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AbstrAct: This article presents a retirement analysis 
model for aircraft fleets. By employing a greedy algorithm, 
the presented solution is capable of identifying individually 
weak assets in a fleet of aircraft with inhomogeneous 
historical utilization. The model forecasts future retirement 
scenarios employing user-defined decision periods, informed 
by a cost function, a utility function and demographic inputs 
to the model. The model satisfies first-order necessary 
conditions and uses cost minimization, utility maximization or 
a combination of the 2 as the objective function. This study 
creates a methodology for applying a greedy algorithm to a 
military fleet retirement scenario and then uses the United 
States Air Force A-10 Thunderbolt II fleet for model validation. 
It is shown that this methodology provides fleet managers 
with valid retirement options and shows that early retirement 
decisions substantially impact future fleet cost and utility.

Keywords: Aircraft retirement, Fleet manager, Aircraft 
cost, Retirement model.
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IntroductIon

Military aircraft fleet managers are responsible for providing 
strategic capability to their owning command. Thus, aircraft 
are based around the globe to perform various roles under a 
variety of operating conditions. As these individual aircraft are 
flown over time, each one develops a historical utilization profile 
that is related to its fatigue life expended (Molent et al. 2012). 
When a fleet of individual assets nears projected end-of-life, 
it is imperative that the fleet manager plan for retirement so 
that operational demand can be satisfied. Retirement planning 
varies greatly across military services and within service 
fleets (Garcia 2001; AFSB 2011). It can be proactive and data-
driven but at times it has been reactionary, driven by changing 
budgetary conditions or critical aircraft failures. As the average 
age of aircraft fleets is increasing, retirement planning tools 
and methodology are necessary to aid fleet managers through 
the retirement decision process (Carpenter and White 2001).

The objective of this research was to develop a tool to provide 
fleet managers with a list of aircraft serial numbers that should 
be considered for retirement, sorted by precedence and timing. 
This tool is called the Fleet and Aircraft Retirement Model 
(FARM). It provides a list of aircraft indicating which one should 
be retired first and when this should happen. To improve the 
applicability of the tool, its interface is simplistic, the greedy 
algorithm implementation is clear and the inputs are accepted 
in a variety of formats. FARM was built for the spectrum of fleet 
managers including those who seek to minimize lifecycle cost, 
to maximize aircraft utility and to maximize the fleet’s utility to 
cost ratio. The methodology also supports a fleet manager 
who wishes to use his own objective function that might be 
based on a variety of weighted metrics.
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Prior to discussing retirement, a fleet manager must 
understand the fleet’s demands and historical utilization 
(Jin and Kite-Powell 2000). A previous study analyzed this 
opportunity using operational data from the United States Air 
Force (USAF) A-10 Thunderbolt II fleet (Newcamp 2016). The 
next step in retirement thinking is to develop replacement 
policy for a fleet utilizing the operation research methodologies 
contained in the study of replacement theory (Peters 1956). 

Unfortunately, current fleet retirement schemes are primarily 
based, after an initial objective screening, on subjective means 
because economic life calculations are exceedingly complex 
(Tang 2013; Lincoln and Melliere 1999; Unger 2008). For 
example, the USAF gathers maintenance and logistics experts 
to decide which aircraft can get retired; however, the decision 
is very complex, and the decision-makers lack suitable tools 
(Marx 2016). Aircraft can be identified for retirement based 
on flight hours, repairs that limit usability, limit exceedances, 
corrosion, owning unit capabilities, among many other factors. 
While the bulk of replacement theory literature discusses the 
replacement of current (defender) assets with more modern 
(challenger) assets, this study ignores the latter because their 
acquisition does not directly hasten defender retirements 
(Robbert et al. 2013). Also, the authors treat military aircraft 
as parallel assets that independently contribute to supply 
(Stuivenberg et al. 2013), which allows for the specificity of 
individual serial numbers in the fleet.

Military aircraft fleet’s assets do not continually operate 
at maximum capacity. Since retirement schedules depend 
on utilization, a fleet manager may alter utilization patterns 
leading to a more optimal retirement schedule. Testing various 
retirement schedules with an objective tool is necessary to 
quantify the net present value of each scheme. This paper 
contributes with a methodology that answers this need and 
enables fleet managers to make utilization decisions now that 
will affect future fleet statuses. 

The novel contribution of the FARM methodology is 
the use of individual serial number utilization histories and 
cost data as a basis for future year predictions. Traditional 
replacement models have used fleet-wide utilization averaging 
or ignored asset utilization altogether, which has led to 
non-optimal solutions (Hartman 1999). To overcome the 
limitation of basing forecasts on outdated information, 
fleet managers can periodically use FARM to update their fleet 
retirement forecasts, including updated cost and utility 
data for each iteration. This approach also allows fleet managers 

to alter their utilization levels across a fleet to optimize their 
retirement scheduling.

