OPsCV: A Robust Framework for Aerial Navigation under Global Positioning System Denied Conditions

Authors

  • Nathan Augusto Zacarias Xavier Universidade Federal de Minas Gerais – Colégio Técnico – Educação Básica e Profissional – Belo Horizonte/MG – Brazil|Departamento de Ciência e Tecnologia Aeroespacial – Instituto Tecnológico de Aeronáutica – Divisão de Comando, Controle, Comunicação, Computação, Inteligência, Vigilância e Reconhecimento – São José dos Campos/SP – Brazil. https://orcid.org/0000-0002-6771-947X
  • Elcio Hideiti Shiguemori Departamento de Ciência e Tecnologia Aeroespacial – Instituto Tecnológico de Aeronáutica – Divisão de Comando, Controle, Comunicação, Computação, Inteligência, Vigilância e Reconhecimento – São José dos Campos/SP – Brazil. https://orcid.org/0000-0001-5226-0435
  • Marcos Ricardo Omena de Albuquerque Maximo Departamento de Ciência e Tecnologia Aeroespacial – Instituto de Estudos Avançados – Divisão de Ciência da Computação – São José dos Campos/SP – Brazil https://orcid.org/0000-0003-2944-4476

DOI:

https://doi.org/10.1590/jatm.v18.1413

Keywords:

Unmanned Aerial Vehicle, Inertial-visual navigation, Air-ground collaboration, Deep inertial odometry, Cross-view geolocalization

Abstract

Unmanned aerial vehicles (UAVs) rely heavily on the global navigation satellite system (GNSS) for accurate localization. However, GNSS signals are often unavailable or unreliable in contested or cluttered environments. This study presents the optimized pose prediction and cross-view (OPsCV), a robust and adaptable navigation framework that integrates deep inertial odometry with a simulated cross-view geolocalization module through an error-state Kalman filter. The system enables dynamic switching from GNSS-based positioning to a fused solution that combines inertial and vision-based estimates as GNSS signal quality degrades. The framework was evaluated using real UAV flight data under persistent GNSS denial, with results demonstrating reliable pose estimation and improved positioning accuracy compared to the UAV’s internal navigation system. The OPsCV method maintained performance even with sparse cross-view updates, confirming its resilience under conservative operational conditions. These findings highlight the potential of fusing learned inertial measurements with statistical vision-based localization for autonomous aerial navigation in GNSS-denied environments.


References

[DJI] Dà-Jiāng Innovations (2022) Matrice 600 Pro. https://www.dji.com/br/matrice600-pro

[GSI] Gabinete de Segurança Institucional (2023) Release do Exercício Geral Integrado de Resposta à Emergência e Segurança Física Nuclear em Angra dos Reis. In Portuguese. https://www.gov.br/gsi/pt-br/centrais-de-conteudo/noticias/2023-1/release-doexercicio-geral-integrado-de-resposta-a-emergencia-e-seguranca-fisica-nuclear-em-angra-dos-reis-1

Afraimovich EL, Lesyuta OS, Ushakov II (2000) Magnetospheric disturbances, and the GPS operation. https://arxiv.org/abs/physics/0009027

Allauddin MS, Kiran GS, Raj K, Srinivas G, Mouli GUR, Prasad PV (2019) Development of a surveillance system for forest fire detection and monitoring using drones. Paper presented 2019 IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE; Yokohama, Japan. https://doi.org/10.1109/IGARSS.2019.8900436

Almeida DRA, Broadbent E, Zambrano AMA, Ferreira MP, Brancalion PHS (2021) Fusion of LiDAR and hyperspectral data from drones for ecological questions: The GatorEye Atlantic Forest restoration case study. Paper presented 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE; Brussels, Belgium. https://doi.org/10.1109/IGARSS47720.2021.9554023

Al-Sharman MK, Zweiri Y, Jaradat MA, Al-Husari R, Gan D, Seneviratne LD (2020) Deep-learning-based neural network training for state estimation enhancement: Application to attitude estimation. IEEE Trans Instrum Meas 69(1):24-34. https://doi.org/10.1109/tim.2019.2895495

Balaska V, Bampis L, Gasteratos A (2022) Self-localization based on terrestrial and satellite semantics. Eng Appl Artif Intell 111:104824. https://doi.org/10.1016/J.ENGAPPAI.2022.104824

