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Aerodynamic study of sounding 
rocket flows using Chimera and 
patched multiblock meshes
Abstract: Aerodynamic flow simulations over a typical sounding 
rocket are presented in this paper. The work is inserted in the effort of 
developing computational tools necessary to simulate aerodynamic flows 
over configurations of interest for Instituto de Aeronáutica e Espaço of 
Departamento de Ciência e Tecnologia Aeroespacial. Sounding rocket 
configurations usually require fairly large fins and, quite frequently, have 
more than one set of fins. In order to be able to handle such configurations, the 
present paper presents a novel methodology which combines both Chimera 
and patched multiblock grids in the discretization of the computational 
domain. The flows of interest are modeled using the 3-D Euler equations 
and the work describes the details of discretization procedure, which uses a 
finite difference approach for structure, body-conforming, multiblock grids. 
The method is used to calculate the aerodynamics of a sounding rocket 
vehicle. The results indicate that the present approach can be a powerful 
aerodynamic analysis and design tool.
Keywords: Chimera grids, Patched multiblock grids, Sounding rockets.

INTRODUCTION

In the present work, the results obtained for the 
simulation of aerodynamic flows concerning a typical 
sounding rocket, SONDA-III, are presented. This 
work is inserted into the effort of development of 
computational tools necessary to simulate aerodynamic 
flows over aerospace geometries, especially those 
related to the Brazilian Satellite Launcher (VLS, 
acronym in Portuguese). Details of the work developed 
so far, as well as results that illustrate the advancements 
that have been accomplished up to now in this long term 
research effort, can be seen, among other references, 
in Azevedo, Menezes and Fico Jr. (1996), Azevedo, 
Strauss and Ferrari (1997), Strauss and Azevedo 
(1999), Bigarella (2007) and Bigarella and Azevedo 
(2007). The SONDA-III presents a quite complex 
geometric configuration with four front fins and four 
back fins around a central core. The fins are arranged 
symmetrically around the central body. An illustrative 
outline of this configuration is presented in Fig. 1, 
including a closer view of the frontal fin region.

The research group has a fair amount of experience with 
Chimera and patched multiblock flows simulations for 

launch vehicle aerodynamics. The present application 
represents, however, the first time that the group used 
the two techniques in the same code. This is also 
the first time that the group simulates a vehicle with 
fins. The fundamental objective of the present effort 
is, therefore, to demonstrate that the use of the two 
techniques combined will enable the generation of 
better quality grids for the problems at hand. Hence, the 
major contribution of the present work rests upon the 
creation of the capability of simulating the flow over 
launch vehicles with fins,  using a combined patched-
Chimera grid approach.

The governing equations are assumed written in 
conservative form and they are discretized in a finite 
diference context. Spatial discretization uses second-
order accurate, central diference operators. The time 
march method is based on a five-stage, Runge-Kutta 
algorithm described in Jameson, Schmidt and Turkel 
(1981), which also has second-order accuracy in time. 
The artificial dissipation terms added are based on the 
nonisotropic artificial dissipation model described in 
Turkel and Vatsa (1994). In the present case, Chimera 
and patched grid techniques are used to simulate ows 
over the complete SONDA-III sounding rocket. These 
techniques together provide the capability to use 
structured meshes for the discretization of the calculation 
domain over truly complex configurations. The paper 

Received: 11/05/10 
Accepted: 22/10/10

doi: 10.5028/jatm.2011.03016810



Oliveira Neto J.A., Basso E., Azevedo J.L.F.

J. Aerosp.Technol. Manag., São José dos Campos, Vol.3, No.1, pp. 87-98, Jan. -  Apr., 201188

will briefly describe the theoretical formulation used 
with a discussion of the numerical implementation 
aspects. Details of the current implementation of 
Chimera and patched grid techniques are also presented, 
with the boundary conditions adopted. Results with 
applications to SONDA-III are described and some 
concluding remarks are presented.

