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Recurrent Algorithm for TDOA Localization

In Sensor Networks
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ABSTRACT: Using the mathematical apparatus of the extended
Kalman Filter, the recurrent algorithm of the passive location
in sensor networks — based on the Time Difference of Arrival
method in case of correlated errors of measurements — is
developed. The initial estimates of Radio Frequency Sources
coordinates and the correlation matrix of the vector
estimation are determined based on the method of the least
squares in case of 3 difference measurement distances.
Efficiency analysis of recurrent adaptive algorithm and its
comparison with the quadratic correction one are performed
by statistical modeling. A comparison of them with the lower
limit of the Cramer-Rao was carried out. The implementation
of the recurrent adaptive algorithm requires 2.7 times less
computational cost than the quadratic correction one.

KEYWORDS: Passive location, Time Difference of Arrival
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INTRODUCTION

The problem of passive position determination of Radio
Frequency Sources (RFS) is widely met in the monitoring of the
surrounding space, disaster management, in intelligent transport
and security systems. Currently, sensor networks are used for
its solution (Rullan-Lara et al. 2013; Amar and Leus 2010).

One of the main approaches of passive position determina-
tion of RFS is based on the application of the Time Difference
of Arrival method (TDOA), which uses the time difference of
reception of signals received by the various sensors and the network
reference sensor. This method has a significant advantage in the
ease of implementation, being widely used in practice ITU (2014).

The accuracy of determining the RFS coordinates based on
the TDOA depends on the errors from measuring time signal
reception sensors of the sensor network. The errors from the
determination of the difference in signal reception times are
correlated, because they contain the error in the reference
sensor measurement.

In the known methods for determining the RFS coordinates
based on the TDOA (Buzuverov 2008), the coordinate calculation
is performed after receiving the measurements from all
sensors. In this study, based on the mathematical apparatus
of the extended Kalman Filter, the algorithm is developed,
which — after the formulation of the initial conditions based
on the measurement of time for receiving signals from 4
sensors — allows to recurrently specify the location of RFS as
the measurement proceeds from the other sensors. The developed
algorithm also evaluates the time error from receiving the signal
by the reference sensor measurement that allows considering

the synthesized algorithm as adaptive.
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FORMULATION OF THE PROBLEM

The sensors network transducers have the coordinates
(xis, yis ), i = 0, n. The position of the RES is characterized by a
point with coordinates (x, y). When determining the coordinates
of RFS on the x-y plane, the sensor network should consist
of no less than 4 sensors. Figure 1 shows block diagrams of
sensor networks on the x-y plane, consisting of 9 (n = 8) and
4 (n = 3) sensors.

When using TDOA, the time difference in the reception of
signals between the sensors i = 1, n and the reference probes
is measured:

Ajg=t; =ty +n,—ny, i=1n, 1)

where: ¢, is the time of signal reception of the i — m sensor;
t, is the time of signal reception by the reference sensor; 1, is
the uncorrelated error of time measurements of signal by the
reception of the i — m sensor (Buzuverov 2008) with dispersion
02i=0,n.

Because of the transformation in Eq. 1, the TDOA equations

for network can be represented as:

dﬂ =c(ti+ni—t)—c(t0+no—t) =R -R,+
(2)

Vi =Vo =R =Ry +v,, i=1’_”’

where: R is the distance between the i — m sensor and the RES,
i=1,m R, is the distance between the reference sensor and
the RES; d, is the measured difference of distances i = 1, n;
c is the spreading speed of electromagnetic waves; t is the
moment of RFS signal emission; v,  is the error of difference
measurement between the distances:

V[0=V[_V0>i=1,n; (3)

where: v, are the uncorrelated random variables having
the meaning of the distance measurement errors between the RFS
and the network sensors with a dispersion 03 =c? O‘ft ,i=0,n.
The difference in distance R, - R is determined by the formula

Ri=Ry=(x=x$) +(y= 3 =\ + ) @

In Eq. 4, the coordinates of the reference sensor were relied

to be 0. The errors of difference measurement between the

distances v, i = 1,1, are correlated because they contain the
reference sensor measurement error v,.

The presence of correlated errors makes it difficult to use
traditional recurrent target coordinates evaluation algorithms.
This difficulty can be avoided through the introduction of v
into the state vector of the estimated parameters.

It is believed that, during the difference measurement of
the distances between the RFS and the network sensors, its
coordinates do not change. Synthesizing a recurrent algorithm
is required, and, after the formation of the initial conditions
based on the measurement of signals receiving time from 4
sensors, it allows to specify recurrently the location RFS in
process of receipt of measurements from the other sensors

and to estimate the error of the reference sensor measurement.

