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Structure-borne transmissibility 
evaluation through modeling 
and analysis of aircraft vibration 
dampers
Abstract: In the aircraft industry a great practical relevance is given to the 
extensive use of vibration dampers between fuselage and interior panels. 
The proper representation of these isolators in computer models is of vital 
importance for the accurate evaluation of the vibration transmission paths for 
interior noise prediction. In general, simplifi ed models are not able to predict 
the component performance at mid and high frequencies, since they do not 
take into account the natural frequencies of the damper. Experimental tests 
are carried out to evaluate the dynamic stiffness and the identifi cation of the 
material properties for a damper available in the market. Different approaches 
for its modeling are analyzed via FEA, resulting in distinct dynamic responses 
as function of frequency. The dynamic behavior, when the damper natural modes 
are considered jointly with the high modal density of the plate that represents 
the fuselage, required the averaging of results in the high frequency range. At 
this aim, the statistical energy analysis is then used to turn the comparison 
between models easier by considering the averaged energy parameters. From 
simulations, it is possible to conclude how the damper natural modes infl uence 
the dynamic response of aircraft interior panels for high frequencies.
Keywords: Vibration damper, Fuselage structures, Vibroacoustic, Dynamic 
stiffness, SEA.

INTRODUCTION

In the aircraft manufacturing, interior panels are fastened 
to the fuselage structure by means of mountings designed 
to permit the easy disassembly in the case of maintenance. 
These mountings should also minimize the vibration 
transmission between the internal panels and fuselage and 
they are frequently called vibration dampers. Conceptually, 
these isolators are resilient elements that have been 
applied to structures aiming at minimizing the vibration 
transmission (Beranek and Vér, 1992). In aircraft design, 
isolators or dampers are of great practical relevance by 
their extensive use between fuselage and interior panels 
for minimizing the structure-borne vibration. Their proper 
representation in computer models helps the engineer 
on obtaining the accurate evaluation for vibration 
transmission paths between fuselage and interior panel, 
and consequently, the interior noise prediction.

Commonly, vibration dampers are based on rubber 
materials, due to some mechanical properties, such as 
high damping, low stiffness, and high bearing capacity 
(Downey et al., 2001). As the dynamic behavior of the 
rubber changes with load and environment conditions, the 
characterization of employed materials plays an important 

role in the performance prediction of dampers. The 
temperature is an important parameter to be considered 
during the damper characterization, since the rubber 
material at low temperatures tends to be stiffer and to have 
higher damping. In opposite sense, when tested at high 
temperatures, it tends to have low stiffness and damping. 
In addition, the rubber properties are also dependent to 
frequency and strain (Jones, 2001). Some instances of 
rubber materials applied for vibration control are the 
natural rubber, neoprene, and silicone. 

Different calculations are used to evaluate the damper 
behavior. A classical method represents the set damper-
structure as a mass-spring-damper system and it is 
useful at low frequency predictions (Nashif et al., 1985). 
Nevertheless, this representation does not include some 
real system features, such as material nonlinearity and the 
component dynamic behavior. These features, associated 
with the fact that an isolated structure does not behave 
as a rigid body, infl uence the damper attenuation at mid 
and high frequencies (Snowdon, 1979; Beranek and Vér, 
1992; Weisbeck, 2006). 

The dynamic behavior of dampers is considered in some 
published calculation methods. One of them, the four-
pole method, described by Molloy (1957), incorporates 
dynamic characteristics of isolators and structure as 
frequency dependent through transfer matrices. As well 
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reported by Snowdon (1979), Weisbeck (2006) and 
Weisbeck et al. (2009) the parameters used in this method 
are usually obtained experimentally. An alternative 
prediction method can assess the damper attenuation 
considering its dynamic behavior through a detailed fi nite 
element model (Jones, 2001). This is a robust and well-
established method to solve engineering problems related 
to solid structures (Bathe, 1996). 