The remainder of this article will discuss the methodology 
employed in the FARM software. The background section 
contains relevant literature on asset retirement plus a discussion 
of capital asset replacement theory. In the methodology section, 
the greedy algorithm approach to the retirement problem 
and the mathematical formulation for FARM are described. 
Then the results section shows data from a simulation run 
using FARM for a virtual fleet. The discussion section highlights 
the usefulness of a serial number specific retirement tool and 
shows validation of FARM using the real USAF A-10 fleet. 
Lastly, the conclusions section emphasizes the major findings 
from this study.

bAcKground
LiteRAtuRe Review

A military aircraft fleet retirement methodology must 
connect the domains of replacement theory, capital asset 
economics and military operational analysis. Relevant studies 
concerning asset replacement include Jones et al. (1991), 
Rajagopalan (1998) and Bethuyne (1998) and the thorough 
treatment of capital equipment replacement in Jardine and 
Tsang (2013). While insights can be gained from other domains, 
2 considerations are important to aircraft replacements. 
First, aircraft lifecycles and planning/construction timelines 
are much greater than some other asset categories. Second, 
upgrades and overhauls significantly alter the capability and 
lifetime projection (Tang 2013).

Tang (2013), in a study on replacement schedules, discussed a 
time-space network approach for helicopters. The study concluded 
that cost parameters like fixed and variable operating costs can be 
simplified for benefit of the model’s approach. The author assumed 
all helicopters were homogenous regardless of age and utilization 
history and excluded variable staff costs from the model. The 
present research advances this assumption by accommodating 
variable staff costs in the variable cost function and allows an 
inhomogeneous fleet input. Hartman’s complementary study on 
replacement schedules showed that these are highly dependent on 
asset utilization through time (Hartman 2004). Hartman’s integer 
programming method used a cost-minimization technique for 
asset replacement over a finite horizon (Hartman 1999). His paper 
suggested that future research should address fleet management 
and fleet sizing options. 
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Jin and Kite-Powell (2000) relied on system utilization 
and replacement decisions to meet the demands of a profit-
maximizing manager. The authors looked at operating cost 
trends and the cost of replacement as factors for the retirement 
decision for ships. The primary contribution of Jin and Kite-
Powell (2000) is the conclusion that an asset should be retired 
if its net benefit in a fleet is less than the salvage value. 

Evans (1989) studied ship replacement theory basing his 
approach on costs rather than profits and concluding that 
replacement should occur when it becomes cheaper to purchase 
a replacement than to continue operating an aging system. The 
paper has many similarities to aircraft fleet replacement study, 
mainly that replacement should only be affected by costs in 
real terms. Additionally, this author posited that replacement 
decisions should focus on the existing fleet and not on the costs 
or capabilities of the replacement assets. The present study uses 
the same approach, suggesting that retirement is based on the 
current operating costs of the fleet. Since ship replacement 
requires years for contracting, construction and testing, ships 
are more similar to aircraft than assets in the motor vehicle, farm 
machinery and locomotive industries. As Evans posited, ships 
are often replaced with like replacements. However, aircraft are 
commonly replaced with newer assets with greater capability 
(Boness and Schwartz 1969). 

Malcomson (1979) determined replacement rules for capital 
equipment and concluded that an iterative approach was the 
most efficient. Like in this paper, Malcomson also assumed 
that the replacement trigger point must be when the operating 
cost of aging assets is greater than operating new equipment. 
Further, the author noted that finite answers to the replacement 
problem are more desirable than approximate answers, and 
given modern computing power, finite solutions are attainable 
at very low cost. 

Landry (2000) analyzed multiple courses of action for 
maintaining the aging fleet of Canadian CF188 (F-18) and 
CP140 (P-3) aircraft. His study treated the problem as a business 
case analysis with the aim of providing a fleet manager with 
objective data for a retirement decision. His Airframe Life 
Extension Program (ALEX) software used fatigue test control 
point data to forecast early retirement dates.

Lu and Anderson-Cook (2015) concluded that future 
reliability estimations can be improved when assets of the 
same age are not treated homogeneously, but are rather based 
on historical usage. The authors used an automobile example 
to illustrate that 2 cars of the same age do not possess the 

same reliability. Understanding mileage and usage conditions 
can improve maintenance and replacement decisions, just as 
understanding aircraft demographics can improve retirement 
decisions.

RepLAcement theoRy
Replacement theory is a decision-making process from 

operations research dealing with substitute system selection 
conducted by an agent. For a group of assets, the formulation 
becomes a parallel replacement problem. If the goal is to minimize 
lifecycle cost, replacement theory can help to determine a 
capital asset’s optimum life. As capital assets age, increasing 
maintenance costs and reduced utility draw attention to the 
necessity for replacement (Bethuyne 1998; Lu and Anderson-
Cook 2015). Retiring assets is half of the parallel replacement 
puzzle and the subject of this research. It is assumed that the 
selection of replacement equipment occurs outside the scope 
of this methodology. 

