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Abstract: The present paper investigates the high-order 
spectral finite volume method with emphasis on applicability 
aspects for compressible flows. The intent is to improve the 
understanding and implementation of numerical techniques 
related to high-order unstructured grid schemes. In that 
regard, a hierarchical moment limiter and high-order 
mesh capability are developed for a 2-dimensional Euler 
spectral finite volume solver. The limiter formulation and 
geometry interpreter for high-order mesh generation are 
new contributions for the spectral finite volume method. 
Literature test cases are evaluated to assess the interaction 
of curved mesh, limiter and spatial reconstruction features of 
the spectral finite volume scheme. An order-of-accuracy 
study is presented along with steady and unsteady problems 
with strong shock waves and other discontinuities typical of 
compressible flows. Moreover, second, third and fourth-order 
spatial resolution analyses are explored and the spectral 
finite volume results are compared with those from different 
numerical methods.

KEYWORDS: Spectral volume method, Compressible flows, 
High-order reconstruction, Unstructured grids.
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INTRODUCTION

High-order numerical schemes represent the natural 
extension of current Computational Fluid Dynamics (CFD) 
methods, which were developed over the past 30 years for 
aerospace simulations. The current generation methods are 
mostly 2nd-order accurate in space and have achieved a level of 
maturity and robustness desirable for everyday use in aeronautical 
engineering scenarios. Likewise, several complementary methods 
were developed for time integration, convergence acceleration, 
shock capturing and geometry flexibility. However, there are 
many problems that cannot be fully simulated using low-order 
methods, such as vortex dominated flows. This observation has 
motivated the CFD community to consider high-order methods 
for unstructured meshes. Application of discretization orders 
larger than 2nd-order has been an area of ongoing research for 
the last decades (Abgrall 1994; Barth and Frederickson 1990; 
Ollivier-Gooch 1997; Wang et al. 2013). The present paper is 
aligned with such effort. 

The spectral finite volume (SFV) scheme, as proposed 
by Wang and co-workers (Liu et al. 2006; Sun et al. 2006; 
Wang 2002; Wang and Liu 2002, 2004; Wang et al. 2004), 
shares the functionality of a finite volume solver, copes with 
unstructured meshes and is an efficient alternative to other classes 
of 2-dimensional (2-D) high-order methods, for instance, the 
essentially non-oscillatory (ENO) and weighted ENO (WENO) 
families of schemes (Wolf and Azevedo 2006, 2007). The 
CFD solution resolution, or quality, is directly related to 
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the spatial discretization and numerical methods involved. The 
geometric discretization typically consists of a pre-processing 
step in which a mesh is generated around the object of interest. 
Such mesh must be loaded in memory during computation 
to provide data on model geometry and domain boundaries.

The present study uses a 2-D, finite volume, unstructured 
CFD solver as a starting point for the development of a high-order 
method (Breviglieri et al. 2010a). The primary objective is to 
use the SFV numerical method to solve compressible flows at 
various speed regimes. The SFV method in 2-D allows one to 
assess the difficulties and advantages of high-order reconstruction 
in representative test cases, with proper discontinuity and 
boundary treatment techniques, in a manageable framework. 
Such techniques are, in principle, extendable to other high-order 
methods and also for 3-dimensional (3-D) problems.

Two complementary techniques for the high-order 
method are explored here, namely, the high-order boundary 
representation and limited reconstruction. In order to keep 
the high-order method competitive with the lower-order 
ones, a high-order representation of the geometric boundaries 
is necessary to reduce the total number of mesh cells. Such 
high-order boundary representation improves the numerical 
resolution and convergence aspects of the method, as indicated 
in Wang and Liu (2006). The use of limiters is necessary when 
the flow solution contains discontinuities, in order to remove 
spurious oscillations that may eventually lead to divergence of the 
numerical solution. Previous study on limiter implementations 
for high-order methods (Breviglieri et al. 2010b, 2008) was 
based on problem-dependent parameters to find out which cells 
need limiting, which can limit too many or too few elements 
of the solution. In the first case, the order of the method is 
seriously reduced and, in the second one, divergence can occur. 
To circumvent this drawback, the study here discussed uses a 
parameter-free generalized moment limiter (Yang and Wang 
2009) based reconstruction to deal with discontinuities. The 
new limiter does not require input constants from the user, 
rendering the code more robust.

The numerical solver is implemented for the solution 
of the 2-D Euler equations in a cell-centered finite volume 
context for triangular meshes. The reported findings and tools 
are relevant for the long-term goal of numerical analysis over 
complex 3-D configurations. The study is also motivated by the 
authors’ institute mission, which is to design and build satellite 
launchers and probes. As a consequence, the research addresses 
high Mach number flows in the context of high-order schemes.

GOVERNING EQUATIONS 

The 2-D Euler equations are solved in their integral form as:

(1)

(2)

(4)

(5)

(6)

where P 
→

= EÎ + Fĵ. The application of the divergence theorem 
to Eq. 1 yields:

The vector of conserved variables, Q, and the convective 
flux vectors, E and F, are given by:

The standard CFD nomenclature is being used here. Hence, 
ρ is the density, u and v are the Cartesian velocity components 
in the x and y directions, respectively, p is the pressure, and et 
is the total energy per unit volume. The system is closed by the 
equation of state for a perfect gas:

where the ratio of specific heats, γ, is set as 1.4 for all computations 
in this study. In the finite volume context, for stationary meshes, 
Eq. 2 can be rewritten for the i-th mesh cell as:

where Qi is the cell averaged value of Q at time t; Vi is the volume, 
or area in 2-D, of the i-th mesh element; Si is the surface that 
surrounds the Vi volume. 

NUMERICAL FORMULATION
Spatial Discretization
In order to solve Eq. 5, a k-th-order approximation of the 
integral is computed. The computational domain, Ω, is 
discretized into N non-overlapping triangles such that:

These triangles are referred to as the spectral volumes (SVs). 

(3)
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The solution process involves the definition of proper initial 
and boundary conditions to the computational domain.

For a given order of spatial accuracy, k, using the SFV method, 
each SVi cell must be further divided in sub-cells or control 
volumes (CVs). where (xrq, yrq) and wrq are, respectively, the Gaussian quadrature 

point coordinates and the weights on the r-th edge of CVi,j; 
nq = integer[(k + 1) / 2] is the number of quadrature points 
required on the r-th edge for k-th order accuracy.

Due to the discontinuity of the reconstructed values of 
the conserved variables over SV boundaries, one must use a 
numerical flux function to approximate the flux values along 
the spectral volume boundaries. This means that   f → (q(xrq, yrq)), 
which appears in Eq. 12, must come from an appropriate 
numerical flux if the r-th edge of CVi,j is also an external edge 
of SVi. Moreover, at any moment during the simulation, one 
can compute the SV-averaged conserved variable vector, Qi, 
for the i-th spectral volume, as:

(7)

(8)

(9)

(10)

(11)

where d is the physical dimension of the problem of interest. If one 
denotes by CVi,j the jth control volume of SVi, the cell-averaged 
conserved variables, q, for CVi,j at time t are computed as:

where Vi,j is the volume of CVi,j.
Once the CV cell-averaged conserved variables are available 

for all CVs within SVi, a polynomial pi (x, y) ∈ Pk-1 of degree k − 1 
can be reconstructed to approximate each component of q as:

where h represents the maximum edge length of all CVs 
within SVi. The polynomial reconstruction process is 
discussed in detail in the following section. For now, it 
is sufficient to say that this high-order reconstruction is 
used to update the cell-averaged state variables at the next 
time step for all the CVs within the computational domain. 
Note that this polynomial approximation is valid within 
SVi and the use of numerical fluxes are necessary across 
SV boundaries.

Integrating Eq. 5 in CVi,j, one can obtain the integral form 
for the CV mean state variable:

where f 
→

= EÎ + Fĵ at the CV level; Ar represents the length of 
the r-th edge of CVi,j; nf is the number of edges of CVi,j. The 
boundary integral in Eq. (10) can be further discretized into 
the convective operator form:

The integration on the right side of Eq. 11 can be performed 
numerically with a k-th order accurate Gaussian quadrature 
formula as:

(12)

(13)

The calculation of the SV-averaged values is important at 
the end of the computation in order to analyze the high-order 
numerical solution at the original grid level. The average is 
also used to recover the conserved variable vectors for the SVs, 
which are required for the limited reconstruction process as 
discussed in the section “Limited Reconstruction”.