Berntorp K, Hoang T, Di Cairano S (2019) Motion planning of autonomous road vehicles by particle filtering. IEEE Trans Intell Veh 4(2):197-210. https://doi.org/10.1109/TIV.2019.2904394

Bhowmick J, Singh A, Gupta H, Nallanthighal R (2021) A novel approach to computationally lighter GNSS denied UAV navigation using monocular camera. Paper presented 2021 7th International Conference on Automation, Robotics and Applications (ICARA). IEEE; Prague, Czech Republic. https://doi.org/10.1109/ICARA51699.2021.9376502

Brossard M, Barrau A, Bonnabel S (2019) RINS-W: Robust inertial navigation system on wheels. Paper presented 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; Macau, China. https://doi.org/10.1109/iros40897.2019.8968593

Brossard M, Barrau A, Bonnabel S (2020) AI-IMU dead-reckoning. IEEE Trans Intell Veh 5(4):585-595. https://doi.org/10.1109/tiv.2020.2980758

Buchanan R, Camurri M, Dellaert F, Fallon M (2021) Learning inertial odometry for dynamic legged robot state estimation. Paper presented 2021 5th Conference on Robot Learning. PMLR; London, UK. https://doi.org/10.48550/ARXIV.2111.00789

Burri M, Nikolic J, Gohl P, Schneider T, Rehder J, Omari S, Achtelik MW, Siegwart R (2016) The EuRoC micro aerial vehicle datasets. Int J Robot Res 35(10):1157-1163. https://doi.org/10.1177/0278364915620033

Cao R, Zhu J, Tu W, Li Q, Cao J, Liu B, Zhang Q, Qiu G (2018) Integrating aerial and street view images for urban land use classification. Remote Sens 10(10):1553. https://doi.org/10.3390/RS10101553

Carrillo-Arce LC, Nerurkar ED, Gordillo JL, Roumeliotis SI (2013) Decentralized multi-robot cooperative localization using covariance intersection. Paper presented 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; Tokyo, Japan. https://doi.org/10.1109/iros.2013.6696534

Chang Y, Cheng Y, Manzoor U, Murray J (2023) A review of UAV autonomous navigation in GPS-denied environments. Robot Auton Syst 170:104533. https://doi.org/10.1016/j.robot.2023.104533

Chen C, Lu X, Markham A, Trigoni N (2018a) IONet: Learning to cure the curse of drift in inertial odometry. Proc AAAI Conf Artif Intell 32(1). https://doi.org/10.1609/aaai.v32i1.12102

Chen C, Miao Y, Lu CX, Xie L, Blunsom P, Markham A, Trigoni N (2019) MotionTransformer: Transferring neural inertial tracking between domains. Proc AAAI Conf Artif Intell 33(1):8009-8016. https://doi.org/10.1609/aaai.v33i01.33018009

Chen C, Pan X (2024) Deep learning for inertial positioning: A survey. IEEE Trans Intell Transp Syst 25(9):10506-10523. https://doi.org/10.1109/tits.2024.3381161

Chen C, Zhao P, Lu CX, Wang W, Markham A, Trigoni N (2018b) OxIOD: The dataset for deep inertial odometry. https://arxiv.org/abs/1809.07491

Chiella ACB, Teixeira BOS, Pereira GAS (2019) State estimation for aerial vehicles in forest environments. Paper presented 2019 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; Atlanta, USA. https://doi.org/10.1109/

Chui CK, Chen G (2017) Kalman filtering. Cham: Springer. https://doi.org/10.1007/978-3-319-47612-4

Cobb S, Lawrence D, Christie J, Walter T, Chao YC, Powell D, Parkinson B (1995) Observed GPS signal continuity interruptions. Paper presented 1995 Proceedings of Ion GPS. Institute of Navigation; California, EUA.