Generally, new equipment with better capability replaces 
older equipment (Nair and Hopp 1992). For aircraft, replacement 
theory might suggest 2 courses of action: upgrades/overhauls or 
retirement. As Landry’s research concluded, the crux is deciding 
whether it is more fiscally responsible to upgrade aircraft 
structure or to replace the aircraft altogether (Landry 2000). 
This paper only addresses the retirement course of action, which 
is termed the replacement model. It is believed that providing 
a fleet manager with the best replacement model will yield the 
most sensible economic replacement policy. 

A parallel replacement problem, by its nature, addresses a set 
of assets. Unlike the single asset case, assets under consideration 
for parallel replacement can have their utilization levels adjusted 
to prolong or accelerate deterioration (Bethuyne 1998). This 
can be an invaluable approach for fleet managers trying to meet 
operational requirements or retirement mandates.

Methodology
FRAming the pRobLem

To determine the optimal aircraft to retire at a point in the 
future, managers could use previous aircraft information as the 
best predictor for residual aircraft life (Hsu et al. 2011; Hawkes 
and White III 2007). However, analyzing the current fleet and each 
smaller fleet size was not computationally feasible for fleet sizes 
greater than approximately 15 assets, so a greedy algorithm was 
implemented. Calculating every permutation was not necessary 
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since a greedy algorithm provides the same global optimum 
if the problem is appropriately bounded and local optima 
are avoided through logic (Cormen et al. 2009). Th is model 
consisted of a fl eet of n aircraft  with each subsequent fl eet size, 
n − 1, dependent on the previous reduction. Th is methodology 
was grounded in the assumption that a fl eet manager desiring 
to retire 2 or more aircraft  would always choose the worst 
asset to retire at each iteration. Th erefore, all smaller fl eet size 
problems became n – 1 easier until n − (n − 1), when the single 
remaining aircraft  was the least desirable option. Th is iterative 
approach resulted in a Pareto front of fl eet cost, fl eet utility or 
the ratio of fl eet utility to cost. Changing from a minimization 
model to a maximization model, a second Pareto front could 
be found. Th e space between the Pareto fronts indicates the 
relative goodness or inferiority of retirement choices. 

FLeet AnD AiRcRAFt RetiRement moDeL
FARM uses a greedy algorithm to determine which aircraft  

in an inhomogeneous fl eet should be retired and in what order. 
For each smaller fl eet size, the algorithm chooses the current 
optimal solution before analyzing the next smaller fl eet size. 
FARM’s methodology is outlined in Fig. 1. Th e multi-year 
outlook makes retirement decisions using projected asset cost 
and utility. Th e model is valid for any initial and fi nal fl eet sizes. 
FARM operates with user inputs (decision periods, minimum/
maximum aircraft  ages and rate of yearly budget increase) and 
3 user functions (fi xed cost, variable cost and utility). Th e fi xed 
cost is distributed evenly across assets while the variable cost 
and utility are both functions of aircraft  age. Costs are modeled 
as equivalent costflow. Inflation and the effects of various 

methods for cost reporting were removed from the model by 
using maintenance man-hours as a proxy in the variable cost 
calculations. Utility is analogous to aircraft  availability, is a 
number between 0 and 1 and is computed as the number of 
available days out of 31. However, individual FARM users may 
alter the format of input functions as necessary.

Th e methodology underlying FARM is useful for modeling 
a real fl eet of aircraft  as well as a virtual fl eet of aircraft . Virtual 
fl eet modeling follows the conventions found in literature: 
aircraft  operations and support (O&S) costs are high in the 
fi rst few years of operation, then decrease sharply as the fl eet 
matures and fi nally the costs increase at approximately 3% 
per year of age into the future (Dixon and Project Air Force 
(U.S.) 2006). Utility begins low for a new aircraft , then quickly 
peaks, followed by a decrease with age. An example of the cost 
and utility models used for FARM’s development are shown in
Fig. 2. Step functions in utility levels and costs that occur due 

Figure 1. Flow chart for methodology steps.
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to major overhaul or repairs were not added to the model. Real 
fl eets were modeled with actual cost and utility functions, which 
in general were found to follow the published conventions. To 
forecast future fl eet conditions, the most recent cost and utility 
were extrapolated through time. Otherwise, depending on the 
age distribution of the fl eet, FARM would suggest retiring very 
young aircraft  with high cost and low utility. 