THEORETICAL FORMULATION

In the present work, it is assumed that the flows of 
interest can be represented by the Euler equations 
in three spatial dimensions. These equations can be 
written in conservative law form, in a curvilinear 
coordinate system:

Q E F G 0  (1)

where Ē,  and  are the inviscid flux vectors, which can 
be seen in more detail in Vieira et al. (1998), and Q is the 
vector of conserved variables, defined as:

Q=J [     e]-1 r ru ru rw T
 (2)

where ρ is the density, u, v and w are the Cartesian 
velocity components, e is the total energy per unit 
volume and J is the Jacobian of the transformation, 
represented as (Eq. 3):

J x y z x y z x y z x y z x y z x y z( ) 1

 (3)

The pressure can be obtained from the equation of 
state for a perfect gas: 

p e u v w( )[ ( )1 1
2

2 2 2 ][  (4)

A suitable nondimensionalization of the governing 
equations has been assumed in order to write Eq. 1. 
In particular, the values of flow properties are made 
dimensionless with respect to freestream quantities, as 
described in Pulliam and Steger (1980). The governing 
equations were discretized in a finite diference context in 
structured hexahedral meshes which would conform to 
the bodies in the computational domain. Since a central 
difference spatial discretization method is used, artificial 
dissipation terms must be added to the formulation in order 
to control nonlinear instabilities. The artificial dissipation 
terms used here are based in the work of Turkel and Vatsa 
(1994). This model is nonlinear and nonisotropic, with 
the scaling of the artificial dissipation operator in each 
coordinate direction weighted by its own spectral radius 
of the corresponding flux Jacobian matrix. In the present 
implementation, the residue operator is defined as:

RHS t E F Gn n n n( )  (5)

where δξ the δζ and δη  terms represent mid-point 
central diference operators in the ξ, ζ and η directions, 
respectively. The numerical flux vectors and artificial 
dissipation operators are defined as:
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The artificial dissipation operators are defined precisely as 
described in Turkel and Vatsa (1994). Since steady state 
solutions are the major interest in the present study, a 
variable time step convergence acceleration procedure has 
been implemented. The time march is performed based on 

Figure 1:  Perspective view of the SONDA-III (left) and detail of the front fin region (right).
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a five-stage, second-order accurate, hybrid Runge-Kutta 
time-stepping scheme, which can be written as:
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where α1 =1/4,  α2 = 1/6, α3 = 3/8, α4 =1/2 and α5 = 1. The 
time step is defined as (Eq. 8):

t CFL
ci j k

i j k
, ,

, ,  (8)

The CFL acronym stands for the Courant-Friedrichs-Lewy 
number, and the characteristic speed ci,j,k  is defined as:

c U a V a n n n ai j k x y z x y z x, , max( ,2 2 2 2 2 2 2
yy z
2 2 )( ), |W| +

c U a V a n n n ai j k x y z x y z x, , max( ,2 2 2 2 2 2 2
yy z
2 2 )( )  (9)

where a is the speed of sound and U, V and W are the 
contravariant velocity components. It should be emphasized 
that only the convective operator inside RHS term indicated 
in Eq. 8 is actually evaluated at every time step. The 
artificial dissipation term is only evaluated in the first and 
second stages of the time march procedure. It can be shown 
that this provides enough damping to maintain nonlinear 
stability, as defined in Jameson, Schmidt and Turkel (1981), 
whereas it yields a more efficient numerical scheme.

COMPUTATIONAL GRID TOPOLOGY

SONDA-III rocket possesses a central body where 
four frontal fins and four back fins are mounted. In 

order to save computational resources, 1/8 of the 
complete  configuration in the azimutal direction was 
simulated. This simplification is valid in the present 
work because only simulations with zero attack-of-
angle are considered. In this way, taking advantage 
of the symmetry of the problem, the configuration 
is reduced to 1/8 of the central body in the azimutal 
direction, 1/2 of the frontal fin and 1/2 of the back fin. 
In total, 13 meshes with relatively simple geometry are 
used to model the rocket and the fins. These meshes 
are distributed in the following way:

- seven meshes for the front fin, denominated m1, m2, 
m3, m4, m6 and m7;

- three meshes for the back fin, denominated m9, m10 
and m11;

- one mesh for central body, denominated m13, as seen 
in Fig. 2;

- one (background) mesh for front fin, denominated 
m8, as seen in Fig. 2;

- one (background) mesh for back fin, denominated 
m12, as seen in Fig. 2.