The flux integration across CV boundaries that lie on the 
SV edges involves 2 discontinuous states, to the left and to 
the right of the edge. A numerical flux is used to solve for this 
discontinuous state. Note that the normal flux component 
needs to be continuous in order to maintain conservation. 
In the present study, the Roe flux difference splitting method 
(Roe 1981) with entropy fix is used to compute the numerical 
flux. As the method is based on one of the forms of a Riemann 
solver, it introduces the upwind effects and, hence, the artificial 
dissipation terms into the SFV method.

The semi-discrete SFV scheme for updating the values of 
conserved properties for the CVs can be written as:

(14)

where the summations in the right hand side of Eq. 14 are 
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the equivalent convective operator, C(qi,j), for the j-th control 
volume of SVi. The numerical flux can be expressed as:

as discussed in Wolf and Azevedo (2006), where the n and 
n + 1 superscripts denote, respectively, the values of the properties 
at the beginning and at the end of the n-th time step. The α 
coefficients are α1 = 3/4, α2 = 1/4, α3 = 1/3, and α4 = 2/3. The 
C operator represents the discretized convective operator as 
indicated in Eq. 14.

General Formulation for High-Order 
Reconstruction

The evaluation of the conserved variables at the quadrature 
points is necessary in order to perform the flux integration 
over the mesh cell faces or mesh cell edges, in the 2-D 
case. These evaluations can be achieved by reconstructing 
conserved variables in terms of some base functions using the 
degrees-of-freedom (DOFs) within a SV. The present paper 
has carried out such reconstructions using polynomial base 
functions. Hence, let P k − 1 denote the space of (k − 1)-th 
degree polynomials in 2 dimensions. Then, the minimum 
dimension of the approximation space that allows P k − 1 to be 
complete is defined by Eq. 7. In order to reconstruct q in P k − 1, 
it is necessary to partition the SV into Nk non-overlapping 
CVs, such that:

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

Here, B is the Roe matrix (Roe 1981) in the edge-normal 
direction, which has 4 real eigenvalues, namely, λ1 = vn – a, 
λ2 = λ3 = vn , λ4 = vn + a where vn is the velocity component 
normal to the edge and a is the speed of sound. Let T be the 
matrix composed of the right eigenvectors of B. Then, this 
matrix can be diagonalized as:

where Λ is the diagonal matrix composed of the eigenvalues 
of B, which can be written as:

Hence, the |B| matrix is formed as:

where Λ and T are calculated as a function of the Roe averaged 
properties (Roe 1981). Furthermore, |Λ| is formed with the 
magnitude of the eigenvalues.

It is important to emphasize that some edges of the CVs, 
resulting from the partition of the SVs, lie inside the original 
SV in the region where the polynomial is continuous. For such 
edges, there is no need to compute numerical fluxes, as previously 
described. Instead, one uses analytical formulas for the flux 
computation and, hence, no artificial dissipation is required for 
such edges and the flux computation is extremely fast.

Temporal Discretization
In order to advance Eq. 14 in time, an explicit, multi-stage, 

Runge-Kutta time-stepping method is considered, unless 
otherwise stated. In particular, the 3-stage total variation 
diminishing (TVD) Runge-Kutta scheme is used, i.e.,

The reconstruction problem, for a given continuous 
function in SVi and a suitable partition, can be stated as finding 
pk − 1

 ∈ P k − 1 such that:

With a complete polynomial basis, el (x, y) ∈ P k − 1, it 
is possible to satisfy Eq. 21. Hence, pk − 1 can be expressed 
as:

where e is the basis function vector, [e1, …, eNk]; b is the 
reconstruction coefficient vector, [b1, …, bNk]T. It should be 
further observed that pk − 1 here denotes the (k − 1)-th order 
polynomial for the standard SV cell, i.e., mapped into the 
standard domain. Hence, the same polynomial can be used 
for similarly partitioned SVs. The substitution of Eq. 22 into 
Eq. 21 yields:
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Figure 1. Triangular spectral volume partitions for (a) linear, 
(b) quadratic and (c) cubic reconstructions.

Figure 2. Quadratic (a) and cubic (b) isoparametric SV elements.

If q – denotes the [qi,1, …, qi,Nk]
T column vector, Eq. 23 can 

be rewritten in matrix form as:

High-Order Boundary Representation
From the formulation described so far, it is clear that any 

input mesh will be divided into a finer mesh and, in principle, 
render the computation more costly. In the standard 2nd-order 
finite volume scheme, the mesh boundaries are represented 
as line segments. This coarse approximation of the geometry 
results in a cluster of mesh nodes into highly-curved boundaries 
simply to represent the curved nature of it, for instance, in 
regions such as the leading edge of an airfoil.

If such approach is carried over to the SFV method, there 
is no gain in computational performance. The solution is to 
use high-order geometric elements in the mesh, effectively 
curving the edges of cells along the domain boundaries. For the 
present study, quadratic and cubic boundary representations 
are addressed, respectively, for the 3rd- and 4th-order SFV 
schemes and only for the elements located at wall boundaries.

In order to perform this representation, one can adopt 
isoparametric SV cells and map them to the boundary data. 
However, this particular SV will differ in the partition design 
from the other SVs. Thus, it will require a dedicated recons- 
truction and shape function values for property interpolations.

For a quadratic SV, one needs to specify 6 nodes, while, for 
a cubic SV, 10 nodes, as shown in Fig. 2. In order to perform 
the transformation, one can use the following relation to map a 
particular triangle of the mesh to the standard element, partition 
it there, and map it back to the physical domain to get the new 
nodes of the CV faces,

(23)

(24)

(26)

(27)

(25)

where the S reconstruction matrix is given by

Hence, the reconstruction coefficients, b, can be obtained as:

provided that S is non-singular. Substituting Eq. 26 into 
Eq. 22, pk − 1 is, then, expressed in terms of shape functions, 
L = [L1, …, LNk], defined as L = eS−1, such that one could write:

Equation 27 gives the value of the conserved state variable, 
q(x, y), at any point within the SV and its boundaries, 
including the quadrature points. Note that q – in the equation 
takes the form as a column vector, as presented in Eq. 24. 
The previous equation can be interpreted as an interpolation 
of a property at a point using a set of cell averaged values 
and the respective weights, which are set equal to the 
corresponding cardinal base value evaluated at that point.

Once the polynomial base functions, el, are chosen, the 
L shape functions are uniquely defined by the partition 
of the spectral volume. The shape and partition of the SV 
can be arbitrary, as long as the S matrix is non-singular. A 
detailed discussion of quality and stability analysis of the 
SFV method partitions can be found in Breviglieri et al. 
(2008). The partitions used in the present paper follow the 
orientations given in van den Abeele and Lacor (2007) and 
they are shown in Fig. 1.

(a) (b) (c)

1 1
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2 2
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Figure 4. Mid-face nodes, in red, for quadratic boundary 
reconstruction computed from actual geometry definition.

where r → = (x, y) and Mj are the shape functions for the 
transformation.

Once the “curved” SV is partitioned, the interpolation shape 
functions and the CV edge normals must be recalculated. Note 
that, typically, only 1 edge of the SV stands at a boundary, as 
depicted in Fig. 3.

(28)

The interpolation could render wrong values if one of the 
neighbors is close to a sharp corner or if mirrored meshes are 
used, with the same x-coordinates for some mesh nodes.

A solution to this problem was to implement a geometry 
interpreter inside the solver. Within every simulation, the user 
provides the geometry prescribed by splines in the IGES format 
(Gruttke 1995). No matter how complicated the geometric 
construct is for a particular configuration, the present approach 
always obtains the correct node correspondence, as illustrated 
in Fig. 4.

Figure 3. Simplified quadratic (a) and cubic (b) SVs with 
one curved boundary edge.

1
4

2

3

1
4

2
5

3

Therefore, one could use a simplified formulation for this 
specific edge. In such case, the mapping becomes

for the quadratic SV, and

(29)

(31)

(32)

(33)

(30)

for the cubic SV. The simplified formulation is utilized throughout 
this study.

