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ABSTRACT: In order to simulate compressible shear fl ow stability and aeroacoustic problems, a numerical code must be able to 
capture how a basefl ow behaves when submitted to small disturbances. If the disturbances are amplifi ed, the fl ow is unstable. 
The linear stability theory (LST) provides a framework to obtain information about the growth rate in relation to the excitation 
frequency for a given basefl ow. A linear direct numerical simulation (DNS) should capture the same growth rate as the LST, 
providing a severe test for the code. In the present study, DNS simulations of a two-dimensional compressible mixing layer and 
of a two-dimensional compressible plane jet are performed. Disturbances are introduced at the domain infl ow and spatial growth 
rates obtained with a DNS code are compared with growth rates obtained from LST analyses, for each basefl ow, in order to 
verify and validate the DNS code. The good comparison between DNS simulations and LST results indicates that the code is able 
to simulate compressible fl ow problems and it is possible to use it to perform numerical simulation of instability and aeroacoustic 
problems.

KEYWORDS: Compressible fl ow, Direct numerical simulation, Linear stability theory, Code verifi cation and validation.

INTRODUCTION

Th ere is an increasing concern about noise-related health problems in many engineering areas. Some noise sources are due 
to turbulence in a fl ow fi eld and aeroacoustics is the area responsible for the investigation of noise generation and  propagation 
(aerodynamic noise). Th e problem of noise generated by fl ow has some specifi c characteristics, such as multiple frequencies, 
multiple scales and propagation to long distances with very low dissipation (Tam 2004). To deal with these characteristics, a 
numerical simulation must have a transient numerical scheme, very low numerical dissipation and dispersion to preserve the 
propagation of acoustic waves and non-refl ecting boundary conditions (Tam 2004).

Two main strategies are frequently used to simulate aeroacoustic problems. Th e fi rst one is based on acoustic analogies (Lighthill 
1952; Lighthill 1954; Curle 1955; Ffowcs-Williams and Hawkings 1969), where noise sources are obtained from computational 
fl uid dynamics (CFD) and its propagation is calculated solving an inhomogeneous wave equation for pressure, subjected to these 
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sources. The second approach uses a high fidelity simulation capable of computing directly the acoustic waves together with the 
fluid flow, which is called direct aeroacoustic simulation.

In order to perform direct aeroacoustic simulation, a numerical code was developed within our research group (Souza 
et al. 2005). It uses parallel processing with domain decomposition to perform the calculations in a feasible time. High 
order temporal and spatial discretization schemes were adopted to minimize the dispersion and dissipation phenomena 
on the simulation of the flow field and the acoustic waves. A series of strategies, such as filtering and mesh stretching as 
well as characteristic boundary conditions were implemented in order to obtain a proper solution of the aeroacoustic 
problems. 

However, before using a direct numerical simulation (DNS) code for aeroacoustic predictions, it is a good practice to observe 
the code behavior when submitted to unsteady, small disturbances. The linear stability theory (LST) provides a framework to 
obtain information about the amplification rate in relation to the excitation frequency and corresponding eigenfunctions. The 
results from LST can then be used for comparison with numerical simulations.

In the present study, results are presented for DNS of a two-dimensional compressible mixing layer and two-dimensional 
compressible plane jet. Disturbances were introduced at the domain inflow and the code verification was done by comparing the 
spatial amplification rate obtained by the DNS code with the amplification rates obtained from a LST analysis of each baseflow. 
The good comparison obtained indicated that the code satisfactorily simulates compressible flow problems and can be used to 
perform direct aeroacoustic simulations.

FORMULATION AND NUMERICAL SCHEME

The code was developed to solve the two-dimensional unsteady compressible Navier-Stokes equations together with the 
continuity and energy equations in dimensionless form. A Cartesian reference frame (x, y) was adopted, where the x  axis is aligned 
with the streamwise direction and the y axis with the normal direction. The corresponding velocity components are u and v. In 
conservative form, the solution vector is given by:

A perfect gas relation for pressure is assumed to close the formulation . In the conservative form, the unknowns are the density 
ρ, the momentum densities ρu, ρv and the total energy E, given by:

where cv is the specific heat at constant volume and T is the temperature. All equations can be written in vector notation as:

where the flux vectors F and G are given by: 

