservation laws are fully conserved along the 
boundary as well as inside the domain. In the present method, 
in addition to the use of ghost node value applied in typical 
IBM, a new concept of ghost SCV was introduced. This new 
concept makes the implementation of the conservation laws 
in the vicinity of the boundary possible. The present method is 
validated by solving Taylor problem in both non-viscous and 
viscous cases with Reynolds numbers of 100 and 1,000. Steady 
and unsteady cases of Taylor problem on regular and 45° rotated 
grids were also solved for further investigation. Results both in 
pressure and velocity diagrams show an excellent agreement 
between the present method and of the exact solution in all 
cases even at the sharp corners. Based on these results, accurate 
simulation of the flow fields in physically complex problems 
can be expected from the present IBM method.
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