The computational meshes used in the present work are 
all generated by algebraic methods within each block. 
In particular, the multisurface algebraic grid generation 
technique described by Fletcher (1991) has been 
implemented in a fairly general code for the present 
configurations. The code allows grid clustering at various 
regions and a fair amount of control on the grid point 
distribution along the normal direction. Both hyperbolic 
tangent and exponential grid stretching functions are 
used to obtain the desired clustering and coarsening of 
the grid over the body. The meshes generated by that 
method are 2-D. The mesh that discretizes the central 
body is rotated around the longitudinal axis, obtaining a 
3-D mesh. Initially, for the fins, 2-D meshes are generated 
for the root and top sections. These meshes can be seen 
in detail in Fig. 3. The root surface is deformed through 

z
x

m12
m8

z
x
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Figure 2:  Central body mesh (left) and the m8 and m12 background meshes (right).
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a coordinate transformation to conform to cylindrical and 
conical sections of the central body. Finally, intermediate 
surfaces are obtained through an interpolation from the 
top and bottom surfaces previously calculated, as shown 
in Fig. 4.

Basically, the m1 to m7 meshes, that involve the front 
fin, exchange information amongst themselves using 
the patched mesh technique. These seven meshes 
exchange information, through of the Chimera 
interfaces with the m8 mesh (background mesh), and  
finally, the m8 mesh exchanges information with the 
central body mesh, m13. For the back fins, the process 
is similar. The background meshes, m8 and m12, have 
the function of serving as transition between the fin 
meshes, that possess a large number of points, and the 
central body mesh, that possesses few points. Besides, 
the background meshes hide the complexity of the 
configuration, since the central body mesh does not see 
the fin meshes. If the background meshes were not used, 
the central body mesh would have many more points in 
order to communicate in an efficient way with the fin 
meshes. The flow of information among the meshes can 
be seen in Fig. 5.

x z

Y

xx z

Y

Figure 4:  Intermediate surfaces obtained by interpolation of 
the tip and root surfaces of the front fin.

Figure 5:  Information flow of the Chimera meshes (left) and 
the patched meshes (right).
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Figure 3:  Two-dimensional surface on the root (left) and on the top (right) of the front fin generated by an algebraic method.
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Previous work on tridimensional configuration of launch 
vehicles, using the VLS configuration, as can be seen in 
Basso, Antunes and Azevedo (2003), used only Chimera 
grids to discretize the computational domain. However, 
during the initial phase of planning of the meshes for 
SONDA-III, the research group noticed that, due to the 
geometric characteristics of the new problem, using only 
Chimera meshes would not be viable.

The adopted solution was to use Chimera in conjunction with 
patched grids, since this procedure allowed the generation 
of meshes in a much simpler way, in comparison with 
other proposals that just used one technique or another. The 
Chimera subroutines of the original solver for the VLS were 
adapted, and additional subroutines were implemented for 
the use of patched grids. Routines for the control of the flow 
of information among the meshes were also implemented, 
and all the particularities of the original code (Antunes, 2000; 
Basso, Antunes and Azevedo 2003) for the configuration 
of the VLS were eliminated. With that, the research group 
developed a somewhat general code that can work with 
Chimera and patched grids, in complex configurations. The 
number of meshes that the code can manage is just limited 
by the amount of memory of the machine.
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BOUNDARY CONDITIONS

For the configurations of interest here, the types 
of boundary conditions that should be considered 
include upstream (entrance), solid-wall, far-field, 
symmetry, upstream centerline and downstream (exit) 
conditions. The upstream centerline of the rocket grid 
is a singularity of the coordinate transformation and, 
hence, an adequate treatment for this boundary must 
be provided. The approach consists in extrapolating the 
property values from the adjacent longitudinal plane 
and averaging the extrapolated values in the azimuthal 
direction in order to define the updated properties at 
the upstream centerline. 

The vast majority of the previous experience of the 
research group in the use of Chimera or patched multiblock 
grids considered the VLS configuration (Basso, Antunes 
and Azevedo, 2003; Bigarella, 2007), without including 
afterbody or plume effects. For such a configuration, the 
number of grid blocks required is rather small. Therefore, 
it is possible to have the boundary conditions hard-coded 
for each specific case. However, in the present case, the 
procedure of writing 13 separate subroutines to work with 
the 13 meshes would be extremely difficult and prone to 
mistakes. Furthermore, the objective should always be to 
try to come up with a code as general as possible and, 
certainly, it should not depend on the particularities of the 
configuration under consideration. Again, the approach is 
to eliminate the particularities of the original code and to 
create a more powerful subroutine that could work with 
the diversity of boundary conditions that the meshes of 
SONDA-III present.