One particular challenge is to precisely obtain the mid-face 
node at the curved edge. The authors previously tried to work 
with neighborhood interpolation to determine its position, but 
such approach is not generally applied to “difficult” geometries. 

The surface integral in the physical domain, Eq. 12, is also 
transformed to a surface integral for the standard element in 
the computational domain. Let the equation of the r-th face of 
Ci,j in the standard SV be

Then, along this face,

Since η = ηr (ξ) is a line segment in the standard element, η´ r 
is a constant, evaluated as (η2 – η1)/ (ξ2 – ξ1). Furthermore, 
along such a face, 

(a) (b)

where
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out and mark “troubled cells” which are, in the 2nd stage, 
limited.

For the detection and limiting process, the limiter employs 
a Taylor series expansion for the reconstruction (van Altena 
1999) with regard to the cell-averaged derivatives. The troubled 
cells are, then, limited in a hierarchical manner, i.e., from the 
highest-order derivative to the lowest-order one. If the highest 
derivative is not limited, the original polynomial is preserved 
and so is the order of the method at the element level.

This limiter technique is capable of suppressing spurious 
oscillations near solution discontinuities without loss of 
accuracy at local extrema in smooth regions. Originally, this 
limiter methodology was developed for the spectral difference 
method in Yang and Wang (2009). In the present study, the 
formulation is extended for the SFV method. The extension 
here reported applies some ideas from previous research on 
ENO and WENO schemes (Wolf and Azevedo 2006) in the 
calculation of the limited properties. It should be emphasized 
that there are other approaches which implement a similar 
hierarchical moment limiter formulation for the SFV scheme 
(Xu et al. 2009), but with slight differences, in comparison to 
the present approach, on the calculation of the derivatives 
for the limited reconstruction.

Several markers (or sensors) were developed and employed 
for unstructured meshes over the past decades. For an in-depth 
review, the interested reader is referred to Qiu and Shu (2006). 
The limiter marker used in the present paper is termed Accuracy-
Preserving TVD (AP-TVD) marker (Yang and Wang 2009). One 
important aspect is that the troubled-cell and limited properties are 
inherent to the SV element, and not to the CVs in which the flux 
calculations are performed. Once the SV element is confirmed as a 
troubled cell, its polynomial, based on CV cell-averaged variables, 
can no longer be used in any flux integration point, because the 
property function is no longer smooth within such SV. Hence, it 
is of utmost importance to limit as few SVs as possible.

To that end, the marker is designed to first check for the 
flux integration points in each SV and mark those that do not 
satisfy the monotonicity criterion. However, if an extremum 
is smooth, the first derivative of the solution, at such point, 
should be locally monotonic. Hence, in a second moment, and 
using derivative information, as described in the forthcoming 
discussion, the limiter sensor unmarks those SVs that have 
smooth local extrema and were unnecessarily marked as troubled 
cells. Therefore, for instance, for a quadratic reconstruction, the 
limiting process can be summarized in the following stages:

The face unit normal vector, n → = (nx, ny), is defined as:

Hence, it is recomputed for the curved faces. It easily follows 
from Eq. 28, for instance, that

for the simplified quadratic SV. Analogous formulation is 
applied for the y derivatives and, also, for the simplified cubic 
SV. The surface integral, then, becomes

This line integral in the standard element can be evaluated 
using the standard Gauss quadrature formulation:

where wq represents the Gauss quadrature weights; fRoe is the 
numerical flux function. 

The numerical integration, then, follows the discussion 
presented in section “Spatial Discretization”.

Limited Reconstruction
For the Euler equations, in the presence of flow discontinuities, 

it is necessary to limit reconstructed properties at flux integration 
points to produce a converged simulation. The present 
limiter technique involves 2 stages. First, the solver must find 

(34)

(35)

(36)

(37)

(38)
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1. For a given spectral volume, SVi, compute the minimum 
and maximum cell averages using a local stencil which 
includes its immediate face neighbors, i.e., where r → is the centroid coordinate vector.

• A scalar limiter for this face is computed according to

2. Th e i-th cell is considered as a possible troubled cell if

where (xrq, yrq) identifi es a quadrature point in the outer 
edges of SVi. Note that pi here denotes the reconstruction 
polynomial of order k − 1 of the i-th SV cell, in the sense 
of Eq. 22. Th e 1.001 and 0.999 constants are not problem-
dependent. Th ey are simply used to overcome machine error, 
when comparing 2 real numbers, and to avoid the trivial 
case of when the solution is constant in the neighborhood 
of the spectral volume considered. Th is step is performed in 
order to check the monotonicity criterion over the SV cells 
for which a troubled reconstruction might exist.

3. Since the previous steps may fl ag more SVs than strictly 
necessary, the next operations attempt to unmark SVs in 
smooth regions of the fl ow. Hence, for a given marked 
spectral volume, a minmod TVD function is applied 
to verify whether the cell-averaged 2nd derivative is 
bounded by an estimate of the 2nd derivative obtained 
using cell-averaged 1st derivatives of the neighboring 
spectral volumes. Such test is performed as:
• If the unit vector in the direction connecting the centroids 

of the i-th and nb-th cells is denoted  l 
→

 = lxi ̂ + ly  j ̂,
where nb indicates the face-neighbor of a marked SVi, 
the 2nd derivative in such direction is defi ned as:

(39)

(40)or

(41)

(42)

• In a similar fashion, the fi rst derivatives in the same
 l 
→

 direction, for both i-th and nb-th cells, can be 
computed as:

• Another estimate of the second derivative, in the l 
→

   
direction, can be obtained as:

(43)

(44)

(45)

(46)

(47)

(48)

• Th e process is repeated for the other faces of SVi, 
and the scalar limiter for the SV is the minimum 
among those computed for the faces, i.e.,

• If ϕi 
(2)= 1, the second derivatives are bounded, as 

previously defi ned, and, hence, SVi is actually in a 
smooth region of the fl ow. Th erefore, SVi is unmarked.

4. If the previous test is not satisfi ed, this means that 
the particular SVi spectral volume should indeed be 
limited. In this case, the limiter for the fi rst derivative 
reconstruction must also be computed. Th e calculation 
procedure follows the same approach as for the second 
derivatives, and it can be summarized as:
• An estimate of the fi rst derivative in the  l 

→
 direction 

is calculated as:

• Such estimate is compared to the cell-average fi rst deriva-
tive in the l 

→
 direction, computed according to Eq. 42,

in order to obtain the scalar limiter for the face as:

• As before, the scalar limiter for the cell is the minimum 
of those limiters computed for the faces, i.e.,

Th e cell-averaged derivatives for the i-th cell, necessary to 
perform the previous calculations, are obtained by solving a quadratic 
least-squares reconstruction problem, for a 3rd-order scheme, 
or a cubic least-squares reconstruction problem, for a 4th-order 
scheme. For the quadratic reconstruction presented here, one 
would impose the mean conservation constraint in the fi rst row 
of the least-square system and solve the following linear system:
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RESULTS

The results presented here attempt to validate the 
implementation of the data structure, temporal integration, 
numerical convergence stability and resolution of the 
SFV method. The overall performance of the method is 
compared with that of a 2nd-order monotonic upstream-
centered scheme for conservation laws (MUSCL) scheme 
and a 3rd-order WENO scheme implementations. The latter 
uses an oscillation indicator proposed by Jiang and Shu 
(1996), with the modification of Friedrich (1998). The Roe 
numerical flux is also used with both schemes. Moreover, 
the geometric coefficients for the WENO reconstructions 
are computed in a pre-processing step and kept in memory 
during the computation. For more details on the MUSCL 
and WENO scheme formulations, the interested reader is 
referred to the study in Barth and Jespersen (1989) as well 
as Wolf and Azevedo (2006, 2007).