In this research, solid fi nite elements are used to model one 
damper which is an assembly of metallic and rubber parts. 
Parameters regarding to geometry and material properties 
applied to the damper are detailed and investigated. A very 
refi ned mesh is employed to model one damper in order to 
achieve accurate modal frequencies and modes. The results 
from fi nite element analysis (FEA) are compared to the ones 
obtained from an experimental modal test and the fi nite 
element model is updated by fi nding the material properties 
that adjust it in accordance with experimental results.

The dynamic analysis of the set fuselage-isolator-panel is 
the motivation for this work. The fuselage-isolator-panel 
structural system is modelled by the component mode 
synthesis (CMS), in order to test different confi gurations for 
the vibration dampers. For damped structures the analytical 
approach to CMS (Craig Jr., 1987) is used to solve for the 
component undamped modes and frequencies, to assemble 
those modes into the coupled model, and to supplement 
the resulting system with assumed modal damping. CMS 
is usually considered for the analysis of structures that are 
built-up of several components (Ewins, 2000).

The structure-borne transmissibility to interior panels 
and the consequent noise radiation are considered as 
signifi cant until 10 kHz. However, when dealing with 
the high-frequency range, FEA brings concerns such as 
the large model size and dynamic properties with some 
uncertainty. As alternative to these issues, the traditional 
method of statistical energy analysis (SEA) (Lyon and 
DeJong, 1995), is considered. SEA represents a fi eld of 
study in which statistical descriptions of a system are 

employed in order to simplify the analysis of complicated 
structural-acoustic problems, especially in the high-
frequency range. Searching for a solution to the entire 
frequency range, some authors have also considered the 
possibility of enriching a SEA model with information 
from FEA or measurements. One has proposed a coupled 
solution scheme considering the “stiff” components 
modelled with fi nite elements and the “soft or fl exible” 
ones modelled with SEA (Shorter and Langley, 2005). 
Using engineering experience or by performing a large 
number of subcomponent calculations one can investigate 
whether a specifi c subsystem should be considered as 
‘‘stiff’’ or ‘‘soft’’. In the present work, the fi nite element 
model of the damper is considered as a substructure in 
the FEA approach and also as a subcomponent model 
to the SEA. A comparison of results for both analyses is 
commented for the entire frequency range. 

FINITE ELEMENT MODELING

The fi nite element model used in this research aims at 
discussing the infl uence of the high frequency vibration 
modes from damper and panels in the structure-borne 
transmissibility. A fi nite element mesh very refi ned with 
solid elements is proposed for the isolator model, in 
order to achieve accurate modal frequencies and modes. 
Other models considering the vibration damper as a rigid 
connector or a spring is considered for comparison by the 
advantage of the simplifi ed modeling. Figure 1(a) shows a 
rendered image of a damper available in the market with a 
refi ned solid mesh that contains at total 9,626 fi nite elements 
(HEXA and PENTA) and 11,115 nodes. In Fig. 1(b), the 
same mesh appears with different colors for the material 
properties. The colors red and green represent the external 
structure made in aluminum; yellow and blue represent the 
component parts made in rubber and steel, respectively. 
The vibration damper selected to this work has the material 
properties described in Table 1. Also, as per the supplier 
catalogue (Lord Corporation, 2010), the modelled isolator 
has equivalent static stiffness equal to 88,000 N/m. 

Figure 1. Isolator fi nite element model
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Finite element mesh
Damper materials represented: aluminum in red 
and green, rubber in yellow and steel in blue
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There are several possibilities to model the aircraft fuselage, 
but for this work just a simple uniform panel, or a rectangular 
aluminum plate, is used to represent the equivalent stiffness 
and mass distribution of a unit cell of fuselage. The same 
confi guration is used to the internal panel model. Fuselage and 
internal panels represented by uniform panels are modelled 
with plate fi nite elements. The detail for the connection 
between meshes from the damper and panel is depicted in 
Fig. 2. The nodes of panel considered for the connection with 
the solid fi nite element model of the damper are the same 
considered for other simulations, connecting the panels with 
the rigid or spring elements. 