DEVELOPMENT

The coordinates of the RFS position (xk, yk) should be
assessed; the measurement time of distance difference between
the RFS and the network sensors, as well as its coordinates,
do not change. The error in measurements of the reference
sensor from Eq. 2 does not change as well in 1 measurement
cycle, so the equation describing the dynamics of the estimated

parameters has the form
u k =U —1> (5)

where: u, = (x,, ,, vok)T is the state vector including position
coordinates of the RFS and the measurement error of the
reference sensor v, on the current time step k. The index k
characterizes the incomings sequence of measured differences
in distances.

The measurement equation describing the measured k™

distance difference considering Egs. 2,4 and 5 can be viewed as

where: h(uk) is a non-linear function described by the non-

linear measurement expression:

h(”k)=\/(xk _xis)2 + (7 _yis)z _\/xlf "'J’/f ~Vor (7)

where: v, is the measurement error of the sensor with coordinates

XY,
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Using the model (Eqs. 6 and 7), a recurrent estimation
algorithm of the state vector can be obtained based on the
extended Kalman Filter (Welch and Bishop 2006), being

described by
1

T/~ A T/~ -
K, =}3k_1 O (i) [ah(uk—l)ﬁ_ oh” (uy_,) +Uv2 ®)
ouy, ouy, ouy,
W =ty + K [7’1( ‘h(ﬁk_1)] )
AA oh(u A
b=b -k, M 0

where: u , is the estimation of the state vector u, at the k'™ step;
P, is the correlation matrix of the state vector of the estimation

error u, at the k' step; K, is the coefficient of the filter gain:

1

duy \/()%k—l - ‘xiS)2 + (Ve - yis )?

() _ B =%

(11)
)21{-1 . .j>k—1 _yz‘s
i 49t NG =2 4G -0

Vit —1
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The resulting algorithm (Eqs. 8 - 10) is non-linear and
belongs to the class of the adaptive ones because it along with
the estimation of the RFS the coordinates, an estimation of
the unknown error v is determined. The initial conditions
of u , and P must be set for the implementation of adaptive
filtering. The initial evaluation of the vector u] is u] = (x,, y,;, 0)
The initial estimates of RFS coordinates 920, )70 are determined
based on the method of least squares (LS) in case of 3 difference

measurement distances (Amar and Leus 2010) using the Eq. 12:

-1
w=05(A"s"4) A's"b (12)
where: w! = (JEO, )70, }AQO) is the vector consisting of the RFS
assessment;
S, s g2
P dy X +yr —dyy 13
S, .S 2
A= xzs y§ dygls D =% +y7 —dylfs
S,.S 12
x3s y§ dy, X3 +y3 —dy ...continue
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The correlation matrix Q of the vector estimation error w
is defined (Amar and Leus 2010) by

-1

—_o\T _
Q=((AO) H“AO) (14)

where: H is the matrix determined by the formula H = BYB;
—di PR RLR —+(s SY2 (5 $Y2 i _ 1 3
B =diag (R, R, R} R =N, - x )+ (- y §)%j=1.3.

The initial correlation matrix P, has the block form

S-22><2 0
0 o

v

A

0= (15)

deleting the third row and the third column.

After the formation of the initial conditions based on the
time measurements to receive signals from the 4 sensors, the
synthesized algorithm (Eqs. 8 - 10) allows to recurrently specify,

at each step k, the location of the RFS as the measurement

proceeds from the other sensors k=1, n - 3.

THE EFFECTIVENESS OF THE
ALGORITHM ANALYSIS

The efficiency analysis of recurrent adaptive algorithm
(Egs. 8 - 10) and its comparison with the quadratic correction
one is performed by statistical modeling. The quadratic correction
algorithm provides the highest accuracy among those considered
in Amar and Leus (2010). It consists of 2 stages: (i) evaluate the
RFS coordinates, which depends on the distance R substitute
in the initial functionality then re-solve the linear optimization
problem; (ii)-adjust the solution for a quadratic relation.