(1)

(2)

(3)

(4)
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where p is the normalized pressure. The normal stress components are given by:

and the shear stress component is:

The heat fluxes, considering the Fourier law for heat conduction, are given by:

The dimensionless quantities are the Reynolds number Re, the Prandtl number Pr and the Mach number Ma. The dimensionless 
fluid properties are the viscosity µ, the thermal conductivity ϑ and the heat capacity ratio κ. All fluid properties are normalized 
by reference velocity u ~

∞ , temperature T 
~

∞, density ρ ~
∞, and viscosity μ ~

∞, where the superscript ~ represents dimensional values and 
the subscript ∞ corresponding to free-stream values. 

Time integration is performed using a 4th order, 4-steps Runge-Kutta scheme. Spatial discretization in the streamwise x and 
normal y directions uses a 6th order compact finite difference method and the generated tridiagonal equation systems are solved 
using the Thomas algorithm. 

A non-uniform grid is used. An interest region with uniform grid is delimited. Then a grid stretching of approximately 
1% is applied in both directions that, together with spatial low-pass filtering, create a damping zone. Disturbances become 
increasingly badly resolved and are dissipated as they propagate through the damping zone before they reach the outflow 
boundaries.

The code was parallelized through  domain decomposition in both directions using distributed-memory parallelization. 
A message passing interface (MPI) library is used for inter-node communications. A grid transformation in the (x, y) plane is 
used to map the physical grid in an equidistant (ξ, η) computational grid. The metrics required for the derivative calculations are 
presented below. The first derivatives are given by:

(5)

(6)

(7)

(8)

(9)

(10)

(11)
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Second derivatives are:

where the metrics are given by:

LST analysis was used to obtain the frequency with spatial growth rate and the corresponding eigenfunctions are introduced 
as disturbances at the simulation inflow boundary. 

RESULTS AND DISCUSSIONS
Compressible Two-dimensional Mixing Layer

A compressible mixing layer consists of two streams with different velocities flowing parallel to one another, so that the resulting 
streamwise velocity profile assumes an “S” shape. Due to the inflectional point on the velocity profile, the flow is unstable and 
transition to turbulence may occur due to the generation and growth of vortical structures. For the present verification, the flow 
configuration has been closely matched to the case investigated by Babucke et al. (2008).

The Mach numbers of the upper and lower streams are Ma1 = 0.50 and Ma2 = 0.25, respectively. The Reynolds number is 500, 
based on the vorticity thickness at the inflow, which is also used to normalize length scales in x and y directions. As in Babucke 
et al. 2008, the inflow (x0 = 30) is chosen in such a way that the vorticity thickness is:

The inflow streamwise velocity, density and temperature profiles are shown in Fig. 1. These profiles are obtained by solving 
the steady compressible two-dimensional boundary layer equations.

The eigenfunctions used to introduce the disturbances at the DNS inflow boundary were obtained by linear stability analysis. The 
dimensionless fundamental frequency is ω = 0.62930. The corresponding eigenfunction amplitude and phase are shown in Fig. 2. 
This frequency and three subharmonics were used to disturb the flow. The maximum amplitude of the dimensionless fundamental 
frequency is 2 × 10–3, while for the other subharmonics the maximum amplitude is 1 × 10–3. All amplitudes are normalized by the 
corresponding maximum streamwise velocity amplitude. Furthermore, a phase shift of Δθ = –0.028 was introduced for the first 
subharmonic, Δθ = –0.141 for the second and Δθ = –0.391 for the third, as used by Babucke et al. (2008).

(12)

(13)

(14)

(15)

(16)

(17)
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Th e computational mesh, with 2500 × 850 points in the x and y directions, respectively, is presented in Fig. 3, showing the 
domain regions and boundary conditions. In the longitudinal direction, the mesh has constant increment ∆x = 0.157 up to
x = 300, forming the region of interest. Further downstream, the mesh is stretched with a rate of approximately 1.0%, forming 
a damping zone. In the normal direction, the mesh is stretched from the center to the boundaries, with the lowest increment of  
∆y = –0.15 and the highest increment of ∆y = 1.06. Tests with a coarse and fi ner mesh indicate that the adopted mesh is suitable 
for the simulations carried out here.