In this expression, d is the fi nite element dimension, E is 
the Young modulus, ρ is the density, and flim is the mesh 
frequency limit. The lower wave speed leads to the lower 
mesh frequency limit, and it occurs for the rubber material. 
Hence, taking into account the rubber properties (Table 1) 
and an element dimension of 0.7 mm, the frequency limit 
for the current mesh is approximately 10 kHz.

Component mode synthesis

In CMS, the substructure or component models are 
transformed from physical to modal coordinates, using 
a set of normal modes after solving the component 
eigenvalue problem. The component models are 
assembled together to form the global dynamic problem 
for the entire structure. The equation of motion of a 
component r, neglecting damping, is described by Eq. 2, 
where the motion is represented by a vector of physical 
displacements. In this expression, written in a partitioned 
form, the indices j and i relate the vectors and matrices 
to boundary and internal nodes, respectively. M and K 
are the partitioned mass and stiffness matrices, while f 
represents the partitioned force vectors.
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In CMS with fi xed interface, the response of a system is 
represented in terms of a set of ‘component’ modes and 
‘constraint’ modes. The component modes are taken as a 
subset of the local modes when the boundary degrees of 
freedom are clamped. The constraint modes are given by the 
static response of the substructure when a unit displacement 
or rotation is applied to a given boundary degree of freedom 
while all other boundary degrees of freedom remain fi xed 
(Craig Jr., 1981). The normal modes with fi xed-interface 
represent the component modes in this work. The size of this 
eigenvalue problem equals the number of internal degrees 
of freedom. Each component model is transformed from 
physical to modal coordinates, using a set of normal modes. 

Part Material Density
 (kg/m³)

Poisson 
coeffi cient

Loss factor 
(%)

Young 
modulus [Pa]

Damper external structure Aluminum 2,700 0.33 1 7.1 x 1010

Damper central fi xture Steel 304 SS 8,300* 0.28 1 2.0 x 1011

Damper rubber Silicone 1,200 0.40 20 2.5 x 106

Fuselage and internal plates Aluminum 2,700 0.33 1 7.1 x 1010

* density to updated isolator mass. 

Table 1. Damper, fuselage and internal panel material properties

Figure 2. FEM model detail: isolator-plate interface

The panels are modelled, each of them as a substructure, 
with QUAD4 elements. The modal analysis of each 
one is performed by Nastran solver (MSC Software, 
2008). The isolator mesh with solid fi nite elements is 
defi ned in order to guarantee the minimum number to 
correctly represent the vibration modes. As a minimum 
amount recommended by Fahy and Gardonio (2007), 
six elements per wavelength are applied to the isolator 
mesh. The calculation of the wavelength λ is based on 
the propagation speed cl of the quasi-longitudinal wave on 
solid, and evaluated as presented in Eq. 1. 
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The reduction in the model size is achieved by truncating 
the number of component modes included in the analysis 
(Craig and Bampton, 1968). In CMS with fixed-interface, 
the modal matrix is formed by the combination of the kept 
number of normal modes with fixed-interface and the static 
constraint modes for the component. The constraint modes 
assure the compatibility of the component displacements at 
the interfaces, improve convergence and also yield the exact 
static solution. Equation 3 shows the relation between the 
physical coordinates and modal coordinates for the component 
model. In this equation, Φik and qk represent, respectively, the 
kept normal modes and the modal coordinates with fixed-
interface. The constraint coordinates are represented by qc 
and Ijj is an identity matrix.
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The equation of motion based in modal coordinates of 
the component r is then presented in Eq. 4. The matrices 
mcc and kcc are the constraint modal mass and stiffness 
respectively, mkc is the coupling matrix and Λkk is a 
diagonal matrix of kept modal eigenvalues. 
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Considering the synthesis of two or more components and 
the continuity of the modal displacements at their common 
interface, a transformation matrix is written to impose the 
coupling conditions among them (Craig Jr., 1987). Due to 
the simplicity of the transformation matrix, the component 
synthesis is straightforward and the system matrices have 
the same structure as the component matrices.