For the results here reported, density is made dimensionless 
with respect to the freestream condition, and pressure is 
made dimensionless with respect to the freestream density 
times the freestream speed of sound squared. All numerical 
simulations are carried out on a 16-core 3.2 GHz PC Intel64 
architecture, with Linux OS. The code is written in Fortran 95 
language, and the Intel Fortran Compiler® with optimization 
flags is used. For the performance comparisons, which are 
presented in this section, all residuals are normalized by the 
first iteration residue.

scAlAr cOnsErVAtiOn lAWs
Th e accuracy of the SFV method is tested for the linear 

scalar advection equation:

(50)

(49)

Th e matrix terms are the SV area moments and they can be 
computed, up to the desired order of accuracy, by numerical 
integration as:

The SV area moments are computed during an initial 
stage of the numerical solver and kept in memory for 
efficiency. The nb1 to nb5 subscripts represent the neighbors 
of SVi that form the computational stencil to compute 
the averaged derivatives. This stencil is determined by an 
ENO-based search, as in Wolf and Azevedo (2006), for 
the smoothest SV set. Since only a small number of SVs 
is selected for limited reconstruction, the overhead of this 
search does not adversely affect the overall performance of the
scheme.

It is also important to observe that, considering all the 
information already available in a SFV method implementation, 
there are other possible approaches to compute the averaged 
derivatives. Actually, such approaches can be more computationally 
effi  cient than the one here adopted. Th e interested reader is 
referred, for instance, to the study presented in Yang and Wang 
(2009) for further details of one of such alternative approaches.

Finally, the quadratic limited polynomial, which is used 
in order to obtain property values at the quadrature points 
for a troubled SVi spectral volume, is given by:

(51)

Th e area moments terms, M… in the previous equation, are 
computed as in Eq. 50 by replacing the m and n exponents with 
the appropriate order. Th e limited reconstruction is based on 
primitive variables {ρ, u, v, p}T, instead of conserved variables, 
as one can readily check for non-physical values as, for instance, 
negative pressures (Bigarella and Azevedo 2007, 2012). Once 
these properties are available from the limited reconstruction, 
the vector of conserved variables is easily obtained to resume the
numerical fl ux integration.

(52)

the appropriate order. Th e limited reconstruction is based on 
, instead of conserved variables, 

as one can readily check for non-physical values as, for instance, 
for −1 ≤ x ≤ 1 and u(x, 0) = u0(x)with periodic boundary 
condition at the domain extremes. For this setup, the initial 
condition is u0(x) = sin(πx). Th e previously described 3rd-order 
TVD Runge-Kutta method is employed for time integration 
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with a Δt value of 10−4, in order to make the discretization error 
time-step independent. Furthermore, the hierarchical limiter 
is considered in this test to verify if its marker formulation is 
able to ignore smooth solutions.

Table 1 shows the L1 and L∞ error norms produced using the 
SFV method with equidistant CVs for t = 1. One can observe 
that the 2nd-, 3rd- and 4th-order schemes are capable of achieving 
the expected order of accuracy even on coarse grids. However, the 
performance of the 5th-order method is not as good.

This behavior is related to the oscillatory pattern of the 
polynomial interpolation, due to the equidistant distribution, 
as previously observed by Wang and Liu (2004). As the grid is 
refined, the errors actually increase in both norms, which give 
negative orders of accuracy.

Table 1. Accuracy assessment of the 1-D SFV method for the linear scalar advection equation. Equidistant CV partition.

Order N 1/n DOF L∞ error L∞ order L1 error L1 order

2

40 1.25 × 10–2 5.34 × 10–2 – 3.29 × 10–2 –

80 6.25 × 10–3 1.41 × 10–2 1.92 8.72 × 10–3 1.92

160 3.13 × 10–3 3.56 × 10–3 1.98 2.24 × 10–3 1.96

320 1.56 × 10–3 8.94 × 10–4 1.99 5.65 × 10–4 1.99

640 7.81 × 10–4 2.24 × 10–4 2.00 1.42 × 10–4 1.99

1,280 3.91 × 10–4 5.59 × 10–5 2.00 3.55 × 10–5 2.00

3

60 5.56 × 10–3 4.12 × 10–3 – 2.40 × 10–3 –

120 2.78 × 10–3 5.31 × 10–4 2.96 3.08 × 10–4 2.96

240 1.39 × 10–3 6.67 × 10–5 2.99 3.90 × 10–5 2.98

480 6.94 × 10–4 8.34 × 10–6 3.00 4.90 × 10–6 2.99

960 3.47 × 10–4 1.04 × 10–6 3.00 6.14 × 10–7 3.00

1,920 1.74 × 10–4 1.30 × 10–7 3.00 7.69 × 10–8 3.00

4

40 6.25 × 10–3 3.24 × 10–3 – 1.64 × 10–3 –

80 3.13 × 10–3 1.91 × 10–4 4.08 1.13 × 10–4 3.86

160 1.56 × 10–3 1.47 × 10–5 3.70 7.04 × 10–6 4.01

320 7.81 × 10–4 8.44 × 10–7 4.12 4.30 × 10–7 4.03

640 3.91 × 10–4 5.39 × 10–8 3.97 2.71 × 10–8 3.99

1,280 1.95 × 10–4 3.50 × 10–9 3.95 1.69 × 10–9 4.00

5

40 5.00 × 10–3 1.27 × 10–3 – 4.42 × 10–4 –

80 2.50 × 10–3 7.55 × 10–5 4.07 2.19 × 10–5 4.33

160 1.25 × 10–3 8.15 × 10–6 3.21 3.98 × 10–6 2.46

320 6.25 × 10–4 1.06 × 10–5 –0.38 4.58 × 10–6 –0.20

640 3.13 × 10–4 4.61 × 10–4 –5.44 1.80 × 10–4 –5.29

The same problem is simulated with the Gauss-Lobatto 
point distributions and the results are presented in Table 2. 
For the 2nd-order scheme, the Gauss-Lobatto point is actually 
in the middle of the domain, resulting in an equidistant CV 
partition, and therefore the corresponding results are not 
shown in Table 2.

One can note that all schemes are, now, able to achieve their 
expected order of accuracy. A comparison of the data in the 
tables indicates that the Gauss-Lobatto partitions yield smaller 
errors in both norms, when compared to the equidistant CV 
distributions. In the present study, nDOF represents the number 
of degrees of freedom for the problem, which, in this case, is 
given by nDOF = Nk × N, where Nk is given by Eq. 7 and N is 
the number of SVs. The results shown in Tables 1 and 2 can 
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Figure 5. Accuracy assessment of the 1-D SFV method for the 
linear scalar advection equation. Effect of equidistant (E) and 
Gauss-Lobatto (GL) CV partition. Error shown in the L∞ norm.

10-10

Er
ro

r

1/nDOF

10-8

10-4 10-3 10-2

SV3 - E
SV3 - GL
SV4 - E
SV4 - GL
SV5 - E
SV5 - GL

10-6

10-4

10-2

be visualized in graphical form in Fig. 5. Th e results shown in 
this fi gure refer to error measured in the L∞ norm.

Th e next test case addressed considers the linear advection 
of a Gaussian pulse. Hence, a pulse with a half width equal to 
0.05 dimensionless units is used as initial condition:

Table 2. Accuracy assessment of the 1-D SFV method for the linear scalar advection equation. Gauss-Lobatto CV partition.

Order N 1/n DOF L∞ error L∞ order L1 error L1 order

3

60 5.56 × 10–3 2.67 × 10–3 – 1.24 × 10–3 –

120 2.78 × 10–3 3.65 × 10–4 2.87 1.61 × 10–4 2.95

240 1.39 × 10–3 4.67 × 10–5 2.97 2.05 × 10–5 2.97

480 6.94 × 10–4 5.90 × 10–6 2.98 2.59 × 10–6 2.98

960 3.47 × 10–4 7.41 × 10–7 2.99 3.23 × 10–7 3.00

4

40 6.25 × 10–3 2.26 × 10–3 – 7.30 × 10–4 –

80 3.13 × 10–3 1.60 × 10–4 3.82 5.07 × 10–5 3.85

160 1.56 × 10–3 9.72 × 10–6 4.04 3.18 × 10–6 3.99

320 7.81 × 10–4 6.15 × 10–7 3.98 2.00 × 10–7 3.99

640 3.91 × 10–4 3.85 × 10–8 4.00 1.26 × 10–8 3.99

1,280 1.95 × 10–4 2.41 × 10–9 4.00 7.87 × 10–10 4.00

5

40 5.00 × 10–3 5.30 × 10–4 – 1.46 × 10–4 –

80 2.50 × 10–3 1.96 × 10–5 4.76 4.58 × 10–6 4.99

160 1.25 × 10–3 6.50 × 10–7 4.91 1.49 × 10–7 4.94

320 6.25 × 10–4 2.13 × 10–8 4.93 4.91 × 10–9 4.92

640 3.13 × 10–4 6.13 × 10–10 5.12 1.57 × 10–10 4.97

6

60 2.78 × 10–3 1.28 × 10–5 – 2.57 × 10–6 –

120 1.39 × 10–3 1.88 × 10–7 6.09 4.08 × 10–8 5.98

240 6.94 × 10–4 2.98 × 10–9 5.98 6.49 × 10–10 5.97

480 3.47 × 10–4 4.51 × 10–11 6.05 1.04 × 10–11 5.96

(53)

The linear advection problem again assumes periodic 
boundary conditions. Th e simulation is carried out for various 
orders of accuracy, k = 1, 2, 3, 4 and 6, and up to a fi nal time
t = 2 dimensionless units. Th e Gauss-Lobatto point distribution 
is used for CV partitioning.