For each decision period, FARM outputs the recommended 
serial numbers to retain for all fl eet size options with associated 
metrics for each option. Fleet managers may use these data to 
identify their ideal fl eet size and makeup. Fleet changes with 
time can then be evaluated. Th e limitations of this methodology 
and associated software model are few but important. The 
methodology is only valid for 1 mission design series. For 
example, a mixed fl eet of KC-135s and F-15s cannot be evaluated. 
Second, the methodology does not allow for subjective valuations 
or weighting factors for the aircraft . Lastly, FARM does not 
provide a time-sequence of retirement decisions. Rather, FARM 
forecasts future asset cost and utility to support a retirement 
decision forecast.

mAthemAticAL FoRmuLAtion
This section presents the optimization model that the 

greedy algorithm solves in each of its iterations for a given 
year of interest. Lastly, the calculation equations and problem 
constraints are presented. 

Th e decision variables are:

The objective function contains 3 terms. The first is 
the cost calculation, a combination of all fixed and variable 
costs for operations and sustainment. The second term 
is the utility calculation, measured as wished by the fleet 
manager. The third term is the utility per cost ratio, a way 
to balance the cost associated with changes to utility. It is 
assumed that only 1 term can be optimized at a time in 
the model. That is, 1 and only 1 of the weights is equal to 
1 each time the optimization model is solved, as shown in 
Eq. 2. The following equations are required to evaluate the 
objective function.

Th e cost of an aircraft  a in year t is the integration of 
aircraft  cost from simulation start until the year of interest, 
assuming that the integration increment is small enough to 
yield small error (Eq. 3):

Th e objective function (Eq. 1) seeks to maximize:

where:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

where Ca is the annualized cost function of aircraft  a.
Th e utility of an aircraft  a in year t is the integration of 

aircraft  utility from simulation start until the year of interest, 
assuming that the integration increment is small enough to 
yield small error (Eq. 4):

where Ua is the annualized utility function of aircraft  a.
Th e equations are subjected to several constraints. Th e sum 

of aircraft  a in year t must be between the bounds of operational 
aircraft  in year t (Eq. 5):

where NAt is the minimum number of operational aircraft  in 
year t; A represents the aircraft  type, a; NAt is the maximum 
number of operational aircraft  in year t.

Th e sum of the cost of aircraft  a times inventory must be 
less than or equal to budget in year t (Eq. 6):

where Bt is the maximum budget in year t.
Th e sum of utility of aircraft  a times inventory must be greater 

than or equal to the minimum acceptable utility threshold in 
year t (Eq. 7):

where Ut represents the minimum utility threshold of the fl eet 
in year t.

a represents the aircraft  of interest; t means year of interest; 
Cta is the cost of aircraft  a in year t; Xi 

ta means that aircraft  
a is operating in year t in iteration i; Wc, Wu, Wr represent 
weighting — cost, utility, and utility/cost ratio, respectively; 
Uta is the utility of aircraft  a in year t.
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Th e opportunity to retire an aircraft  a in year t is contingent 
upon the existence of aircraft  a in the fl eet in the previous year 
(Eq. 8):

represent the feasible solutions, which include only those results 
meeting budget and utility requirements. Th e bottom curve 
represents the cost-minimization solutions. Th ese solutions 
show the cost of the fl eet for n aircraft , n – 1 aircraft , etc. Th e 
top curve shows fl eet cost for cost maximization or worst case 
retirement choices made for each fl eet size. Th e vertical gap 
between the curves is the cost delta that can be saved by making 
the cost-minimization serial number retirement decisions. 
Th e curves are cutoff  at the both ends, caused by budget and 
utility constraints.

Figure 4 is an expanded view of a small portion of the 
lines in Fig. 3. Th is expanded view shows that the lines in 
Fig. 3 are composed of many discreet points. At each fl eet 
size, n, FARM calculates all of the possible options. Th ese 
are shown in Fig. 4 between the most expensive and the least 
expensive options. Knowing the range of options is useful 
because it is not always practical for a fl eet manager to retire 
the optimum aircraft .  

Figure 5 shows the simplifi ed simulation results for the 
same scenario, but with a utility-centered management focus. 

(8)

(9)

(10)

(11)

(12)

(13)

where Ri 
ta means that the aircraft  a is retired in year t in iteration i.

Th e presence of an aircraft  a in year t, given the knowledge 
of previous years of interest and the decision made in year t, 
is represented in Eq. 9:

where, upon initialization, all aircraft  are operational (Eq. 10):

Th e fl eet size in year t, Eq. 11, is the summation of the 
operating aircraft :

where F i  ta is the fl eet size in year t in iteration i and must be 1 
smaller at each iteration (Eq. 12):

and the initial fl eet size, Eq. 13, is the summation of the operating 
aircraft  in the initial year:

results

Th is section presents results from the FARM program. A 
virtual fl eet is used for simulation and simplifi ed output plots 
show representative results. Th en, to validate the methodology, 
A-10 case study FARM results are shown with plots showing 
detail to the tail number level. 