Rubber material properties identification

The rubber material is of great importance for the analysis 
of the isolator model, and in the present research, the 
rubber property identification is based on dynamic stiffness 
measurements and later in the numerical adjustment.

The test procedure developed by Clark and Hain (1996) for 
measuring the axial dynamic stiffness is applied to the selected 

vibration damper. It is axially excited by the shaker at one 
end while the other end is completely fixed, approximating 
to the one-degree-of-freedom experiment. The ratio between 
acceleration and applied force is taken as test result. 

 
k= m - F

x
2 f( )2

 (5)

The dynamic stiffness k from the tested vibration damper is 
calculated by the Eq. 5. In that, f is the frequency and m is 
the mass from the moving parts of damper and the attached 
set, such as bolt and other parts. By the dimensions of the 
damper, the rubber material is considered as massless. The 
experimental result from this test is presented on Fig. 3. 
The first peak is associated to test set. The test data is 
considered valid where the dynamic stiffness is constant. 
Above this value the response becomes very large since 
it is controlled by inertia, explaining the decrease in 
stiffness. From this test, the real part value of dynamic 
stiffness is 1.50x105 N/m, and the imaginary part value is 
2.89x104

 N/m. Calculated as the quotient of the imaginary 
part by the real part, the loss factor is approximately 0.2. 
Afterwards, frequency response analyses are employed 
as the identification process for the isolator FE model, in 
order to fit the experimental data.

Frequency-constant properties are used for the damper rubber 
material. Although the rubber properties are dependent on 
frequency, for typical applications of the damper studied in 
the current work, it is possible to consider a constant Young 
Modulus value since the damper elastomeric material is 
designed to work in the viscoelastic rubbery region. 

In addition, dynamic analyses consider the unitary axial 
concentrated force applied on the damper central fixture. 
Concentrated mass is not considered, which differs from 
the experiment, and generates the later decreasing in real 
dynamic stiffness. Also, no perturbation at low frequency 
is observed in the numerical analysis. Finally, the updated 
Young Modulus of 2.5 MPa and loss factor of 20%, 
resulted in the best dynamic stiffness curve adjustment, as 
can be verified in Fig. 3.

DAMPER DYNAMIC ANALYSIS

With the rubber properties updated in the FE model, the 
modal analysis of the damper in a free-free condition is 
performed, in order to assess its dynamic behavior. The 
first six vibration modes are omitted from the results 
discussion as they represent the rigid body modes. With 
the following six modes is noted the spring-mass behavior 
as depicted in Fig. 4. The central fixture pin works as a 
concentrated mass and the rubber material as a spring 
element. The behavior of a six degree-of-freedom spring 
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Figure 3. Comparison between numerical (FEA) and experimental dynamic stiffness

Figure 4. Spring-Mass Modes
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is seen in Fig. 4 and, how told by Gardner et al. (2005), 
these modes are described as spring modes. Also, it is 
possible to observe the symmetrical radial modes as a 
consequence of the geometry in this specifi c damper.

The modes that follow the spring modes are called rubber 
modes, in which this part of the damper responds for 
higher frequencies. For these vibration modes, the external 
metallic structure and the central fi xture do not infl uence 
the natural damper motion. In the current case, these 
modes occur at very high frequency, from 4000 Hz and 
on, where each one is very close to the other in frequency. 
Table 2 describes the rubber modes until 6500 Hz. Figure 
5 shows some of these rubber mode shapes.