Figure 6 shows the analytical and numerical solution profi les for 
a grid with 100 SVs. Th e 1st-order simulation smeared the pulse so 
much that it is hardly recognizable. Th is is due to the extra amount of 
dissipation associated with such low-order scheme. Th e 2nd-order 
simulation retained the shape of the initial condition, but also smeared 

the pulse and produced an oscillatory behavior, which, in turn, is 
associated with the dispersion properties of the method. Th e 3rd-, 
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Figure 6. Simulation of a travelling Gaussian pulse with SFV 
schemes of various orders at t = 2 dimensionless units.

Figure 7. Accuracy assessment of the 1-D SFV Gaussian 
pulse. Error shown in the L∞ norm.
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4th- and 6th-order simulations yield good results, which are very 
similar to the analytical solution shown in the fi gure.

Table 3 shows the error and order measured from the numerical 
experiment. Figure 7 shows graphically the table data. One can 
observe that the design order is obtained considering the Gauss-
Lobatto CV partition scheme. As the order of the method increases, 
the error is consistently reduced to machine zero. It is worth 
mentioning that the limiter is enabled for these simulations and it 
can be observed that it is not activated for such smooth solutions.

Another qualitative test case, which addresses a combination 
of smooth and discontinuous profi les, as in Krivodonova (2007), 
is also performed to check the SFV method capabilities. Th e 
advected signal consists of a smooth Gaussian pulse, a square 
pulse, a triangle and half an ellipse, which are defi ned in the 
domain −1 ≤ x ≤ 1. 

Hence, the problem initial condition is defi ned as:

Table 3. Accuracy assessment of the 1-D SFV method for 
the Gaussian pulse problem.

Order N 1/n DOF L∞ error L∞ order

2

100 5.00 × 10–3 3.44 × 10–1 –

200 2.50 × 10–3 1.45 × 10–1 1.25

400 1.25 × 10–3 4.42 × 10–2 1.71

800 6.25 × 10–4 9.81 × 10–3 2.17

3

100 3.33 × 10–3 1.08 × 10–2 –

200 1.67 × 10–3 9.17 × 10–4 3.56

400 8.33 × 10–4 6.50 × 10–5 3.82

800 4.71 × 10–4 5.31 × 10–6 3.61

4

100 2.50 × 10–3 2.48 × 10–4 –

200 1.25 × 10–3 9.24 × 10–6 4.74

400 6.25 × 10–4 5.29 × 10–7 4.13

800 3.13 × 10–4 3.25 × 10–8 4.02

5

100 2.00 × 10–3 6.39 × 10–5 –

200 1.00 × 10–3 1.93 × 10–6 5.05

400 5.00 × 10–4 6.23 × 10–8 4.95

800 2.50 × 10–4 1.88 × 10–9 5.05

6

100 1.43 × 10–3 3.14 × 10–7 –

200 7.14 × 10–4 2.32 × 10–9 7.08

400 3.57 × 10–4 5.44 × 10–11 5.41

800 1.79 × 10–4 1.99 × 10–11 1.45

Δt are used as in the previous case. The simulation is carried 
out with various orders of accuracy, for k = 2, 3, 4 and 6, up 
to a final time t = 2 dimensionless time units. The limiter 

(54)
with

where a = 0.5, z = 0.7, δ = 0.005, α = 10 and β = log 2/36 δ2.
Once more, the Gauss-Lobatto distribution is used 

for CV partitioning and, for these tests, there are 100 SVs 
in the mesh. The same time discretization algorithm and
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Figure 8. Simulation of travelling discontinuous profiles with (a) 2nd- 
and (b) 3rd-order SFV schemes at t = 2 dimensionless time units.

(a)

(b)

(a)

(b)

x

x

u
u

1.2

1

1-1

0.8

0.8-0.8

0.6

0.6-0.6

0.4

0.4-0.4

0.2

0.2-0.2

0

0

1-1 0.8-0.8 0.6-0.6 0.4-0.4 0.2-0.2 0

-0.2

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

Analytical
k = 4

Analytical
k = 5

but yields an approximation with no apparent oscillations and 
a better resolution before and after such profiles. These results 
indicate that high-order schemes tend to better resolve the 
analytical profile without numerical instabilities.

is enabled to test its ability to mark non-smooth states of 
the solution and reduce the oscillations observed in high-
order interpolations. The results can be seen in Figs. 8 and 
9, plotted for the CV mesh.

The 2nd-order case retains some of the initial features, 
but it significantly smears the profiles. No oscillations are 
noticeable due to the use of the limiter formulation. The 
3rd-order solution resolves the Gaussian pulse with improved 
accuracy but there is a noticeable difference in the base of 
the discontinuous profiles. The same behavior is observed for the 
4th-order solution with a tendency to better approach the peak 
numerical values. However, the result distances itself from 
the analytical one near steep gradients in the solution. Once 
again, no oscillations are observed in the numerical solution.

The 6th-order result achieves the better approximation 
with the analytical data. The smooth profiles are hardly 
distinguishable from the real solution. The reconstruction is not 
able to reproduce the triangle and square wave profiles exactly 

Figure 9. Simulation of travelling discontinuous profiles with (a) 4th- 
and (b) 6th-order SFV schemes at t = 2 dimensionless time units.

Ringleb Flow
The Ringleb flow simulation consists of an external flow, 

which has an analytical solution for the Euler equations 
derived with the hodograph transformation (Shapiro 1953). 
The analytical solution is used as initial condition for all 
simulations here discussed. The flow depends on the inverse 
of the stream function, κ, and the velocity magnitude, vt. 
In the present simulations, these parameters are chosen as 
κ = 0.4 and 0.6, in order to define the lateral boundaries of the 
domain, and vt = 0.35 to define the inlet and outlet boundaries. 
For such configuration, the test case represents an irrotational 
and isentropic flow around a symmetric blunt obstacle. An 
interesting property of the Ringleb test case is that transition 
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of flow regime, from supersonic to subsonic, for example, is 
shockless (Wang and Liu 2006).

In order to measure the order of the implemented SFV 
method, 4 meshes are considered for the grid refinement study, 
corresponding to 128; 512; 2,048 and 8,192 spectral volume 
cells. The analytical solution is computed for all meshes in order 
to measure how close the numerical results are to the exact 
solution. The error with respect to the analytical solution is 
computed using the L1 and L∞ norms of the density. Figure 10 
shows the 2,048-cell grid and the Mach number contours 
computed in this grid with the 4th-order SFV method, using 
the corresponding high-order boundary representation.

The L∞ norms of the error for the density values obtained 
in the converged solutions with the 3rd- and 4th-order SFV 
method are shown in Fig. 11 for the 4 meshes considered. The 
figure indicates that the theoretical orders of accuracy are actually 
recovered by the simulations with the high-order boundary 

representation. It should be pointed out that the same numerical 
test case was studied in Breviglieri et al. (2008), considering 
only a linear boundary representation. It was observed in this 
effort that the low-order boundary treatment causes a shock 
wave to develop close to the inner boundary, which, then, makes 
the limiter active. Eventually, the shock wave propagates and 
it causes the simulation to diverge.