To evaluate FARM, this discussion uses a simulated aircraft  
fl eet of size, n = 100, over a period of 5 years with cost and 
utility data similar to those represented in Fig. 2. Aircraft  ages 
were drawn from a uniform distribution. Budget was set at
the current budget plus a 1% yearly budget increase to mimic the
defense budgeting process. Minimum acceptable utility was 
set to 45% of the existing utility. Th ree objective functions are 
used: cost minimization, utility maximization and utility per 
cost maximization. 

Figure 3 shows simplified simulation cost results for a 
sample fl eet in year 5 for fl eet size options from 1:n. Th e 2 lines 

Figure 3. High and low cost choices for fl eet of various fl eet 
size options.

Fi gure 4. Expanded view of cost options showing all solutions.
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Th ese results inform the fl eet manager which serial numbers to 
retire if the fl eet goal was to maximize the utility factor, which
for this scenario is the sum of aircraft  days available per month for
the existing fl eet. Th e expanded view shows that, for each fl eet 
size, there are n – 1 utility outcomes. Th e shapes of the curves 
shown in Fig. 3 to Fig. 5 are the manifestation of the cost
and utility input data.

Th e curves in Fig. 6 show the Pareto fronts for the utility 
per cost ratio calculations for the sample fl eet. As aircraft  are 
retired from the fl eet (right to left ), the curves diverge, showing 
that a fl eet manager can make poor retirement decisions that 
impact the fl eet’s utility per cost ratio. As the fl eet size shrinks, 
the shape of the Pareto curves shift s which is due to the fi xed 
cost distribution function. Maintaining a constant fi xed cost 
distribution function but varying the fl eet retirement scenarios 
always results in local maxima (optimality condition). Th is 
result is valuable to fl eet managers because it recommends 
a minimum practical fl eet sizing solution. For example, this 
simulation shows a maximum utility per cost ratio that can 
be achieved for a fl eet size of 30 aircraft .

A-10 cASe StuDy
A realistic retirement scenario for the USAF A-10 fl eet 

(2016 active fl eet) sought to reduce the fl eet size to simulate 
the closure of a base. Right-censored A-10 data were provided 
by the USAF and were used as demographic data for FARM. 
Maintenance man-hour data were provided for each active tail 
number for each month for fi scal years 1995 to 2015 (66,172 total 
observations). Figure 7 shows 2 diff erent percentile categories for 
the distribution of man-hours and the median line of the aircraft  
in the set. For example, the median number of maintenance 
man-hours for a 14 year-old A-10 was approximately 100 h 
per month. Th e dashed line is a 3% growth prediction, which 
validates the relationship between aircraft  age and maintenance 
burden for agile aircraft  investigated by Dixon and the Project 
Air Force (U.S.) (2006). The A-10 maintenance man-hour 
data increased at a rate of approximately 3% per year. A 1-way 
ANOVA confi rmed this age eff ect (factor: aircraft  age; dependent 
variable: maintenance man-hours; p-factor = 0.014). A 159 
USD labor cost rate derived from USAF depot cost data was 
applied to the man-hour data for illustrative purposes in the 
case study. Fixed cost and variable cost values were derived from 
the USAF’s Total Ownership Cost Tool (Robbert et al. 2013).

Th e USAF also provided mission capable rates as a utility 
measure for use in FARM simulations. Th ese data were recorded 
monthly for each active tail number for the years 2009 – 2015 
(2,792 observations). Th e mission capable rate was a reasonable 
utility metric to use for the A-10 because it is a function of failure 
frequency, which represents asset reliability (Balaban et al.
2000). Th e mission capable rate data did fl uctuate in response 
to funding changes, upgrades and operational conditions. 
During the data collection period, for example, the A-10 fl eet 
underwent a system life extension program that altered the 

Figure 5. High and low utility choices for various fl eet size 
options with expanded view of all possibilities.
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mission capable rates of the fl eet. Th ese fl uctuations in the data 
were useful for testing the soft ware. 

Th e data from maintenance man-hour (cost) and mission 
capable rate (utility) were input functions to FARM. Given that 
information, simulations were run to determine which aircraft  
would be chosen for retirement. For the active fl eet of 349 A-10 
aircraft , FARM produced the cost minimization output (Fig. 8)
and the utility maximization output (Fig. 9) for the decision 
period of 5 years. Although not shown here, the accompanying 
outputs list the serial numbers that should be retired for each 
desired end-strength fl eet size.

