Satellite Inertia Parameters Estimation Based on Extended Kalman Filter
Keywords:
Satellite inertia tensor estimation, Extended Kalman filter, Spacecraft inertia parameters, GyroscopeAbstract
The moment of inertia parameters plays a critical role in assuring the spacecraft mission throughout its lifetime. However, determination of the moment of inertia is a key challenge in operating satellites. During satellite mission, those parameters can change in orbit for many reasons such as sloshing, fuel consumption, etc. Therefore, the inertia matrix should be estimated in orbit to enhance the attitude estimation and control accuracy. This paper investigates the use of gyroscope to estimate the attitude rate and inertia matrix for low earth orbit satellite via extended Kalman filter. Simulation results show the effectiveness and advantages of the proposed algorithm in estimating these parameters without knowing the nominal inertia. The robustness of the proposed algorithm has been validated using the Monte-Carlo method. The obtained results demonstrate that the accuracy of the estimated inertia and angular velocity parameters is satisfactory for satellite with coarse accuracy mission requirements. The proposed method can be used for different types of satellites.Downloads
Published
2019-03-28
Issue
Section
Original Papers
License
This work is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0. Authors are free to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially). JATM allow the authors to retain publishing rights without restrictions.