Cohen N, Klein I (2024) Inertial navigation meets deep learning: A survey of current trends and future directions. Results Eng 24:103565. https://doi.org/10.1016/j.rineng.2024.103565

Cortes S, Solin A, Kannala J (2018) Deep learning based speed estimation for constraining strapdown inertial navigation on smartphones. Paper presented 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE; Aalborg, Denmark. https://doi.org/10.1109/mlsp.2018.8516710

Cui Z, Zhou P, Wang X, Zhang Z, Li Y, Li H, Zhang Y (2023) A novel geo-localization method for UAV and satellite images using cross-view consistent attention. Remote Sens 15(19):4667. https://doi.org/10.3390/RS15194667

Cunha RDS (2017) A comunicação dos riscos na preparação para emergências nucleares: um estudo de caso em Angra dos Reis, Rio de Janeiro (PhD thesis). São Paulo: Universidade de São Paulo. https://doi.org/10.11606/T.85.2017.tde-06092017-085924

Dai J, Hao X, Liu S, Ren Z (2022) Research on UAV robust adaptive positioning algorithm based on IMU/GNSS/VO in complex scenes. Sensors 22(8):2832. https://doi.org/10.3390/S22082832

Dantas BNC (2023) Fusão de técnicas de inteligência artificial e visão computacional aplicada à estimação de posição de veículos aéreos com auxílio de imagens satelitais (master’s thesis). São José dos Campos: Instituto Tecnológico de Aeronáutica.

Deilamsalehy H, Havens TC (2016) Sensor fused three-dimensional localization using IMU, camera and LiDAR. Paper presented 2016 IEEE SENSORS. IEEE; Orlando, USA. https://doi.org/10.1109/ICSENS.2016.7808523

Deuser F, Habel K, Oswald N (2023) Sample4Geo: Hard negative sampling for cross-view geo-localisation. Paper presented 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE; Paris, France. https://doi.org/10.1109/ICCV51070.2023.01545

Dong X, Hu G (2016) Time-varying formation control for general linear multi-agent systems with switching directed topologies. Automatica 73:47-55. https://doi.org/10.1016/j.automatica.2016.06.024

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, et al. (2020) An image is worth 16×16 words: Transformers for image recognition at scale. https://doi.org/10.48550/arxiv.2010.11929

Duan R, Wang J, Jiang C, Yao H, Ren Y, Qian Y (2019) Resource allocation for multi-UAV aided IoT NOMA uplink transmission systems. IEEE Internet Things J 6(4):7025-7037. https://doi.org/10.1109/jiot.2019.2913473

Durgam A, Paheding S, Dhiman V, Devabhaktuni V (2024) Cross-view geo-localization: A survey. IEEE Access 12:192028-192050. https://doi.org/10.1109/access.2024.3507280

Elhashash M, Qin R (2022) Cross-view SLAM solver: Global pose estimation of monocular ground-level video frames for 3d reconstruction using a reference 3d model from satellite images. ISPRS J Photogramm Remote Sens 188:62-74. https://doi.org/10.1016/J.ISPRSJPRS.2022.03.018

Esfahani MA, Wang H, Wu K, Yuan S (2020a) AbolDeepIO: A novel deep inertial odometry network for autonomous vehicles. IEEE Trans Intell Transp Syst 21(5):1941-1950. https://doi.org/10.1109/TITS.2019.2909064

Esfahani MA, Wang H, Wu K, Yuan S (2020b) OriNet: Robust 3-d orientation estimation with a single particular IMU. IEEE Robot Autom Lett 5(2):399-406. https://doi.org/10.1109/LRA.2019.2959507

Farrell J, Farrell JA (2008) Aided navigation. Electronic engineering. New York: McGraw-Hill.

Fervers F, Bullinger S, Bodensteiner C, Arens M, Stiefelhagen R (2023a) C-BEV: Contrastive bird’s eye view training for crossview image retrieval and 3-dof pose estimation. https://arxiv.org/abs/2312.08060

Fervers F, Bullinger S, Bodensteiner C, Arens M, Stiefelhagen R (2023b) Uncertainty-aware vision-based metric cross-view geolocalization. Paper presented 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; Vancouver, Canada. https://doi.org/10.1109/CVPR52729.2023.02071

Fu S, Hamilton M, Brandt L, Feldman A, Zhang Z, Freeman WT (2024) FeatUp: A model-agnostic framework for features at any resolution. https://arxiv.org/abs/2403.10516