Th e cost-minimization objective function results (Fig. 3 and 
Fig. 8) exhibit diff erent shapes. Th is is due to the variance in the 
cost data inputs (σA-10 > σmodel)  and emphasizes the potential 
advantage to this method’s approach in identifying weak assets 
in a capital equipment fl eet. Also, the expanded view in Fig. 9 
highlights the inhomogeneity of utility factors in the actual A-10 
fl eet. Th e groupings of solutions occur in the expanded view 
result because the utility input data possess groups of aircraft  

with low factors, probably due to major corrective maintenance 
on some serial numbers during the data collection period. Fleet 
managers must be aware that a low utility factor may be the 
result of corrective maintenance or upgrades, which may make 
an asset less desirable in the interim but more desirable in the 
future. FARM allows managers to cater the utility function to 
refl ect this, and recently improved aircraft  are not identifi ed 
for retirement.

dIscussIon

FARM experiments revealed several tenets important for 
retirement policy analysis, namely that the inputs drive the 
results, uncertainty dramatically reduces the model accuracy 
and the earlier retirement decisions have the greatest impact on 
lifetime fl eet cost and utility. Further, using the greedy algorithm 
enabled a computationally fast asset retirement model so that 
each of these tenets could be explored.

Th e shapes of the input functions directly impact the results. 
For example, if aircraft  cost linearly increases as a function of 
age, then the oldest aircraft  (the most costly) are indicated by 
the greedy algorithm for retirement fi rst. However, real fl eets 
exhibit more complex input functions so FARM’s value increases 
as the fl eet complexity increases.

Once uncertainty is entered the retirement model framework, 
a fl eet manager must be careful about forecasting aircraft  that 
would be candidates for retirement in future years. In year 1,
the retirement suggestion is a direct representation of the initial 
cost and utility inputs. In the following years, uncertainty 
in cost and utility forecasts grows, therefore making future 
year retirement decisions mere predictions, worsening with 
time. Cost uncertainty is shown in Fig. 10. One facet of this 
uncertainty is the eff ect of short production runs. For a wide 
distribution of aircraft  ages, FARM results show a fi nite solution. 
As the aircraft  production timespan decreases, the retirement 
prediction confi dence decreases. Th is occurs because the cost 
diff erences between individual capital assets decrease, thus 
making assets less distinguishable, particularly with confi dence 
intervals. Retirement planning should be updated yearly with 
more recent cost and utility functions to lessen the uncertainty.

FARM shows that it is more important to make the right 
retirement choices from the start. Retirement policy errors 
propagate through time, making the initial net present value 
decision an assumption of future net present value. Retiring an 
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Figure 8. A-10 cost of fl eet for various valid fl eet size options.

Figure 9. A-10 utility of fl eet for various valid fl eet size options.
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Fleet size Run time (s)*

16 3.2

100 4.2

160 5.5

320 11.3

500 22.5

1,000 95.2

2,000 567.6

table 1. Mo del run times for sample fl eet sizes.

*Intel Core 2 Duo, 3 GHz, 16 GB RAM.

asset with more future potential than a neighboring asset will 
aff ect the cost baseline in each subsequent year.

For generic fl eets, FARM shows that the costliest aircraft  
possessing the lowest utility should be retired fi rst. Actual fl eet 
data show that the oldest serial numbers sometimes are not the 
costliest, least useful aircraft  because of usage variation. Th is 
is the most basic reason for using a methodology like the one 
developed for FARM in retirement analysis. 

States Air Force’s Logistics, Installations and Mission Support 
Enterprise View repository. F-16 Fighting Falcon and A-10 
Th underbolt II data validated the general forms of the cost 
and utility models. One necessary step for validating the 
model was to catalog and analyze the aircraft  serial numbers 
recommended for retirement to ensure the model accurately 
identifi ed the weak assets. Th e model was found to produce 
repeatable results, recommending the same serial numbers for 
retirement given static input conditions. Likewise, whether the 
fl eet manager wanted to retire n aircraft  or some multiple of 
n, the sequence of retired serial numbers remained the same.

To determine model effi  cacy for an actual retirement scenario, 
the fi scal year 2013 retirement of 41 A-10s was analyzed. More 
aircraft  were retired during this wave, but this validation eff ort 
focused on the 41 aircraft  sent to retirement and ignored those 
aircraft  reassigned as maintenance and egress trainers. Th e 
decision process to retire the 41 aircraft  began in December 
2011 and continued until early 2013. Th e FARM model was 
fed with cost, utility and demographic data about the fl eet in 
the years preceding and including 2012. Using the utility per 
cost ratio metric and allowing FARM to choose 41 aircraft  
for retirement, 19 (46%) FARM choices matched the USAF 
ones. Using just the cost metric resulted in 17 matches (41%) 
and just the utility metric resulted in 15 matches (37%). Th ese 
validation results do not necessarily suggest that the choice of 
aircraft  in the 2013 retirement wave was based on a utility-per-
cost metric. Th e stakeholders involved in the retirement used 
a risk-based analytical process followed by other metrics and 
subjective determinations to select aircraft  (Th omsen et al. 2011). 