FUSELAGE-ISOLATOR-PANEL ANALYSES

The complexity of modeling the internal panels connected 
to the fuselage of an aircraft is evaluated by considering, 
as fi rst model, two rectangular plates centrally connected 
by a vibration damper. This model recalls the concept of 
fuselage-isolator-panel, where one damper supports the 
internal panel attached to the fuselage. Then, two identical 
aluminum plates with thickness equal to 2 mm and 
dimensions equal to 0.5 m and 0.7 m are modelled with 
QUAD4 fi nite elements. The material properties selected 
to this model are described on Table 1. The plates are 
separated by the damper height or approximately 8.25 mm. 
The rotation degree of freedom around each plate edge is 
restricted aiming at simulating the fuselage continuity.

Mode Nat Freq (Hz) Mode Nat Freq (Hz) Mode Nat Freq (Hz) Mode Nat Freq (Hz)
7 4,086.4 19 4,804.9 31 5,288.1 43 6,091.9
8 4,492.5 20 4,804.9 32 5,396.5 44 6,096.2
9 4,505.5 21 4,813.8 33 5,396.6 45 6,104.9
10 4,550.0 22 4,814.8 34 5,505.7 46 6,104.9
11 4,586.8 23 4,931.5 35 5,505.7 47 6,240.9
12 4,587.6 24 4,931.5 36 5,740.8 48 6,240.9
13 4,662.2 25 5,053.3 37 5,740.8 49 6,275.2
14 4,662.4 26 5,053.5 38 5,761.2 50 6,275.4
15 4,717.3 27 5,060.7 39 5,761.2 51 6,403.9
16 4,717.3 28 5,094.5 40 5,987.6 52 6,403.9
17 4,746.0 29 5,094.5 41 5,987.6 53 6,496.7
18 4,796.0 30 5,288.1 42 6,028.2 54 6,496.7

Table 2. Rubber material modes of the damper

Figure 5. Instances of rubber material mode shapes
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Modal frequency responses using the substructure modal 
solutions are obtained for the entire structure considering 
different approaches for the isolators. Justifi ed by the 
necessary simplifi cation, distinct connection elements 
can be modelled between both plates, when dealing with 
the complete aircraft structure. Aiming at the response 
comparison, in this research, fi ve approaches for isolators are 
modelled to connect both plates at the center, as follows:

1. rigid connection: The damper infi nite stiffness is used 
as reference to this approach;  

2. linear axial spring connection: The damper static 
stiffness value of 88,000 N/m (Lord Coorporation, 
2010) is considered as the constant dynamic stiffness;

3. linear axial spring connection: The dynamic stiffness 
value considered here is equal to 148,000 N/m, which 
is obtained from the test described in section 2.2, for 
the axial direction of the damper; 

4. six degrees-of-freedom spring connection: The 
dynamic stiffness value per degree of freedom is 
considered as presented on Table 3. These values are 
obtained from other experiments performed in similar 
manner as described in section 2.2;

5. updated FE solid model for the damper, as described 
in the previous sections. The damper connection to 
the upper and bottom plates is performed through 
rigid elements. Figure 2 shows the rendered image 
for this connection.

In these analyses, the excitation force ranges in frequency 
from 1 to 8,000 Hz. Initially, only one concentrated 
harmonic force is applied perpendicular to the bottom 
panel. Subsequently it is proposed to create an average 
spectrum for each response. This is performed by applying 
six different excitations arbitrarily distributed and applied 
not simultaneously, as sketched in Fig. 6.

Hence, the dynamic response of the upper panel is obtained 
by averaging velocity in space considering chosen nodes, 
and afterward by averaging these results for the six different 
excitations. This data is calculated for each isolator approach. 
The velocity magnitude is considered as the response 
parameter, since it characterizes the vibration level.

FUSELAGE-ISOLATOR-PANEL SIMULATION 
RESULTS

After identifying the damper properties through experimental 
tests, the update is performed to the FE solid model. Then, 
the simulation result with this model is considered as the 
most accurate to represent the real damper behavior.