In the present paper, however, which considers the higher-
order boundary representation, reasonable results are always 
obtained for this test case, including the simulations with 
the 4th-order SFV method. As previously discussed, for the 
3rd-order scheme, a quadratic polynomial is used to represent 
the SV edges which lie along the domain boundaries. In a 
similar fashion, for the 4th-order scheme, a cubic polynomial 
is employed instead, which is compatible with the internal 
polynomial order of each SV. Table 4 presents the L1 and L∞ 
error norms of the density for the present calculations with the 
high-order boundary representation. The table also shows 
the actual measured order of accuracy for the 3rd- and 4th-order 
SFV methods. The orders of accuracy in the results shown in 
Table 4 are calculated as indicated in Wang and Liu (2006). The 
actual orders of accuracy here obtained are in good agreement 
with those shown in the cited reference.

Figure 10. Computational mesh and Mach number contours 
calculated with the 4th-order SFV method for the 2,048-cell grid.

Figure 11. Ringleb flow error measurement with the 3rd- and 
4th-order SFV method. Density error shown in the L∞ norm.
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Table 4. Accuracy assessment of SFV method for the Ringleb 
flow test case.

Order
SV 

cells
L1 

error
L1 

order
L∞ 

error
L∞ 

order

3

128 2.41 × 10–2 – 2.11 × 10–2 –

512 4.14 × 10–3 2.54 2.65 × 10–3 2.99

2,048 6.27 × 10–4 2.72 3.13 × 10–4 3.08

8,192 8.67 × 10–5 2.85 3.60 × 10–5 3.12

4

128 5.77 × 10–4 – 4.37 × 10–4 –

512 6.48 × 10–5 3.16 2.82 × 10–5 3.95

2,048 6.15 × 10–6 3.39 1.68 × 10–6 4.07

8,192 6.87 × 10–7 3.16 9.75 × 10–8 4.11

NACA 0012 Airfoil
For the NACA 0012 airfoil simulations, 2 meshes 

are considered. The 1st simulations are performed on a 
mesh with 716 cells and 358 nodes, of which 40 nodes 
define the airfoil wall. This mesh is denoted as the coarse 
grid. On the other end, there is a fine mesh with 7,117 
cells and 3,555 nodes, of which 116 nodes represent the 
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(a)

(b)

(a)

(b)

airfoil surface. Both of these meshes are O-type grids 
and they are presented in Fig. 12. The airfoil geometry is 
collapsed at the trailing edge. The far field boundary radius is 
50 chord units. Differently from all other simulations in the 
present paper, the LU-SGS implicit time marching scheme, 
as discussed in Breviglieri et al. (2010b) and Parsani et al. 
(2010), is used for this test case. A CFL value of 1.0 × 106 is 
considered. The main objectives of the test case are to assess 
the SFV method accuracy and convergence for a transonic 
steady-state flow regime, as well as to provide further insight 
into the effects of a high-order boundary treatment.

The freestream flow replicates the conditions of the 
experimental data (McDevitt and Okuno 1985), that is, 
freestream Mach number of M∞ = 0.8 and 0 deg. angle-of-
attack. Simulations with the 2nd-, 3rd- and 4th-order SFV 
schemes are performed, along with the 1st-order Roe scheme. 
Figure 13 presents density contours for the coarse mesh, for 
the 3rd-order SFV method solution and its comparison to the 
1st-order Roe scheme. The 3rd-order flow solution considers 
quadratic curved boundary reconstruction. The figure shows 
30 evenly-spaced density contours, with values ranging 
from 0.8 to 1.6 in dimensionless density. A high-order post-
processor tool would be necessary in order to accurately see 
and analyze these results. Nevertheless, one can already see that 
the 1st-order solution has clearly smeared out the shock wave 
that occurs in this flow.

Figure 14 shows the corresponding pressure coefficient (Cp) 
distributions for the same mesh and for the same methods, as 
compared to the experimental data for this flight condition. 
It is clear from the Cp distributions that the 1st-order scheme 
introduces too much dissipation and, essentially, smears out 
the shock wave, as already pointed out. The high-order Cp 
distribution, on the other hand, is remarkably close to the 
experimental results, particularly for the shock position and 
considering the crude geometric discretization.

These results illustrate the potential of high-order methods 
to ease the burden on the mesh generation process for 

Figure 12. Computational meshes used in the NACA 0012 
simulations (a) Coarse mesh and (b) Fine mesh.

Figure 13. Evenly-spaced density contours on the coarse 
mesh: 30 contour lines are shown for dimensionless density 
values ranging from 0.8 to 1.6. (a ) 1st-order Roe scheme; 
(b) 3rd-order SFV scheme

Figure 14. Cp distributions for the coarse mesh solutions.
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(b)
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aeronautical applications. One should observe, however, 
that the experimental results consider the presence of the 
boundary layer and the consequent shock-boundary layer 
interaction that necessarily occurs in the experiment. For 
the numerical solution, the shock is typically captured as 
a sharper discontinuity, as one should expect for an Euler 
simulation. In this case, however, the high-order solution 
seems to follow exactly the experimental data due to the 
extremely coarse mesh used.

Th e other set of results considers the fi ne mesh. Figure 15 
presents density contours for the same range of dimensionless 
density variation, as in the coarse grid simulations, for the 
1st-order Roe method and for the 2nd- and 3rd-order SFV 
schemes. One can observe that the high-order solutions present 
much more features and sharper fl ow gradients when compared 

Figure 15. Evenly-spaced density contours on the fi ne mesh: 
30 contours are shown for dimensionless density varying from 
0.8 to ranging from 0.8 to 1.6. (a) 1st-order Roe scheme; (b) 
2nd-order SVF scheme; (c) 3rd-order SVF scheme
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Figure 16. Entropy error for 3rd-order SFV method.
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to the 1st-order method, mainly in the vicinity of the shock 
wave. Th ese results confi rm the higher accuracy and resolution 
of the SFV methods, even though a limiter is used.

Another relevant simulation is performed to assess the 
benefits of the curved boundary implementation, namely,
the measure of entropy error Єs levels at the airfoil boundary.
Since the diffusive flux vectors are 0, there is no physical
dissipation mechanism that produces heat in regions of smooth 
fl ow, away from shocks. If no external heat is added into the fl ow, 
then it is adiabatic. Hence, from the fi rst law of thermodynamics, 
it follows that entropy, given by

is constant throughout the field if no shocks are present. 
Th erefore, the entropy error Єs, defi ned as

is a good measure of the accuracy of a numerical solution of 
the Euler equations.

Figure 16 presents the entropy error generated by the 
3rd-order SFV method with linear and curved boundary cells 
for the coarse mesh, which has only 40 cells to represent the 
complete airfoil geometry. As expected, the curved boundary 
approach is able to produce smaller error levels than the linear 
boundary edges. One can even note, from the fi gure, that at 
the x = 0 position there is an increase of entropy error due 
to the presence of the shock wave in this region. Th is, again, 
demonstrates that such extension indeed improves the overall 
accuracy of the high-order SFV method.
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Figure 17 presents the convergence history for the simulations 
here considered in terms of the L∞ norm of the continuity 
equation residue. Th e convergence history stalls for the SFV 
method, due to the presence of the limiter. Th is behavior is typical 
of solutions which use non-linear limiters (Venkatakrishnan 
1995).

Nevertheless, the simulations have reached a steady level, 
based on the force coeffi  cients. Moreover, Table 5 shows the 
relative costs of the different methods, normalized by the 
2nd-order SFV method. Th e costs are measured on the fi ne 
mesh simulations and provide an overall estimate of the iteration 
cost associated with high-order solutions. One should observe 
that the 3rd-order WENO simulation is approximately 4 times 
more demanding than the 3rd-order SFV scheme. Th is increase 
in cost is associated with the dynamic stencil computation 
characteristic of the WENO solution, whereas the SFV method 
uses a static computational stencil throughout the simulation.
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fi nite-diff erence methods, but the results are not comparable to 
the later studies owing to their low resolution and parametric 
diff erences. Th e forward step test case is designed to resolve 
complex oblique shock refl ections, pertinent to supersonic 
variable-geometry jet engine intakes. Due to computational 
constraints faced by Emery (1968), the test case was designed 
to be numerically simple to set up. Th e initial conditions are 
uniform throughout the domain, and the inlet boundary 
condition is supersonic. Such setup is actually difficult to 
perform experimentally, due to the unrealistic combination of 
initial and boundary conditions. However, quantitative results 
are available for a range of numerical methods (Woodward and 
Colella 1984), which makes this a good test case for validating 
the capabilities of the present fl ow solver, independently of the 
numerical method used.