The modeling of algorithms is performed for the sensor
network configuration (Fig. 1a), which consists of 9 sensors
to determine the RFS position at the coordinates: SO(0; 0),
$1(0; 20), S2(20V2; 20V2), $3(20; 0), S4(20V2; -20V2),
S5(0; —20), S6(-20V2; ~20V2), S7(—20; 0) and S8(~20V2; 20V2).
Figure 1b shows a sensor network with a minimal number of
sensors to form the initial adaptive filtering conditions with
the coordinates: S0(0; 0), S1(20V2; 20V2), S2(20V2; -20v2)
and S3(-20; 0). The RFS is placed on a circle with a radius of

100 km relative to the reference sensor D,. The root mean
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square (RMS) of the measurement error is s = 30 m. As an
indicator of the efficiency, the circular standard deviation was
used, 6= +6§,.

Figure 2 shows the dependence of the actual 6]fsc(curve 1)
circular RMS of the RFS position estimation error with 4

sensors (Fig. 1b) obtained by Monte Carlo simulation using

(@) Y

RFS

(b)
RFS

Figure 1. Configuration of the sensor network with (a) 9 and
(b) 4 sensors.

Eq. 12, which corresponds to the initial conditions of the adaptive
filter. This figure also shows the dependence of the theoretical
(curve 2) circular RMS of the RFS position estimation error,
which is calculated based on relevant elements of the correlation
matrix of estimation errors determined using Eq. 14. RMS
values @ Ifsc range from 2 to 8 km.

Figure 3 shows the dependence of the actual 6%? (curve 1)
and theoretical 6y (curve 2) circular RMS of the RFS position
estimation error with 9 sensors (Fig. 1) for the recurrent
algorithm. The received actual and theoretical RMS values
correspond well, indicating the proper operation of the algorithm.
MSE values ¢ A;Ig range from 1.3 to 1.9 km. The application of
recurrent adaptive algorithm reduces the circular RMS of the
RFS location estimation error in 1.5 — 4.2 times (Fig. 3).

Figure 4 shows the dependence of the actual &]gg (curve 1;
where QCis the quadratic correction) and theoretical oy, (curve 2)
circular RMS of the RFS location estimation error for the
quadratic correction algorithm.

Figure 5 shows a circular RMS of the RFS location estimation
error, which corresponds to the lower limit of the Cramér-Rao
bound and characterizes the potential accuracy of the possible
RFS coordinates. The values of circular RMS error of the RFS
positioning of the recurrent adaptive and quadratic correction
algorithms, positioned close to the corresponding values of
circular RMS of the Cramér-Rao bound lower limit, indicate
their high efficiency.

Figure 6 shows the change of the actual (curve 1) and
theoretical (curve 2) circular RMS error estimation of the

RFS locations using recurrent adaptive algorithm for fixed RFS

270

270

Figure 2. Circular RMS of the RFS position estimation error
for the initial conditions.

Figure 3. Circular RMS of the RFS position estimation error
for recurrent adaptive algorithm.
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coordinates (x, ). The use of recurrent adaptive algorithm
reduces the circular RMS of the RFS location estimation error
in 2.5 times relative to the initial conditions.

It is interesting to compare the calculation of the costs
required in the implementation of the recurrent adaptive
and quadratic correction algorithms. They can be assessed
by determining the number of required multiplications
(divisions), since they are performed from 100 to 150 times
slower than addition and subtraction. For the example with
the implementation of the recurrent adaptive algorithm, 461
multiplications are required and, for the quadratic correction
one, this value is 1,246. Thus, the application of the developed
algorithm reduces the computational cost by 2.7 times.

270

Figure 4. Circular RMS of the RFS position estimation error
for the quadratic correction algorithm.

270

Figure 5. Circular BRMS of the RFS position estimation error
of the Cramér-Rao bound lower limit.
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Figure 6. Circular RMS dynamics of the RFS locations
estimation error under sequential data arrival.

CONCLUSIONS

Using the mathematical apparatus of Kalman filtering,
the algorithm is developed, which, after the formation of the
initial conditions, is based on measurements of the receiving
time of the signals from 4 sensors. This allows specifying the
location of the recurrent RFS as the measurement proceeds
from the other sensors. It belongs to the class of adaptive
algorithms, because, along with the estimation of the RFS
coordinates, it determines the estimation of unknown error of
reference sensor measurement. According to the simulation
results, the use of recurrent algorithm can reduce the circular
RMS of the RFS location estimation error by 1.5 - 4.2 times,
providing characteristics similar to the potentially achievable.

The implementation of the recurrent adaptive algorithm
requires 2.7 times less computational cost than the quadratic
correction one. The resulting algorithm can also be easily
extended to the case of RFS filtering trajectory at which its

motion parameters are estimated (Chiang et al. 2012).
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