A second A-10 retirement population was evaluated to test 
the model. However, the 2011 retirement wave only consisted of 
9 serial numbers. Of that group, 7 were reassigned to non-fl ying 
duties allowing only 2 serial numbers for model validation. Th e 
model would have retired 1 of those 2 aircraft , but the small 
population size limits the value of the fi nding. Due to the lack 
of additional aircraft  fl eet retirement data, no further validation 
analyses could be conducted. Retirement decisions are complex, 
with many subjective factors; but a simple tool that can provide 
decision-makers with a starting point for choosing serial numbers 
shows the value of this methodology. In the case of the 2013 
retirement wave, FARM would have provided an initial list 
that was nearly 50% accurate when compared to the fi nal one.

A fleet manager could employ any of the 3 retirement 
strategies (cost minimization, utility maximization or utility 
per cost maximization) used in this study. To show validity, 
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Figure 10. Uncertainty growth for FARM decision periods.

vALiDAtion
Sensitivity analysis showed accurate model response to a 

wide range of reasonable variable and function inputs. FARM 
calculated fl eet retirement options for both very large and very 
small fl eets but the results were most valuable to real-world fl eet 
sizes in the tens to hundreds of aircraft . Computation time for 
all scenarios described in this article was below 60 s, and the 
principal component aff ecting run time was the fl eet size. A 
summary of run times for relevant USAF fl eet sizes is shown 
in Table 1. Th e model’s big O notation is: O(n2). 

The model was developed using assumed values from 
previous studies but was validated using data from the United 
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each strategy was compared to the others for both the A-10 case 
study and for a virtual fleet. In each case and as expected, the 
named strategy outperformed the remaining ones. Figure 11 
shows how the 3 strategies for the A-10 fleet compare with 
each other for the utility-per-cost maximization strategy. 
The similarity between the utility-per-cost maximization and 
cost-minimization strategies (Fig. 11) evidences why the 2013 
retirement data match well for those 2 strategies.

Other validation plots show greater stratification between 
the 3 strategies. This shows the value of giving the fleet manager 
multiple objective function options. 

found that the correlation between usage history and retirement 
susceptibility could be better understood by fleet managers. 
The managers can control utilization levels of their assets to 
prolong or accelerate deterioration, which ultimately impacts 
the retirement schedule. Because fleet planning is a multi-
year forecast, using a tool like FARM to make forecasts and 
periodically update them is more useful than one with a limited 
or finite horizon. Since suboptimal early retirement decisions 
cannot be remedied, a robust retirement policy is necessary.

This methodology can inspire future research in several 
ways. First, the methods may be extended to similar fields 
where parallel assets have unique usage histories. Though the 
objective function may change and the greedy algorithm may 
not present the globally optimal solution, this approach may fit 
into other domains. Further, other domains may also wish to 
study the retirement problem with non-like assets. Second, 
this methodology did not accommodate decision-makers with 
complex needs. Only cost minimization, utility maximization 
and utility-per-cost ratio maximization were considered. An 
amalgamation of weighted fleet priorities could be applied 
to this methodology, which can better satisfy some fleet 
managers. Lastly, future research might expand the scope of 
this methodology to include multiple aircraft mission designs 
in the retirement analysis. The F35A Joint Strike Fighter, for 
example, was designed to replace both the USAF’s F-16 and A-10 
aircraft. Fleet managers may be interested in evaluating which 
mission design should be retired first and in what quantities.  
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Figure 11. Comparison of retirement strategies for utility 
per cost ratio.
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conclusIons

This study applied a greedy algorithm to an aircraft fleet 
retirement decision. It answered the question of which individual 
aircraft serial numbers should be retired and in what order. The 
hallmarks of this study were the use of inhomogeneous utilization 
histories for parallel assets and decision period forecasting. 
The methodology developed herein showed applicability to a 
virtual fleet as well as to the current USAF A-10 fleet. It was 

reFerences
Air Force Studies Board (2011) Examination of the U.S. Air Force’s aircraft 

sustainment needs in the future and its strategy to meet those needs. 

Washington: Air Force Studies Board; The National Academies Press.

Balaban HS, Brigantic RT, Wright SA, Papatyi AF (2000) A simulation 

approach to estimating aircraft mission capable rates for the United 

States Air Force. Proceedings of the 2000 Winter Simulation 

Conference; Orlando, USA.