Ge F, Zhang Y, Liu Y, Wang G, Coleman S, Kerr D, Wang L (2024) Multibranch joint representation learning based on information fusion strategy for cross-view geo-localization. IEEE Trans Geosci Remote Sens 62:1-16. https://doi.org/10.1109/TGRS.2024.3378453

Giubilato R, Chiodini S, Pertile M, Debei S (2020) MiniVO: Minimalistic range enhanced monocular system for scale correct pose estimation. IEEE Sensors J 20(20):11874-11886. https://doi.org/10.1109/JSEN.2020.2978334

Goltz GAM, Shiguemori EH, De Campos Velho HF (2016) Position estimation of UAV by image processing with neural networks. Paper presented 2016 10º Congresso Brasileiro de Inteligência Computacional (CBIC). SBIC; Fortaleza, CE. https://doi.org/10.21528/cbic2011-03.6

Gong J, Zhang X, Huang Y, Ren J, Zhang Y (2021) Robust inertial motion tracking through deep sensor fusion across smart earbuds and smartphone. Proc ACM Interact Mob Wearable Ubiquitous Technol 5(2):1-26. https://doi.org/10.1145/3463517

Hegarty CJ, Chatre E (2008) Evolution of the global navigation satellite system (GNSS). Proc IEEE 96(12):1902-1917. https://doi.org/10.1109/jproc.2008.2006090

Hu S, Lee GH (2019) Image-based geo-localization using satellite imagery. Int J Comput Vis 128(5):1205-1219. https://doi.org/10.1007/S11263-019-01186-0

Huang S, Dissanayake G (2007) Convergence and consistency analysis for extended Kalman filter based SLAM. IEEE Trans Robot 23(5):1036-1049. https://doi.org/10.1109/TRO.2007.903811

Huang Y-E, Tsai S, Liu H-Y, Chiang K-W, Tsai M-L, Lee P-L, El-Sheimy N (2023) The development and validation of a tactical grade EGI system for land vehicular navigation applications. Int Arch Photogramm Remote Sens Spatial Inf Sci XLVIII-1/W2-2023:821-828. https://doi.org/10.5194/isprsarchives-xlviii-1-w2-2023-821-2023

Jin R, Zhang G, Hsu L-T, Hu Y (2024) A survey on cooperative positioning using GNSS measurements. IEEE Trans Intell Veh 9(11):7402-7420. https://doi.org/10.1109/tiv.2024.3397879

Joyce KE, Anderson K, Bartolo RE (2021) Of course we fly unmanned – we’re women! Drones 5(1):21. https://doi.org/10.3390/drones5010021

Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35-45. https://doi.org/10.1115/1.3662552

Kartal S, Kaya YB, Nergiz F, Özbağ E, Yilmaz Y, Dar T (2023) Analysis of GDOP based on GEO satellite. Paper presented 2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST). IEEE; Istanbul, Turkey. https://doi.org/10.1109/rast57548.2023.10197979

Ke J, Xu T, Zeng J, Duan Z (2023) Distributed observer-based tracking of multi-agent systems with bounded input amplitudes and rates. Int J Robust Nonlinear Control 34(4):2781-2805. https://doi.org/10.1002/rnc.7108

Kim W-Y, Seo H-I, Seo D-H (2021) Nine-axis IMU-based extended inertial odometry neural network. Expert Syst Appl 178:115075. https://doi.org/10.1016/J.ESWA.2021.115075

Ko NY, Youn W, Choi IH, Song G, Kim TS (2018) Features of invariant extended Kalman filter applied to unmanned aerial vehicle navigation. Sensors 18(9):2855. https://doi.org/10.3390/s18092855

Kopf J, Cohen MF, Lischinski D, Uyttendaele M (2007) Joint bilateral upsampling. ACM Trans Graph 26(3):96. https://doi.org/10.1145/1276377.1276497

Korsah GA, Stentz A, Dias MB (2013) A comprehensive taxonomy for multi-robot task allocation. Int J Robot Res 32(12):1495-1512. https://doi.org/10.1177/0278364913496484

Li F, Zhao C, Ding G, Gong J, Liu C, Zhao F (2012) A reliable and accurate indoor localization method using phone inertial sensors. Paper presented 2012 ACM Conference on Ubiquitous Computing (Ubicomp’12). ACM; New York, USA. https://doi.org/10.1145/2370216.2370280