At the infl ow, the undisturbed boundary conditions were defi ned by a null v velocity; the u velocity, temperature and density 
profi les are presented in Fig. 1. Th e total energy E is calculated by Eq. 2. Th e disturbances were introduced at each time step of the 
Runge-Kutta method. Furthermore, characteristic boundary conditions are used at the infl ow to avoid outgoing wave refl ections 
back to the computational domain. Th e characteristic variable c, which corresponds to the outgoing waves at the infl ow boundary, 
can be obtained from the basefl ow and fl ow fl uctuations by:

Figure 1. Infl ow profi les for u, p and T for the 2D mixing layer.

Figure 2. (a)  Amplitude and (b) phase distribution for the 2D mixing layer.

where the subscript 0 represents the basefl ow variables, superscript ‘ represents the fl ow fl uctuations and a0 is the speed of sound 
at the freestream. Th e characteristics can be calculated from regions in the fl ow domain that are close to the infl ow boundary 

(a)

(b)

(18)
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and extrapolated to it by:

Figure 3. Computational domain highlighting the region of interest, the damping zone and the boundaries for 2D mixing layer.
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Once c(j=1) is calculated, the fl ow fl uctuations at the infl ow boundary can be calculated as:

and these values are added to the infl ow boundary variables. 
To minimize refl ections at the freestream (upper and lower boundary) and at the outfl ow boundaries, caused by normal 

and oblique acoustic waves (Babucke et al. 2008), a combination of grid stretching and spatial low-pass fi ltering is applied in the 
damping zone, forcing the fl ow variables to a steady-state solution. Th us, the disturbances become increasingly badly resolved 
as they propagate through this region and by applying a spatial fi lter, the perturbations are substantially dissipated before they 
reach the boundaries. Th e computational domain was decomposed into 2 parts in the y direction and 7 parts in the x direction, 
adopting 14 processing elements to perform the calculations.

Th e chosen time step was Δt = 2π/ω∙nsteps, where nsteps is the number of points per wavelength of the fundamental frequency. In 
the present case nsteps = 752 was adopted, corresponding to a time step of Δt = 1.33 × 10–2. Seventy-six periods of the fundamental 
frequency were simulated and the last eight were chosen for post-processing analysis. By considering 76 periods, we ensure that 
the results are free of numerical transients.

Th e maximum amplitude of the normal velocity component v, for each streamwise x position, shows how the disturbances 
behave (Fig. 4). In the initial part of the domain, the amplitudes grow exponentially until non-linear eff ects are observed, causing 
a saturation of the maximum amplitude of v.

(19)

(20)
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The spatial growth rate αi is calculated by Eq. 21. It can be compared with results from LST, as shown in Fig. 5. Table 1 
presents the difference between DNS and LST results, where there is an initial portion of the domain with large  error due to the 
receptivity region. Further downstream, where the transient of all three modes has vanished, the differences decrease as shown 
in Table 1. Although αi  is a very sensitive value, mainly for the subharmonics, the mean values of the DNS corresponded well to 
those predicted by LST. Thus, the good agreement between simulation and LST serves as verification of the implemented DNS 
computational code for small disturbances propagation.

Figure 4. Maximum amplitude of v for each x position. Comparison with results from Babucke et al. (2008).
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Figure 5. Spatial amplification rate in the streamwise direction. Comparison between LST and DNS for the 2D mixing layer.

Besides the spatial amplification rate comparison, the spanwise vorticity Ωzwas compared with the results presented by 
Babucke et al. (2008), as shown in Fig. 6. It is possible to see the formation of the first Kelvin-Helmholtz vortices which will pair 
with neighboring ones to form new structures downstream. A good qualitative agreement was observed.

(21)
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Compressible Two-dimensional Plane Jet
Plane jets are a typical shear flow present in several applications, such as in combustion and propulsion. There is also a fast 

growing interest in aerodynamic noise generated by jets in the aircraft industry. In this flow, a central core with high velocity 
mixes with a parallel stream with lower velocity. In the interface between both flow streams, there are high gradients of the flow 
properties, making the flow unstable to disturbances. 