Figure 7 brings the low frequency results (1 to 100 Hz) 
in narrow band when only one excitation is applied. In 
this range, the behavior of the six-dof spring approach 
is the closer to the updated FE solid model. Signifi cant 
differences among models can be noted in the anti-
resonance behavior, when analyzing both axial spring 
models around 60 Hz, while other models show a 
resonance at 60 Hz. This fact indicates that this mode 
is related to the coupling with other directions, different 
from the axial one.

Direction Dynamic stiffness 
(N/m) Loss factor η

X 1.0E+05 0.18

Y 1.0E+05 0.18

Z 1.5E+05 0.20

RX 2.8E+01 0.20

RY 2.8E+01 0.20

RZ 2.7E+01 0.14

Table 3. Dynamic stiffness and loss factor

Figure 6. FEM model sketch: response nodes positions and excitation points
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Figure 7.Upper plate velocity average in low frequency range (10 to 100 Hz)
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Due to the high modal density of the plate at high 
frequency, the infl uence of rubber modes of the damper 
on the plate response may not be properly assessed. This 
fact justifi es the need of an average spectrum for each 
response. The average spectrum is calculated for each 
isolator approach and presented in Fig. 8, considering 
frequency band of one-third octave from 100 to 6,300. 

Based on Fig. 8, it is possible to notice a similar behavior 
for all models until 800 Hz, except for a decrease for 
the updated FE isolator model in 500 Hz. The rigid 
connection and the six-dof spring model follow similar 
trend along the entire frequency range, showing high 
vibration levels at high frequency when compared to the 
other models. Conversely the updated FE model shows 
that vibration level decreases with frequency from 
1,000 Hz and on, such as both axial spring models. A 
difference however appears in the 4,000 Hz frequency 
band, where a vibration level increase is verifi ed.

Facing the different approaches for isolator model, it is 
visible they result in distinct responses depending on 
the frequency of concern. Therefore, the simplicity of 
modeling the damper as axial springs when compared 
to the updated FE model is a worthy discussion. This 
is true since they show responses comparable to the 

FE model for a proper frequency range. Although, in 
the high frequency range, the axial spring with the 
measured dynamic stiffness shows the same trend and 
values comparable to the updated FE model response, 
the difference related to the damper rubber modes can 
overestimate the damper attenuation.

Furthermore, an additional drawback to evaluate these 
high frequency results is related to the feature of FEA. 
The responses are deterministic and taken at a specifi c 
point, which insert infl uence of plate local modes. In 
addition, depending on the force position, it may not be 
enough to excite the mode along the frequency range 
of interest. Although the results are averaged and more 
than one excitation is applied, in order to minimize this 
effect, this infl uence can affect the results interpretation. 
An alternative to overcome this issue and make easier 
the comparison between models considers the energy 
parameters, such as spectral density applied in the 
random analysis, or the averaged energy parameters 
in the statistical energy analysis (SEA). Moreover, the 
current work is interested in vibration transmission 
from fuselage to interior panels and the consequent 
noise radiation, which can be signifi cant until 10 kHz. 
Thus, the high frequency range is of great relevance 
and concern.
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Figure 8. Upper plate velocity magnitude (1/3 octave frequency band)
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COMPARISON BETWEEN FEA AND SEA

As presented in the previous section, simplifi ed models for 
dampers are not feasible for predicting the high frequency 
vibration transmission. In this frequency range, although 
FEA can be employed, its results bring a complex task 
in interpreting the infl uence of isolator modes, due to the 
high modal density of the plate, requiring the need for 
averaging the results.