Li H, Deuser F, Yin W, Luo X, Walther P, Mai G, Huang W, Werner M (2025) Cross-view geolocalization and disaster mapping with street-view and VHR satellite imagery: A case study of hurricane IAN. ISPRS J Photogramm Remote Sens 220:841-854. https://doi.org/10.1016/j.isprsjprs.2025.01.003

Liu B, Teng Y, Huang Q (2017) GDOP minimum in multi-GNSS positioning. Adv Space Res 60(7):1400-1403. https://doi.org/10.1016/j.asr.2017.06.049

Liu C, Zhao J, Sun N (2022) A review of collaborative air-ground robots research. J Intell Robot Syst 106(3). https://doi.org/10.1007/s10846-022-01756-4

Liu D, Bao W, Zhu X, Fei B, Xiao Z, Men T (2022) Vision-aware air-ground cooperative target localization for UAV and UGV. Aerosp Sci Technol 124:107525. https://doi.org/10.1016/j.ast.2022.107525

Liu L, Li H (2019) Lending orientation to neural networks for cross-view geo-localization. Paper presented 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; Long Beach, USA. https://doi.org/10.1109/CVPR.2019.00577

Loianno G, Watterson M, Kumar V (2016) Visual inertial odometry for quadrotors on SE(3). Paper presented 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE; Stockholm, Sweden. https://doi.org/10.1109/ICRA.2016.7487292

Lupton T, Sukkarieh S (2009) Efficient integration of inertial observations into visual SLAM without initialization. Paper presented 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; Saint Louis, EUA. https://doi.org/10.1109/IROS.2009.5354267

Miller ID, Cladera F, Smith T, Taylor CJ, Kumar V (2022) Stronger together: Air-ground robotic collaboration using semantics. IEEE Robot Autom Lett 7(4):9643-9650. https://doi.org/10.1109/lra.2022.3191165

Minetto A, Gurrieri A, Dovis F (2020) A cognitive particle filter for collaborative DGNSS positioning. IEEE Access 8:194765-194779. https://doi.org/10.1109/access.2020.3033626

Mohiuddin A, Tarek T, Zweiri Y, Gan D (2020) A survey of single and multi-UAV aerial manipulation. Unmanned Syst 8(2):119-147. https://doi.org/10.1142/s2301385020500089

Nemra A, Aouf N (2009) Robust airborne 3D visual simultaneous localization and mapping with observability and consistency analysis. J Intell Robot Syst 55(4-5):345-376. https://doi.org/10.1007/s10846-008-9306-6

Or B, Klein I (2022) A hybrid model and learning-based adaptive navigation filter. IEEE Trans Instrum Meas 71:1-11. https://doi.org/10.1109/tim.2022.3197775

Parker LE (2009) Multiple Mobile Robot Teams, Path Planning and Motion Coordination. New York: Springer. https://doi.org/10.1007/978-0-387-30440-3_344

Peng K, Du J, Lu F, Sun Q, Dong Y, Zhou P, Hu M (2019) A hybrid genetic algorithm on routing and scheduling for vehicleassisted multi-drone parcel delivery. IEEE Access 7:49191-49200. https://doi.org/10.1109/access.2019.2910134

Rahman AAA, Jaafar WSWM, Maulud KNA, Noor NM, Mohan M, Cardil A, Silva CA, Che’Ya NN, Naba NI (2019) Applications of drones in emerging economies: A case study of Malaysia. Paper presented 2019 6th International Conference on Space Science and Communication (IconSpace). IEEE; Bahru, Malaysia. https://doi.org/10.1109/ICONSPACE.2019.8905962

Ran H, Sun L, Cheng S, Ma Y, Yan S, Meng S, Shi K, Wen S (2021) A novel cooperative searching architecture for multiunmanned aerial vehicles under restricted communication. Asian J Control 24(2):510-516. https://doi.org/10.1002/asjc.2517

Regmi K, Borji A (2019) Cross-view image synthesis using geometry-guided conditional GANs. Comput Vis Image Underst 187:102788. https://doi.org/10.1016/J.CVIU.2019.07.008

Regmi K, Shah M (2019) Bridging the domain gap for ground-to-aerial image matching. Paper presented 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE; Seoul, Korea. https://doi.org/10.1109/ICCV.2019.00056