Th e artifi cial nature of the test setup helps to evaluate the 
robustness of the spatial discretization algorithm combined with 
the limiter technique. Due to the strong shock refl ection at the 
lower face of the step during the fi rst few iterations, it is diffi  cult 
to maintain positivity of pressure and density using various 
numerical schemes. Furthermore, the edge of the forward step is 
a singular point of the Prandtl-Meyer expansion fan generated by 
the fl ow over the step. Th e continuity and momentum equations 
can disobey the second law of thermodynamics through an 
expansion fan. Th is introduces numerical diffi  culty in the form 
of a nonphysical expansion shock, which at high Mach numbers 
and small cell sizes can yield negative pressures and densities 
in the code. Th e MUSCL reconstruction, for the 2nd-order 
Roe scheme, for instance, is not able to produce a solution as 
the simulation diverges aft er t = 1.0 dimensionless time units.

The 2-D configuration is 3 dimensionless length units 
long and 1 unit wide, with a step of 0.2 units high located at 
0.6 units from the confi guration inlet. Th e infl ow and outfl ow 
boundary conditions are both supersonic, so the solver does not 
have to account for waves leaving the domain at the entrance 
boundary, or entering the domain at the exit boundary. Initially, 
the fl ow is at M = 3 everywhere. As stated in the seminal study 
of Woodward and Colella (1984), this “admittedly artifi cial” 
initial condition makes the problem very easy to set up. Since 
no physical constants or parameters, such as viscosity, are 
involved in the Euler equations, space and time units can be 
eliminated without the need for a dimensionless constant, and 
the fl ow is driven by pressure and density ratios. Th e simulation 
is run until t = 4.0 dimensionless time units, and the resulting 
shock wave pattern is examined. Two meshes are considered 

Figure 17. Convergence history for the Roe and SFV schemes.

Table 5. Iteration cost estimates.

method Order limiter time

Roe 1 No 0.09

MUSCL 2 Yes 1.30

SFV 2 Yes 1.00

SFV 3 Yes 3.26

WENO 3 No 12.54

FOrWArD FAcinG stEp
Th is test case uses the same geometrical, boundary and fl ow 

parameters as the cases studied by Woodward and Colella (1984). 
Th e case was fi rst proposed by Emery (1968) for evaluating 
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for this simulation, a coarse and a fi ne one. Th ese meshes are 
shown in Fig. 18. Th e coarse mesh has a characteristic length
h = 1/40, and it has 8,272 cells and 4,134 nodes. Th e fi ner mesh 
has 49,304 cells and 24,650 nodes, as well as a characteristic 
length h = 1/100. Further visualization of the mesh refi nement 
can be seen in Fig. 19, which shows both the coarse and fi ne 

meshes for the region of the step. Th is last fi gure allows for a 
better visualization of the level of mesh refi nement in both cases.

For the present simulations, the 1st-order Roe method is 
considered along with the 2nd- and 3rd-order SFV methods. A 
total variation bounded (TVB) minmod limiter (Shu 1987) is 
considered in the present study for the 2nd-order SFV scheme in 

Figure 19. Detail of the domain discretization for the step region. (a) Coarse Mesh; (b) Fine mesh.

Figure 18. Computational meshes used in the forward facing step confi guration simulations. (a) Coarse Mesh; (b) Fine mesh.

(b)

(b)

(a)

(a)
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order to compare the results with the proposed hierarchical limiter 
for the 3rd-order SFV method. Note that, for a 2nd-order scheme, 
the hierarchical limiter would reduce the local reconstruction 
order to 1st-order accuracy anyway. Density contours for the 
coarse mesh can be seen in Figs. 20, 21 and 22, respectively, for 
the cited methods. Thirty evenly-spaced density contour lines 

Figure 20. Density contours on the coarse mesh for the 1st-order Roe scheme. Figure shows 30 evenly-spaced dimensionless 
density contour lines from 0.1 to 4.6.

are presented, for dimensionless density values ranging from 0.1 
to 4.6. One can observe that the SFV schemes present a better 
resolution of the shear layer compared to the 1st-order method, 
as well as a slightly improved shock resolution.

In order to investigate the similarities with the 1st-order 
simulation, the limited cells for the 2nd- and 3rd-order SFV 

Figure 21. Density contours on the coarse mesh for the 2nd-order SFV scheme with the TVB limiter. Figure shows 30 evenly-
spaced dimensionless density contour lines from 0.1 to 4.6.

Figure 22.Density contours on the coarse mesh for the 3rd-order SFV scheme with the hierarchical limiter. Figure shows 
30 evenly-spaced dimensionless density contour lines from 0.1 to 4.6.
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schemes are presented in Figs. 23 and 24. These figures show 
the cells in which pressure reconstruction was performed at the 
last time step. For the 2nd-order method, there are too many 
cells limited by the TVB limiter, drastically reducing the overall 
solution reconstruction order. For the 3rd-order case, in which 
the hierarchical limiter is applied, the number of cells marked 
for limiting is reduced significantly. This confirms the superior 
behavior of the proposed limiting technique for the SFV method.

The next set of results considers the fine mesh. It is worth 
mentioning that the actual mesh used in the 3rd-order SFV 
method simulation has 295,824 control volumes, i.e., 6 times 
more cells than used in the 1st-order Roe and 3rd-order WENO 
simulation, because the reconstruction procedure subdivides 
each original cell, or spectral volume, into 6 new control 
volumes. This increases the overall simulation costs as reported in 
Table 6, where the relative computational costs are normalized 
by those of the 2nd-order SFV scheme. Furthermore, the reader 
can observe that the 3rd-order WENO simulation is about twice 
as costly as the 3rd-order SFV scheme. In the present test case, 
the hierarchical limiter formulation of the SFV method yields 
a reduction in the cost differences between the present SFV 

schemes and the WENO solution, in comparison, for instance, 
with the results observed for the NACA 0012 test case, shown 
in Table 5. It happens that, due to the unsteady nature of the 
present problem, the limiter is activated differently at each time 
step and such behavior causes a penalty in the time step costs 
of both 2nd- and 3rd-order SFV results.

It is important to observe that, since the 2nd-order SFV 
method presents a large amount of limited cells due to the 
TVB limiter formulation, its results are actually representative 
of a 1st-order scheme. Hence, no results are shown for the fine 
mesh. Figure 25 shows the dimensionless density contours for 
the 1st-order Roe and 3rd-order SFV method simulations. Both 

Figure 23. Limited cells for pressure reconstruction at the last time step for the 2nd-order SFV method with the TVB limiter.

Figure 24. Limited cells for pressure reconstruction at the last time step for the 3rd-order SFV method with the hierarchical limiter.

Table 6. Cost estimates per time step for the fine mesh.

Method Order Limiter Time

Roe 1 No 0.08

MUSCL 2 Yes 0.25

SFV 2 Yes 1.00

SFV 3 Yes 4.79

WENO 3 No 8.55
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schemes present a sharp shock resolution, but the SFV method 
results seem to better capture other flow features such as the shear 
layer. Again, the limited cells for pressure and internal energy 

reconstruction at the final time step are shown, respectively, in 
Figs. 26a and 26b for the 3rd-order SFV method calculations. 
One can clearly see that the high-order reconstruction is indeed 

Figure 25. Density contours on the fine mesh for the 1st-order  Roe scheme (a) and 3rd-order SFV scheme (b) . Thirty evenly-
spaced contour lines for dimensionless density from 0.1 to 4.6.

Figure 26 . Limited cells for pressure (a) and  internal energy (b) reconstructions at the last time step for the 3rd-order SFV 
method with the hierarchical limiter on the fine mesh.

(b)

(b)

(a)

(a)
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happening for the cells away from the discontinuities, since the 
limiter is only active at the discontinuities themselves.