The blocks of the mesh are considered as hexahedra 
in computational space and each one of the six faces 
is numered as indicated in Fig. 6. The code, that 
represents a certain boundary condition, is associated 
to each face. With this method, the solver implements 
78 boundary conditions in a simple format for the user. 
The boundary conditions and the number of points of 
each block of the mesh can be observed in Table 1. In 
case one wants to change some boundary conditions, it 
is sufficient to alter the values of a table, without the 
need to modify any code line.

Figure 6: Definition of the meshes faces for the boundary 
conditions.

1 k

j

face: i=1
face 2: i lMAX
face 3: j=1
face 4: j=JMAX
face 5: k=1
face 6: k-KMAX

i

4

6
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3

5

Mesh Face 1 Face 2 Face 3 Face 4 Face 5 Face 6 Points

m1 patched symmetry wall Chimera patched wall 65,340

m2 patched symmetry patched Chimera patched Chimera 53,460

m3 patched symmetry patched symmetry wall Chimera 53,460

m4 patched Chimera patched Chimera patched wall 26,136

m5 patched Chimera patched Chimera patched Chimera 21,384

m6 patched Chimera patched symmetry patched Chimera 21,384

m7 wall Chimera patched symmetry patched wall 26,136

m8 Chimera Chimera symmetry symmetry wall Chimera 137,940

m9 exit symmetry wall Chimera patched wall 65,340

m10 exit symmetry patched Chimera patched Chimera 53,460

m11 exit symmetry patched symmetry wall Chimera 53,460

m12 exit Chimera symmetry Chimera symmetry Chimera 117,612

m13 exit centerline wall freestream symmetry symmetry 192,375

Table 1: Boundary conditions imposed in the mesh faces.
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TREATMENT OF PATCHED GRID INTERFACES

In the present work, a patched grid block always 
shares a common face of points with other patched 
grid block, as indicated in Fig. 7. In order to illustrate 
this procedure, it is assumed that there are two 
meshes, denominated A and B, as presented in Fig. 7. 
Those meshes should be expanded, in order to allow 
the implementation of a code with the capability of 
transferring information through the common faces. 
It is desirable to maintain the order of the artificial 
dissipation operators at all points. Therefore, taking 
into account that the artificial dissipation operators 
use five points, a possible solution is to expand the 
meshes such that there is an area of five rows of points 
in common, as indicated in the right side of Fig. 7. 

It can be observed that two rows of points were added 
to each mesh, which caused the displacement of the first 
columm of points. The following steps are executed:

1.  Initially, the properties of all interior points located in 
the expanded A mesh are calculated, advancing one 
step in time;

2. The points located in the first column of the B mesh 
receive the values of the properties of the points from 
the fifth column of the A mesh;

3. The points located in the second column of the B 
mesh receive the values of the properties of the points 
from the fourth column of the A mesh;

4. All the interior points of the B mesh are calculated, 
advancing one step in time for this mesh;

5. The values of the points located in the fifth column 
of the B mesh are transferred for the first column 
of the A mesh, and values of the fourth column of 

the B mesh are transferred for the second column 
of the A mesh;

6.  The interior points of the A mesh are calculated again 
and the process repeats.  

The third column of the two meshes is left “free” and its 
value is determined by the calculation of the interior points, 
without any imposition of values for the properties, as it 
happened with the first and the second columns. Attempts 
of imposing any value for the properties in the third column 
− as, for example, an average between the two meshes − 
resulted in a significant decrease of the convergence rate. In 
3-D, instead of lines or columns, the meshes have planes in 
common. In the present paper, the meshes are built with a 
single face in common, and an additional code takes care of 
reading a connection matrix to decide which faces of each 
mesh should be expanded. More details on this procedure 
can be found in Papa and Azevedo (2003).