Rigatos GG (2012) Nonlinear Kalman filters and particle filters for integrated navigation of unmanned aerial vehicles. Robot Auton Syst 60(7):978-995. https://doi.org/10.1016/j.robot.2012.03.001

Rodrigues R, Tani M (2023) SemGeo: Semantic keywords for cross-view image geo-localization. Paper presented 2023 ICASSP 2023 – 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE; Rhodes Island, Greece. https://doi.org/10.1109/ICASSP49357.2023.10094763

Romero H, Salazar S, Santos O, Lozano R (2013) Visual odometry for autonomous outdoor flight of a quadrotor UAV. Paper presented 2013 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; Atlanta, USA. https://doi.org/10.1109/icuas.2013.6564748

Roos DR (2018) Aprendizado de máquina aplicado à odometria visual para estimação de posição de veículos aéreos não tripulados (master’s thesis). São Paulo: Universidade Federal de São Paulo. https://doi.org/10.20950/1678-2305/bip.2024.51.e910

Savage PG (2007) Savage, volume 2 of Strapdown Analytics. Maple Plain: Strapdown Associates.

Shen C, Zhang Y, Li Z, Gao F, Shen S (2017) Collaborative air-ground target searching in complex environments. Paper presented 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). IEEE; Shanghai, China. https://doi.org/10.1109/ssrr.2017.8088168

Shetty A, Gao GX (2019) UAV pose estimation using cross-view geolocalization with satellite imagery. Paper presented 2019 International Conference on Robotics and Automation (ICRA). IEEE; Montreal, Canada. https://doi.org/10.1109/ICRA.2019.8794228

Shi Y, Wu F, Perincherry A, Vora A, Li H (2023) Boosting 3-dof ground-to-satellite camera localization accuracy via geometry-guided cross-view transformer. Paper presented 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE; Paris, France. https://doi.org/10.1109/ICCV51070.2023.01967

Shi Y, Yu X, Liu L, Campbell D, Koniusz P, Li H (2022) Accurate 3-dof camera geo-localization via ground-to-satellite image matching. IEEE Trans Pattern Anal Mach Intell:1-16. https://doi.org/10.1109/TPAMI.2022.3189702

Shi Y, Yu X, Liu L, Zhang T, Li H (2020) Optimal feature transport for cross-view image geo-localization. Proc AAAI Conf Artif Intell 34(07):11990-11997. https://doi.org/10.1609/AAAI.V34I07.6875

Sottile F, Wymeersch H, Caceres MA, Spirito MA (2011) Hybrid GNSS-terrestrial cooperative positioning based on particle filter. Paper presented 2011 IEEE Global Telecommunications Conference -GLOBECOM.IEEE; Houston, USA. https://doi.org/10.1109/glocom.2011.6134002

Sun S, Melamed D, Kitani K (2021) IDOL: Inertial deep orientation-estimation and localization. Proc AAAI Conf Artif Intell 35(7):6128-6137. https://doi.org/10.1609/aaai.v35i7.16763

Tang H, Niu X, Zhang T, Li Y, Liu J (2022) OdoNet: Untethered speed aiding for vehicle navigation without hardware wheeled odometer. IEEE Sens J 22(12):12197-12208. https://doi.org/10.1109/jsen.2022.3169549

Teixeira BOS, Tôrres LAB, Aguirre LA (2010) Filtragem de Kalman com restrições para sistemas não lineares: revisão e novos resultados. Sba: Controle Automação Soc Bras Autom 21(2):127-146. https://doi.org/10.1590/S0103-17592010000200003

Toker A, Zhou Q, Maximov M, Leal-Taixe L (2021) Coming down to earth: Satellite-to-street view synthesis for geolocalization. Paper presented 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; Nashville, USA. https://doi.org/10.1109/CVPR46437.2021.00642

Torres VAMF, Jaimes BRA, Ribeiro ES, Braga MT, Shiguemori EH, Velho HFC, Torres LCB, Braga AP (2020) Combined weightless neural network FPGA architecture for deforestation surveillance and visual navigation of UAVs. Eng Appl Artif Intell 87:103227. https://doi.org/10.1016/J.ENGAPPAI.2019.08.021