At the same time, the effort required to defi ne an FE 
model increases with size and with the geometric and 
material complexity of the model. Thus in order to 
obtain the response of complex structures, coupled 
through dampers, the use of FEA can be cost prohibited 
due to the high level of discretization required for the 
high frequency range. This issue for large models can 
be lessened by applying techniques such as component 
modal synthesis as described previously. However, in 
addition, there is uncertainty related to the dynamic 
properties of complex structures, regarding, for instance, 
the damping distribution, joints and connections between 
components, or the material properties. Consequently, it is 
granted that natural modes at high-frequencies based on a 
deterministic model with nominal material properties and 
dimensions may vary with real values and, as result, some 
statistical evaluation is required. FEA using Monte Carlo 
numerical simulation performs such analysis by repeating 
calculations for randomly generated sets of system 

properties, which is, for high frequencies, a simulation 
with much time consuming. Also, excitation forces are 
not usually precisely known (Langley and Fahy, 2004).

As an alternative for vibroacoustic problems in the 
high frequency range, SEA is largely used, including in 
the aerospace industry (Lyon and DeJong, 1995). SEA 
allows the calculation of the fl ow and storage of dynamic 
energy in a system. In SEA, a system is divided into 
subsystems, which are groups of similar energy storage 
modes. Each mode type in a SEA subsystem acts as a 
separate store of vibroacoustic energy and is therefore 
represented by a separate degree of freedom in the SEA 
equations. For each subsystem, as showed by Eq. 6, 
the energy dissipated internally (Pi,diss) by damping is 
proportional to the subsystem vibrational energy Ei. The 
proportionality rate is given by the internal loss factor 
ηii, which can result from structural damping (material 
property), acoustic radiation, subsystem interface, or 
friction mechanisms. 

 
P

i,diss
=

ii
E

i  (6)

The power fl ow between two different subsystems is 
supposed to be proportional to the difference in modal 
energy, as demonstrated in Eq. 7. In this equation, Pij is 
the power fl ow, E and n are respectively, the total energy 
and the modal density of each subsystem, and ηij is the 
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coupling loss factor (CLF) between system i and j. CLF 
depends on the characteristics of the junction between the 
subsystems and damping (Lyon and DeJong, 1995). 

 
P

ij
= (

ij
E

i
- 

ji
E

j
), n

i ij
= n

j ji  (7)

Equation 8 considers Pi as the power injected into the 
system, by the conservation of energy for n subsystems. 
There, the power losses, resulted from the dissipation (Pi,diss ) 
and the coupling (Pi→j ) of the subsystem, is diminished 
from the power gains (Pj→i ), coming from the coupled 
subsystems. 

 
P

i
= P

i,diss
+ P

i j
j i

n

- P
j j

j i

n

 (8)

Equations 7 and 8, in a matrix form, is written in Eq. 9. In 
this equation, [η0] represents the total loss factor matrix of 
the system defined by the internal and coupling loss factors, 
which are represented individually in Eq. 10. Finally, 
in Eq. 11, the power input Pi , due to a point structural 
source, considers force and velocity at the excitation point 
(Lyon and DeJong, 1995).

 [ 0 ]{E}={P} (9)

 
ij
0  = -

ji
, 

ii
0  = 

im
m=1

n

 (10)

 
P

i
= 1

2
Re F v*

 (11)

In SEA, the local modes of a subsystem are described 
statistically and the average response of the subsystem is 
predicted with respect to frequency and space (Lyon and 
DeJong, 1995). Since average parameters are considered, 
it is not necessary to have a detailed model. On the 
contrary, it is only required the overall length, width or 
volume of a subsystem along with approximate estimate 
of properties that govern the wave propagation within the 
subsystem. The response energy, from the model solution, 
is usually related to a particular quantity of interest such 
as acceleration, velocity, or sound pressure level.