Finally, the 3rd-order method solution is plotted in Fig. 27 
in terms of the density contours at the CV mesh. It is important 
to understand that this visualization considers data for the CV 
cells and, therefore, it better represents the actual resolution 
capabilities of the SFV method. Such definition could be shown 
in the SV mesh but current visualization tools do not support 
high-order data visualization. A high-order post-processor would 
be necessary in order to allow a visualization with this level of 
resolution at the original SV mesh. Nevertheless, the level of 
resolution of flow features is improved over the original SV mesh.

Double Mach Reflection
This problem is also a standard test case for high-resolution 

schemes (Woodward and Colella 1984), and it has been 
extensively studied by many researchers (Cockburn and 
Shu 1989; Wang et al. 2004). The physical problem is that 
of a right-moving M∞ = 10 shock wave, perpendicular to 
the axis of a 30 deg. half-angle wedge, which hits the tip of the 
wedge at time t = 0. Hence, the computational domain for 
the problem is chosen to be a rectangular region in the intervals 
[0, 4] × [0, 1], in the x- and y-directions, respectively. Initially, 
the right-moving M∞ = 10 shock is positioned at x = 1/6, y = 0 
and makes a 60 deg. angle with the x-axis. For the bottom 
boundary, the exact post-shock conditions are imposed, 
through the Rankine-Hugoniot relations, for the region 
from x = 0 to x = 1/6, and a solid wall boundary condition is 
used for the rest of the lower domain boundary. For the top 
boundary, the solution is set to describe the exact motion of 
the M∞ = 10 shock. The left boundary is again set as the exact 
post-shock conditions, while the right boundary is set as an 
outflow boundary.

Two meshes are considered for this study, a coarse and 
a fine grid. The coarse mesh has 3,619 triangular cells, 1,808 
nodes and characteristic dimensionless length h = 1/20. The 
fine mesh has 122,941 cells, 61,469 nodes and characteristic 
length of h = 1/120. Both meshes are shown in Fig. 28. It is 
interesting to mention that, for the SFV method simulations, 
the total number of CVs in the fine mesh turn out to be 
368,823 and 737,646, respectively, for the 2nd- and 3rd-order 
methods. For the coarse mesh, the 1st-order Roe method is 
used, along with the 2nd- and 3rd-order SFV method. For 
the fine mesh, only the 1st-order Roe and 3rd-order SFV 
method simulations are reported here. For this test case, for 
instance, the 2nd-order MUSCL-reconstructed Roe scheme, 
with TVB minmod limiter, was not able to produce a solution. 
Negative values of pressure and density are found within the 
computation domain and the simulation diverges. This test case 
is a difficult one, in the sense that it requires proper boundary 
specification, on a per-face basis, and it also features a flow 
with a high level of kinetic energy.

Figure 29 presents numerical density contours for the 
coarse mesh, using the 1st-order Roe, 2nd- and 3rd-order SFV 
schemes, Moreover, 30 evenly-spaced contours are shown in 
each case and the dimensionless density values range from 
1.25 to 21.5. For the mesh considered in this study, there 
is not much difference between the results. It is possible 
to note, however, that the Mach stem region, to the right 
end of the images, seems to be better defined for the SFV 
methods. For such problem, the use of limiters is obviously 
necessary. Figure 30 presents the limited cells for pressure 
reconstruction at the final time step for the 3rd-order SFV 
method. Clearly, only the shock region is indeed marked 
for limitation, as expected. Although necessary to obtain a 
numerical solution, the limiter utilization essentially reduces 

Figure 27. Density contours at the CV mesh level for the 3rd-order SFV method.
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Table 7. Estimates of relative costs per time step.

Method Order Limiter Time

Roe 1 No 0.04

MUSCL 2 Yes –

SFV 2 Yes 1.00

SFV 3 Yes 3.48

WENO 3 No 5.32

Figure 28. Computational meshes used for the double Mach reflection problem simulations. (a) Coarse mesh; (b) Fine mesh.

the high-order resolution in such regions and it might be 
responsible for the similarities in the results with the low-
order scheme.

Results considering the fine mesh are shown in Figs. 31 
which presents dimensionless density contours in the same 
range used to report the results for the coarse grid. As before, 
30 evenly-spaced contours are shown in each case. Clearly, 
there is much more resolution now, even with the 1st-order 
method. The shock waves have much improved resolution 
and the Mach stem corner presents more details than with the 
coarse mesh simulations. The numerical solution on the fine 
mesh with the 3rd-order SFV method seems to have spurious 
oscillations, as one can see in Fig. 31b. The shock waves are 
clearly better resolved, but the rest of the domain solution 
seems quite oscillatory and disturbed.

In order to investigate this effect, the limited cells for 
pressure reconstruction at the last time step are plotted in 
Fig. 32. One can clearly see that a large number of cells has 
been selected for pressure limitation. The same behavior is 
observed for the other variables. This apparent oscillatory 
behavior has not been previously observed for other test cases 
and, therefore, the authors suspect that the limiter algorithm 

has some limitations with regard to simulations with very 
high Mach numbers and very strong discontinuities.

Further visualization of the results can be seen in Fig. 33, 
which presents density contours for the solution with the 
3rd-order SFV method, but seen at the CV mesh level, 
that is, with 737,646 cells. As in the previous test case, 
this visualization considers data for the CV cells across 
the domain and better represents the actual resolution 
capabilities of the SFV method. A very sharp main shock 
wave can be clearly seen in the results, but oscillations in the 
density distribution are also seen in the post-shock region. 
Finally, Table 7 shows the relative costs of the different 
methods, normalized by the 2nd-order SFV method results. 

(b)

(a)
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Figure 29. Density contours on the coarse mesh for the 1st-order Roe scheme (a); for 2nd-order SFV scheme(b); and for the 
3rd-order SFV scheme (c). Figure shows 30 evenly-spaced dimensionless density contour lines in the range from 1.25 to 21.5.

Figure 30. Limited cells for pressure reconstruction at the last time step for the 3rd-order SFV method.

(b)

(c)

(a)

Costs are measured on the coarse mesh simulations 
and provide an overall estimate of the computational 

requirements associated with such high-order schemes. 
The 3rd-order WENO solution is about 1.5 times more 
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Figure 31. Density contours on the fine mesh for the 1st-order Roe scheme (a) and 3rd-order SFV scheme(b). Figure shows 
30 evenly-spaced dimensionless density contour lines in the range from 1.25 to 21.5.

Figure 32. Limited cells for pressure reconstruction at the last time step for the 3rd-order SFV method on the fine mesh.

(b)

(a)

expensive for this problem than the 3rd-order SFV method 
calculations, considering the same input data. The reader 
should observe that the hierarchical limiter is active only 
in the discontinuous region of the solution, as depicted 
in Fig. 30.

CONCLUDING REMARKS

The application of the high-order SFV method to steady 
and unsteady inviscid compressible flow simulations is 
presented. The paper also addresses the use of high-order 

boundary treatment, which is relevant because it can allow 
the usage of coarser meshes without giving up in geometric 
resolution. The present implementation of the limiter 
technique, which extends, to SFV methods, ideas that have 
been previously tested on spectral difference schemes, is an 
important ingredient of the method efficiency. The present 
limiter reduces the number of limited spectral volumes 
to a bare minimum, which reduces computational costs 
and, at the same time, allows for a more uniform high-
order solution. Furthermore, a user-input-free limiter 
implementation contributes to enhance the robustness 
of the flow solver. Several classical test cases, both steady 



J. Aerosp. Technol. Manag., São José dos Campos, Vol.9, No 3, pp.301-327, Jul.-Sep., 2017

326
Breviglieri C, Azevedo JLF

Figure 33. Density contours at the CV mesh level for the 3rd-order SFV method solution in the fine grid.

and unsteady, have been addressed in order to highlight 
such features.

The main focus of the paper has been on the complex 
transient problems that stress the numerical method ability to 
compute flows with strong discontinuities without numerical 
divergence. The results obtained in the present research 
for the forward-facing step and the double Mach reflection 
problems have indicated that the SFV method is able to cope 
with the strong shock waves and produce good solutions. For 
both test cases, however, it is clear that the limiter algorithm 
still has limitations with regard to simulations with very 
high Mach numbers and very strong discontinuities. It 
seems that small oscillations are still allowed at the main 
shock wave, and these are convected downstream by the 
high-order scheme. Finally, the computational costs of 
the present high-order implementation are rather modest 
when compared to the benefits in flow resolution which 
can be achieved.
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