THE CHIMERA HOLECUTTING PROCESS

The Chimera grid possesses a superposition area but, 
unlike the patched grid, there is no need for the points to 
coincide. Again, this area is responsible for the exchange 
of information among the meshes. However, as not all of 
the points are necessary for the communication among the 
meshes, one can logically eliminate some points. Actually, 
all of the points continue to exist in the computer memory. 
The user creates an auxiliary matrix that associates to each 
point of the mesh an on-value or an off-value. The points 
are eliminated by two reasons. The first one concerns the 
fact that points of a certain mesh may be located inside 
an area without physical meaning of another mesh as, 
for example, inside a body of some other component of 
the configuration. An example of such situation could be 
found in the points of the m8 mesh that are located inside 
the front fin. The left side of Fig. 8 exhibits the m8 mesh 

Figure 7: A and B meshes before (left) and after (right) the expansion process.
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Figure 8:  Detail of the m8 background mesh (left) and m13 central body mesh (right) after the holecutting process.

with the points eliminated and the outline of the fin. In 
practice, a virtual volume larger than the solid volume 
is created, and all points of the mesh that are inside the 
virtual volume are eliminated. The creation of the virtual 
volume allows for the control of the number of points to 
be eliminated.

The second reason to eliminate points is to reduce the 
sobreposition area. An example can be found in the central 
body mesh, m13, that contains the two background meshes, 
m8 and m12. A virtual volume completely contained in a 
background mesh is created and all points of the mesh, that 
are inside this volume, are eliminated. The right hand side in 
Fig. 8 displays the result of this process.

After the holecutting process, described in Antunes, 
Basso and Azevedo (2000), the next step consists in 
identifying the Chimera boundary points. These points 
are those which were not eliminated by the previous 
process, but they have at least one neighbor that was 
eliminated. The Chimera boundary points are not 
calculated in the same way as the other interior points. 
They have the values of their properties interpolated. 
Each Chimera boundary point is located inside of an 
hexahedron whose vertices are formed by points of the 
other Chimera grid. As described in Antunes (2000), the 
distances between a Chimera boundary point of the first 
mesh and each of the eight vertices of the second mesh 
are calculated, respectively. It should be emphasized that 
there is no attempt to satisfy conservation in the present 
interpolation process. Since shocks may be crossing the 
interface, it would be interesting to have the enforcement 
of some conservation statement at grid interfaces. 
However, this was not implemented in the present case 
due to the high computational costs associated with such 
implementation, especially in the 3-D case, and because 
the present effort should be seen as an evolutionary 
step towards a more complete simulation capability. 

Furthermore, the use of a conservative interpolation 
process would certainly increase the requirements of 
code memory, which the authors would like to avoid 
at this time. An interpolation method at the interfaces 
among Chimera meshes that satisfies conservation 
was developed by Wang, Buning and Benek (1995). A 
detailed discussion of the procedure can be found in 
Wang and Yang (1994). Current work in this issue is also 
going on in the laboratory where the present work was 
developed (Pio et al., 2010), but, as stated, this is beyond 
the scope of the present paper.

RESULTS AND DISCUSSION

The results presented refer to simulations of the flow over 
SONDA-III rocket during its first stage flight. Preliminary 
results for this configuration have been presented in Papa 
and Azevedo (2003). In the cited reference, however, the 
total number of grid points was of the order of 275,000, 
which did not allow for a more detailed visualization of some 
critical regions of the flow about the fins. The present work 
has performed similar simulations, however considering a 
much finer mesh, with approximately 900,000 grid points. 
Such a level of grid refinement allows for a considerably 
better visualization of flow details about the configuration. 
The specific results included here consider only the case with 
freestream Mach number M∞ = 2.0 and zero angle-of-attack, 
which is representative of the simulations performed so far 
for the configuration.

Moreover, as the flight time in the lower atmosphere 
for these rockets is very short and the vehicle is at 
supersonic speeds during most of this flight, it seems 
appropriate to select a supersonic flight condition for 
the present discussion. As previously mentioned, the 
major interest in this work concerns the evaluation of 
the joint use of Chimera and patched grid techniques as 
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Figure 12: Dimensionless pressure contours on the surface of 
the sounding rocket.
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and 11. These figures show in detail the region of 
interaction between the front and back fins and the 
conical region of the central body. One can observe 
that the thickness of the shock in the leading edge of 
the front fin increases when it approaches the plane 
of symmetry. Pressure contours for the sounding 
rocket and its front and back fins can be observed in 
Figs. 12 and 13. In these figures, one can observe the 
formation of shock waves in the leading edges of the 
fins, as well as the expansion regions in the trailing 
edges. In the conical region, there is an increase in 
pressure due to a shock wave that cannot be observed 
in these visualizations. It can also be observed that, 
after the conical region, the pressure decreases due to 
the expansion region in the intersection between the 
conical and cylindrical body regions.