In the present investigation, a two-dimensional plane jet was studied. As in Reichert and Biringen (1997), the inflow velocity 
profile is:

Table 1. Spatial amplification rate comparison between DNS and LST for the 2D mixing layer.

(1,0) (1/2,0) (1/4,0)

x LST DNS % LST DNS % LST DNS %

32 –0.108 –0.155 43 –0.086 –0.046 –46% –0.05 0.0189 –138

37 –0.099 –0.093 –6 –0.084 –0.088 5% –0.049 –0.042 –14

42 –0.092 –0.101 10 –0.081 –0.089 9% –0.049 –0.052 5

47 –0.084 –0.085 1 –0.08 –0.081 1% –0.049 –0.057 15

52 –0.078 –0.081 4 –0.078 –0.08 2% –0.049 –0.054 10

57 –0.071 –0.073 3 –0.077 –0.083 8% –0.049 –0.048 0

62 –0.065 –0.067 2 –0.075 –0.08 7% –0.049 –0.051 5

67 –0.059 –0.059 1 –0.073 –0.079 9% –0.048 –0.048 1

Figure 6. Spanwise vorticity contour levels from –0.26 up to 0.02 with an increment of 0.04. Results from (a) Babucke et al. 
(2008) and (b) DNS code.
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where θ = 1.98 and the velocity profile is symmetrical with respect to y = 0, as shown in Fig. 7, and Maj and Ma∞ are the Mach 
number in the core jet and in the far field, respectively. The ratio between the core jet velocity Uj and the far field co-flow velocity 

(22)

(a)

(b)
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U∞ was Uj /U∞ = 1.67 for all cases. The jet is perfectly expanded and isothermal such that the temperature, density and pressure 
profiles are kept constant. The adopted Prandtl number was Pr = 0.71. Since the DNS results are compared to inviscid linear 
stability analysis, the DNS simulations are done with a high Reynolds number (Re = 10000), thus the inertia effects are much 
higher than the viscous effects.

A computational Cartesian grid with 1400 × 800 nodes in x and y directions was used in all simulations. In the longitudinal 

direction, the grid is uniform with ∆x = 0.25 up to x ≈ 250 and then stretched at a 1.0% rate. In the normal direction, there is also 

a uniform grid with ∆y = 0.106 up to y ≈ ±5.20 and then stretched at a 1.0% rate. The uniform spacing zone corresponds to the 

interest zone, while the stretched grid region corresponds to the damping zone.

At the inflow, the undisturbed boundary conditions are given by Eq. 22 for the u velocity component and null for the v velocity 
component. The non-dimensional density and temperature are equal to one, and the total energy E is calculated by Eq. 2. As in 
the case of the two-dimensional mixing layer, the disturbances were introduced at each step of the Runge-Kutta method and the 
necessary care was taken to avoid numerical contamination of the solution.

The chosen time step was the same as the one previously considered Δt = 2π/ω∙nsteps, where nsteps is the number of points per 
wavelength of the fundamental frequency. The number of time steps used for the fundamental frequency was nsteps = 752. In each 
case, 76 periods were simulated for the fundamental frequency, where the last eight were chosen for post-processing analysis. 

Figure 7. u velocity profile for the 2D plane jet.
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An inviscid LST analysis was performed for each case, considering both sinuous and varicose modes. The simulated cases, 
their correspondent spatial amplification rate and frequency are presented in Tables 2 and 3, for sinuous and varicose modes, 
respectively. The frequencies were chosen close to the maximum amplification rate according to LST. The corresponding jet, free-
stream and convective Mach numbers (Maj  , Ma∞ and Mac ) are also shown in these tables. The convective Mach number is given by:

Case Maj Ma∞ Mac ωr αr αt

1 0.25 0.15 0.05 0.8859 0.8920 0.0966

2 1.05 0.63 0.21 0.8552 0.8616 0.0908

3 1.50 0.90 0.30 0.8199 0.8266 0.0849

4 2.00 1.20 0.40 0.7628 0.7699 0.0767

5 2.50 1.50 0.50 0.6862 0.6940 0.0674

6 3.00 1.80 0.60 0.5954 0.6038 0.0581

Table 2. Mach numbers and spatial amplification rates of LST simulations. Sinuous mode.