Ulmer MW, Thomas BW (2018) Same-day delivery with heterogeneous fleets of drones and vehicles. Networks 72(4): 475-505. https://doi.org/10.1002/net.21855

Velusamy P, Rajendran S, Mahendran RK, Naseer S, Shafiq M, Choi J-G (2021) Unmanned aerial vehicles (UAV) in precision agriculture: Applications and challenges. Energies 15(1):217. https://doi.org/10.3390/en15010217

Wagstaff B, Peretroukhin V, Kelly J (2020) Robust data-driven zero-velocity detection for foot-mounted inertial navigation. IEEE Sens J 20(2):957-967. https://doi.org/10.1109/jsen.2019.2944412

Wang N (2021) “As it is Africa, it is ok”? Ethical considerations of development use of drones for delivery in Malawi. IEEE Trans Technol Soc 2(1):20-30. https://doi.org/10.1109/TTS.2021.3058669

Wang P, Yang Z, Chen X, Xu H (2023) A Transformer-Based Method for UAV-View Geo-Localization. Cham: Springer. https://doi.org/10.1007/978-3-031-44223-0_27

Wang Q, Luo H, Ye L, Men A, Zhao F, Huang Y, Ou C (2019) Pedestrian heading estimation based on spatial transformer networks and hierarchical LSTM. IEEE Access 7:162309-162322. https://doi.org/10.1109/access.2019.2950728

Wang T, Fan S, Liu D, Sun C (2022) Transformer-guided convolutional neural network for cross-view geolocalization. https://arxiv.org/abs/2204.09967

Wang W, Chen W, Qiu Q, Chen L, Wu B, Lin B, He X, Liu W (2024) CrossFormer++: A versatile vision transformer hinging on cross-scale attention. IEEE Trans Pattern Anal Mach Intell 46(5):3123-3136. https://doi.org/10.1109/TPAMI.2023.3341806

Wang Y, Cheng H, Meng MQ-H (2020) Pedestrian motion tracking by using inertial sensors on the smartphone. Paper presented 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; Las Vegas, EUA. https://doi.org/10.1109/iros45743.2020.9341173

Wang Y, Kuang J, Li Y, Niu X (2022) Magnetic field-enhanced learning-based inertial odometry for indoor pedestrian. IEEE Trans Instrum Meas 71:1-13. https://doi.org/10.1109/tim.2022.3186358

Wang Y, Kuang J, Niu X, Liu J (2023) LLIO: Lightweight learned inertial odometer. IEEE Internet Things J 10(3):2508-2518. https://doi.org/10.1109/jiot.2022.3214087

Wen W, Bai X, Zhang G, Chen S, Yuan F, Hsu L-T (2020) Multi-agent collaborative GNSS/camera/INS integration aided by inter-ranging for vehicular navigation in urban areas. IEEE Access 8:124323-124338. https://doi.org/10.1109/access.2020.3006210

Williams J (2024) UAV survey mapping of illegal deforestation in Madagascar. Plants People Planet 6(6):1413-1424. https://doi.org/10.1002/ppp3.10533

Wilson D, Zhang X, Sultani W, Wshah S (2023) Image and object geo-localization. Int J Comput Vis 132(4):1350-1392. https://doi.org/10.1007/s11263-023-01942-3

Workman S, Souvenir R, Jacobs N (2015) Wide-area image geolocalization with aerial reference imagery. Paper presented 2015 IEEE International Conference on Computer Vision (ICCV). IEEE; Santiago, Chile. https://doi.org/10.1109/ICCV.2015.451

Wu S, Tang H, Jing X-Y, Qian J, Sebe N, Yan Y, Zhang Q (2022) Cross-view panorama image synthesis with progressive attention GANs. Pattern Recognit 131:108884. https://doi.org/10.1016/J.PATCOG.2022.108884

Xavier NAZ, Shiguemori EH, Maximo MROA (2025a) UAV inertial navigation using deep neural networks in simulated environments. Eng Anal Bound Elem 179:106376. https://doi.org/10.1016/j.enganabound.2025.106376

Xavier NAZ, Shiguemori EH, Maximo MROA, Shah M (2025b) A guided approach for cross-view geolocalization estimation with land cover semantic segmentation. Biomim Intell Robot 5(2):100208. https://doi.org/10.1016/j.birob.2024.100208