Figure 9:  Residue history for all the meshes used in the 
simulation (M

∞  = 2.0 and CFL = 0.9).
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Figure 10: Mach number contours for the back fin region.
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Figure 11: Mach number contours for the front fin region.

a tool for flow analysis over geometries of interest for 
Instituto de Aeronáutica e Espaço. Within the supersonic 
speed regime, several interesting aspects of Chimera 
and patched grid techniques can be analyzed, such 
as the communication of information across internal 
boundaries among blocks with discontinuities in the 
flow properties.

Figure 9 exhibits the residue history for all the meshes. 
The CFL number used is 0.9 and approximately 9,000 
iterations are necessary in order to reach convergence. 
In Fig. 9, one can observe that the mesh with the 
slowest convergence rate is the one that contains the 
recirculation zone, i.e., the m6 mesh. Mach number 
contours over the vehicle body, in regions around 
the front and back fins, can be observed in Figs. 10 
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Figure 13: Dimensionless pressure contours on the front fin 
region.
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Figure 14: Cp distributions over the SONDA-III at M
∞  = 2.0  and zero angle-of-attack.
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Figure 14 shows a quantitative comparison of the 
results obtained in the present computations. The 
numerical pressure coefficient distribution over a 
longitudinal line along the vehicle, which is located 
half way between two fins, is shown to be in very 
good agreement with results obtained with the Missile 
Datcom approach (Blake, 1998). Such program is a 
widely used semi-empirical data sheet component 
build-up method for estimating the aerodynamic 
characteristics of missiles and other rocket-like bodies. 

It is important to emphasize that the Missile Datcom 
(Blake, 1998) approach is typically used for stability 
and control purposes. Furthermore, it is also important 
to emphasize that the calculations with the Missile 
Datcom approach were performed by the present 
authors themselves. From a physical perspective, one 
can observe that, essentially, at supersonic freestream 
conditions, there is an oblique shock impinging on 
the fins downstream of the cylinder intersection. A 
sudden increase in the pressure coefficient distribution 
is observed at x/c = 9, for the computational solution. 
The increase in pressure coefficient (Cp) is due to 
the oblique shock wave created by the compression 
corner along the central body. Finally, the reader 
should observe that the authors did not have access 
to experimental aerodynamic results for the present 
configuration. Therefore, the validation here discussed 
is performed using Missile Datcom data.

CONCLUDING REMARKS

The paper has presented results for 3-D Euler 
simulations of the flow over the SONDA-III vehicle, 
a typical sounding rocket. A structured multiblock 
code has been implemented, using Chimera and 
patched multiblock grid approaches for handling 
the geometric complexity of the configuration. All 
codes used were developed by the research group and 
represent a powerful aerodynamic analysis and design 
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tool. The present methodology, using a combination 
of Chimera and patched grid approaches, seems to 
be quite powerful to work on similar problems, even 
with the presence of several fins. The main advantages 
observed in the present approach are:

1. Flexibility: the joint use of Chimera and patched 
grids, in the same simulation, allows the generation 
of meshes in a much easier and quicker fashion than 
other competing approaches;

2. Modularity: the use of background meshes, hiding 
the complexity of the meshes that involve the fins, 
also seems to be a very interesting approach for these 
rocket-like configurations. With such an approach, 
small grid modifications, or even small configuration 
modification, are quite simple to be accommodated 
in the sense that one does not need to regenerate 
all the meshes or, even, to reschedule the flow of  
information;

3. Point concentration: the use of multiblock meshes 
allows the refinement of localized regions in a 
way very similar to unstructured meshes, hence 
providing the needed flexibility to discretize 
complex configurations.

Finally, the power of this combined Chimera and 
patched grid simulation capability becomes evident 
when one considers that it was possible to simulate 
the flow over a complete sounding rocket and, at 
the same time, to capture details of phenomena 
occurring along the trailing edge of the frontal fins. 
This indicates that the methodology presented allowed 
grid refinement characteristics similar to those found 
in unstructured meshes, without the inconvenience of 
indirect addressing, as described in Long, Khan and 
Sharp (1991).
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