(23)
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The variation of the spatial amplification rate with Maj is shown for the sinuous mode in Fig. 8 and for the varicose mode in 
Fig. 9. Increasing the Mach number, there is a decrease in the amplification rate value, and the flow becomes more stable. The 
varicose mode is more sensitive to compressibility effects and the growth rates decay faster with increasing Mach numbers.

Case Maj Ma∞ Mac ωr αr αt

1 0.25 0.15 0.05 0.9036 0.8980 0.0933

2 1.05 0.63 0.21 0.8927 0.8875 0.0855

3 1.50 0.90 0.30 0.8740 0.8690 0.0773

4 2.00 1.20 0.40 0.8350 0.8301 0.0654

5 2.50 1.50 0.50 0.7636 0.7586 0.0507

6 3.00 1.80 0.60 0.6370 0.6311 0.0335

Table 3. Mach numbers and spatial amplification rates of LST simulations. Varicose mode.
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Figure 8. Spatial amplification rates for the 2D plane jet, sinuous mode.

Figure 9. Spatial amplification rates for the 2D plane jet, varicose mode.

The decrease of the amplification rate with compressibility and consequent mixing of the flow is a known effect. This effect 
is of great importance in combustion flows and can help in noise control. Figures 10 and 11 show the spanwise vorticity for the 
sinuous and varicose modes, where the vortex generation pattern is anti-symmetrical for the sinuous mode and symmetrical for 
the varicose mode. For both modes, increasing the Mach number is followed by an increase in the undisturbed jet core length 
and a lower spreading of the vorticity thickness, since the flow is more stable as predicted by the LST analysis.

The maximum amplitude of the normal velocity v along the y direction, as a function of the streamwise x position (|v|max), 
is presented in Fig. 12 for the sinuous mode, and in Fig. 13 for the varicose mode. An initial receptivity region can be noticed 
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Figure 10. Spanwise vorticity for the 2D plane jet, sinuous mode. Contour levels from –0.5 to 0.5. Solid lines for positive 
values and dashed lines for negative values.

Figure 11. Spanwise vorticity for the 2D plane jet, varicose mode. Contour levels from –0.5 to 0.5. Solid lines for positive 
values and dashed lines for negative values.
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near the inflow. The length of this region depends on the Mach number and the case, sinuous or varicose. Further downstream, 
disturbances grow exponentially, corresponding to linear growth. In this region, it is possible to compare the amplification rates 
obtained with DNS and LST. For instance, for the sinuous mode and Maj = 0.25, this region is approximately from x = 15.0 up to 
x = 60.0 while, for Maj = 1.50, this region is approximately from x = 50.0 up to x = 150.0. As the flow becomes more stable with 
increasing Mach number, the x position where the disturbances grow exponentially is delayed to a position further downstream. 
After the linear growth region, there is a region where the non-linear effects starts to become significant, where the LST theory 
is no longer valid. 

Since DNS results have these three distinct regions, where the linear region may be contaminated by the overlap of the initial 
transient and the nonlinear regions, it was decided to compare the maximum amplitude of the normal velocity with the amplitude 
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predicted by the LST theory, instead of the amplification rates. A good agreement was observed between LST and DNS results 
and this can be used to consider the DNS code verified.
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Figure 12. Maximum streamwise amplitude variation of the normal velocity component for sinuous mode. 

Figure 13. Maximum streamwise amplitude variation of the normal velocity component for the varicose mode.
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SUMMARY

Two compressible shear flows were simulated using a two-dimensional DNS code, a two-dimensional compressible mixing 
layer and a two-dimensional compressible plane jet. For the mixing layer the results were compared with LST and the results 
available in the literature. For the plane jet, comparisons were presented between the DNS results and the linear stability theory. 
Very good agreement was found in regions where LST predictions are valid. The DNS code was able to correctly recover growth 
rates for different disturbance frequencies and convective Mach numbers ranging from 0.05 to 0.6 (corresponding to jet Mach 
numbers from 0.25 up to 3). The study shows that DNS code is a valid tool to investigate disturbance propagation on compressible 
flows if proper care is taken to avoid wave reflections from the boundaries and if a low dissipation and low dispersion numerical 
scheme is used.
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