Robust Finite-Time Control for Guidance Law with Uncertainties in Missile Dynamics
Keywords:
Terminal guidance, Targets, Angle of attack, Missile controlAbstract
In this paper, the robust !nite-time control for impact angle guidance of missile dynamic system with uncertainties is investigated by combining linear extended state observer (LESO) and adaptive non-singular fast terminal sliding mode method. Specially for dealing with existing uncertainties including time-varying parametric perturbation and nonparametric disturbances in high order line-of-sight rates and target acceleration, a robust LESO strategy is proposed for designing sliding mode-based impact angle guidance, which can guarantee that estimation error converges to the neighborhood of the origin in finite-time. Based on the proposed LESO framework, an adaptive non-singular fast terminal sliding mode guidance law is considered for realizing interception of maneuvering targets, which can guarantee asymptotically stability of the system. Simulation results are shown for confirming effectiveness of the proposed guidance strategy of this paper. Compared with former methods, accuracy of estimation is increased by nearly two times, and miss distance is reduced by nearly two times.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Fazhan Tao, Jingtian Shi, Jie Zhang, Zhumu Fu, Song Gao
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0. Authors are free to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially). JATM allow the authors to retain publishing rights without restrictions.