Bethuyne G (1998) Optimal replacement under variable intensity of 

utilization and technological progress. Eng Economist 43(2):85-105. 

doi: 10.1080/00137919808903191

Boness AJ, Schwartz AN (1969) A cost‐benefit analysis of military 

aircraft replacement policies. Nav Res Logist 16(2):237-257. doi: 

10.1002/nav.3800160208



J. Aerosp. Technol. Manag., São José dos Cmpos, Vol.9, No 3, pp.357-367, Jul.-Sep., 2017

367
Application of a Greedy Algorithm to Military Aircraft Fleet Retirements

Carpenter M, White J (2001) Setting up a strategic architecture for 
the life cycle management of USAF aging aircraft. Proceedings of the 
RTO AVT Specialists’ Meeting on Life Management Techniques for 
Aging Air Vehicles; Manchester, United Kingdom.

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to 
algorithms. 3rd edition. Cambridge: MIT Press.

Dixon MC; Project Air Force (U.S.) (2006) The maintenance costs 
of aging aircraft: insights from commercial aviation. Santa Monica: 
RAND Corporation Air Force.

Evans J (1989) Replacement, obsolescence and 
modifications of ships. Marit Pol Manag 16(3):223-231. doi: 
10.1080/03088838900000061

Garcia RM (2001) Optimized procurement and retirement planning of 
Navy ships and aircraft; [accessed 2017 May 18]. http://calhoun.
nps.edu/bitstream/handle/10945/6009/01Dec_GarciaR.
pdf?sequence=1

Hartman JC (1999) A general procedure for incorporating asset 
utilization decisions into replacement analysis. Eng Economist 
44(3):217-238. doi: 10.1080/00137919908967521

Hartman JC (2004) Multiple asset replacement analysis under variable 
utilization and stochastic demand. European Journal of Operational 
Research 159(1):145-165. doi: 10.1016/S0377-2217(03)00397-7

Hawkes EM, White III ED (2007) Predicting the cost per flying 
hour for the F-16 using programmatic and operational data. 
The Journal of Cost Analysis & Management 9(1):15-27. doi: 
10.1080/15411656.2007.10462260

Hsu CI, Li HC, Liu SM, Chao CC (2011) Aircraft replacement 
scheduling: a dynamic programming approach. Transport Res E Logist 
Transport Rev 47(1):41-60. doi: 10.1016/j.tre.2010.07.006

Jardine AK, Tsang AH (2013) Maintenance, replacement, and 
reliability: theory and applications. Boca Raton: CRC Press.

Jin D, Kite-Powell HL (2000) Optimal fleet utilization and replacement. 
Transport Res E Logist Transport Rev 36(1):3-20. doi: 10.1016/
S1366-5545(99)00021-6

Jones PC, Zydiak JL, Hopp WJ (1991) Parallel machine 
replacement. Naval Research Logistics 38(3):351-365. 
doi: 10.1002/1520-6750(199106)38:3<351::AID-
NAV3220380306>3.0.CO;2-U

Landry N (2000) The Canadian Air Force Experience: selecting aircraft 
life extension as the most economical solution; [accessed 2017 May 
18]. http://www.dtic.mil/docs/citations/ADP010316

Lincoln JW, Melliere RA (1999) Economic life determination for a 
military aircraft. J Aircraft 36(5):737-742. doi: 10.2514/2.2512

Lu L, Anderson-Cook CM (2015) Improving reliability understanding 
through estimation and prediction with usage information. Qual Eng 
27(3):304-316. doi: 10.1080/08982112.2014.990033

Malcomson JM (1979) Optimal replacement policy and approximate 
replacement rules. Applied Economics 11(4):405-414. doi: 
10.1080/758538855

Marx J (2016) A-10 Maintenance Officer and Retirement Specialist. 
Telephone interview by Jeffrey Newcamp.

Molent L, Barter S, Foster W (2012) Verification of an individual 
aircraft fatigue monitoring system. Int J Fatig 43:128-133. doi: 
10.1016/j.ijfatigue.2012.03.003

Nair SK, Hopp WJ (1992) A model for equipment replacement due 
to technological obsolescence. Eur J Oper Res 63(2):207-221. doi: 
10.1016/0377-2217(92)90026-6

Newcamp J, Verhagen W, Curran R (2016) Correlation of mission type 
to cyclic loading as a basis for agile military aircraft asset management. 
J Aero Sci Tech 55:111-119. doi: 10.1016/j.ast.2016.05.022

Peters W (1956) Notes on the Theory of Replacement. The 
Manchester School 24(3):270-288. doi: 10.1111/j.1467-
9957.1956.tb00987.x

Rajagopalan S (1998) Capacity expansion and equipment replacement: 
a unified approach. Oper Res 46(6):846-857. doi: 10.1287/
opre.46.6.846

Robbert AA, Project Air Force (U.S.), RAND Corporation (2013) Costs 
of flying units in Air Force active and reserve components. Santa 
Monica: RAND Corporation.

Stuivenberg T, Ghobbar AA, Tinga T, Curran R (2013) Towards a 
usage driven maintenance concept: improving maintenance value. 
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