The number of modes within a subsystem represents the 
capacity of the storage energy, hence the modal density 
characterizes the energy storage, and then, it is a restrictive 
parameter for SEA. The modal density of the isolator is 
low along the frequency range of interest, when compared 
to a typical subsystem in SEA, such as the rectangular 
plate. This fact restrains the capability of equivalent 
energy storage for proper calculation of the subsystem 

parameters. The connection between subsystems is 
considered where impedance discontinuities exist. The 
measure of the energy rate flowing out of a subsystem 
through the coupling to another subsystem defines the 
CLF (Lyon and DeJong, 1995). Usually, within SEA 
models, the damper is represented by a CLF, since so 
far, there is not a specific formulation for an isolator 
subsystem in SEA. 

The comparison between FEA and SEA is achieved by 
modeling in SEA the same two simple panels connected 
by an isolator at the center point, as depicted in Fig. 6. 
SEA is performed using the software VaOne (ESI Group, 
2009). In this software, two distinct connections are 
possible to choose for this comparison, the first one with 
a rigid link, and the second one with a six-dof spring. 
For the last, it is considered the same dynamic stiffness 
values per direction given by Table 3. The power input 
in SEA model is calculated by Eq. 11, with the same 
driving point velocity adopted by FEA. In SEA, the 
power input is based on the average response resulting 
from six concentrated and harmonic forces, randomly 
distributed and applied not simultaneously. As required 
for comparison with SEA, the finite element response is 
obtained from the spatial average of velocity (using nine 
nodes), which is subsequently averaged for six different 
excitations. The comparison between FEA and SEA is 
depicted in Fig. 9. It shows similar behavior for all data 
up to 630 Hz. In the high frequency range, updated FE 
solid model has the same trend of the SEA model with 
the spring connection. However, the updated FE model 
presents that vibration level increase in the 4000 Hz 
frequency band, what coincides with the band where the 
rubber modes of the damper are concentrated. Hence, in 
order to not overestimate the damper performance in the 
high frequency, it is recommended to include the damper 
dynamic behavior into the SEA model.

An alternative to accomplish the inclusion of the 
damper dynamic behavior is got by employing a hybrid 
FEA-SEA (Gardner et al., 2005). This method, which 
encompasses the advantages of FEA and SEA, is 
described by Langley and Bremner (1999) and allows 
including details of a system or coupling through a 
finite element component into the SEA model. For the 
present case, the damper is modelled by FEA, allowing 
the prediction of its modes, and joined to the calculation 
of the panel response by SEA, resulting in a hybrid 
coupling loss factor. Based on the fact that the structure 
borne path, and consequently the vibration damper, is 
of great importance at high frequency, it is essential to 
model properly the damper at this frequency range. This 
includes accounting for the damper internal resonances, 
which tend to reduce the vibration attenuation.
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Figure 9. Upper plate velocity magnitude from SEA model and update solid FE model

CONCLUSIONS

Within this paper the FE model of a typical vibration 
damper applied to the aircraft fuselage is developed. 
Based on this model, it is possible to identify the 
damper dynamic behavior: spring modes, and the 
rubber internal modes.

Different modeling forms of damper are applied between 
two plates. The result comparison demonstrates that 
simplifi ed models, such as axial spring, can be easily 
and well employed depending on the frequency range of 
interest. Although, in low frequency, some agreement is 
verifi ed, in high frequency, the simplifi ed model can not 
reach a satisfactory result when compared to the updated 
FE solid model. 

On the other hand, in order to model the damper through 
fi nite elements with fi delity, the rubber material properties 
must be reliable and be available, what is frequently a 
challenger. The FE model development is time consuming, 
mainly due to the refi ned mesh, as required for the high 
frequency limit. 

In order to highlight the differences between models, mainly 
in high frequency, where the plate modal density is high, FE 
results are averaged. They show a vibration increase due to 
the damper rubber modes. In addition, applying simplifi ed 
models, SEA is performed for comparison.

The vibration transmission through the dampers is of great 
importance in aircraft applications such as noise radiation 
from interior panels. For high frequency, it requires a 
proper modeling of the component, taking into account its 
internal vibration modes. 
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