Xia Y, Song M, Zhang J, Hu C (2018) An autonomously navigation system for forestry quadrotor within GPS-denied belowcanopy environment. Paper presented 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC). IEEE; Xiamen, China. https://doi.org/10.1109/GNCC42960.2018.9019136

Xia Z, Booij O, Kooij JFP (2024) Convolutional cross-view pose estimation. IEEE Trans Pattern Anal Mach Intell 46(5): 3813-3831. https://doi.org/10.1109/TPAMI.2023.3346924

Xia Z, Booij O, Manfredi M, Kooij JFP (2022) Visual cross-view metric localization with dense uncertainty estimates. Tel Aviv: Springer. European Conference on Computer Vision (ECCV); p. 90-106. https://doi.org/10.48550/ARXIV.2208.08519

Xie X, Yang T, Ning Y, Zhang F, Zhang Y (2021) A monocular visual odometry method based on virtual-real hybrid map in low-texture outdoor environment. Sensors 21(10):3394. https://doi.org/10.3390/S21103394

Xu H, Wang C, Bo Y, Jiang C, Liu Y, Yang S, Lai W (2022) An aerial and ground multi-agent cooperative location framework in GNSS-challenged environments. Remote Sens 14(19):5055. https://doi.org/10.3390/rs14195055

Xu Y, Wei Y, Wang D, Jiang K, Deng H (2023) Multi-UAV path planning in GPS and communication denial environment. Sensors 23(6):2997. https://doi.org/10.3390/S23062997

Yan H, Shan Q, Furukawa Y (2018) RIDI: Robust IMU Double Integration. Cham: Springer. https://doi.org/10.1007/978-3-030-01261-8_38

Yan Z, Jouandeau N, Cherif AA (2013) A survey and analysis of multi-robot coordination. Int J Adv Robot Syst 10(12). https://doi.org/10.5772/57313

Yang M, Sun X, Jia F, Rushworth A, Dong X, Zhang S, Fang Z, Yang G, Liu B (2022) Sensors and sensor fusion methodologies for indoor odometry: A review. Polymers 14(10):2019. https://doi.org/10.3390/polym14102019

Ye Z, Bao C, Liu X, Bao H, Cui Z, Zhang G (2022) Crossview mapping with graph-based geolocalization on city-scale street maps. Paper presented 2022 International Conference on Robotics and Automation (ICRA). IEEE; Philadelphia, USA. https://doi.org/10.1109/ICRA46639.2022.9811743

Yi S, Jin X, Wang Z, Liu Z, Zorzi M (2025) Data-driven robust UAV position estimation in GPS signal challenged environment. https://arxiv.org/abs/2504.07842

Yu X, Liu B, Lan X, Xiao Z, Lin S, Yan B, Zhou L (2019) AZUPT: Adaptive zero velocity update based on neural networks for pedestrian tracking. Paper presented 2019 IEEE Global Communications Conference (GLOBECOM). IEEE; Waikoloa, USA. https://doi.org/10.1109/globecom38437.2019.9014070

Yuan D, Maire F, Dayoub F (2024) Cross-attention between satellite and ground views for enhanced fine-grained robot geo-localization. Paper presented 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE; Waikoloa, USA. https://doi.org/10.1109/WACV57701.2024.00128

Yue P, Xin J, Huang Y, Zhao J, Zhang C, Chen W, Shan M (2025) UAV autonomous navigation system based on air-ground collaboration in GPS-denied environments. Drones 9(6):442. https://doi.org/10.3390/drones9060442

Zhang L, Gao F, Deng F, Xi L, Chen J (2023) Distributed estimation of a layered architecture for collaborative air-ground target geolocation in outdoor environments. IEEE Trans Ind Electron 70(3): 2822-2832. https://doi.org/10.1109/tie.2022.3165245

Zhang M, Zhang M, Chen Y, Li M (2021) IMU data processing for inertial aided navigation: A recurrent neural network based approach. Paper presented 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE; Xi’an, China. https://doi.org/10.1109/icra48506.2021.9561172

Zhang Q, Zhu Y (2024) Aligning geometric spatial layout in cross-view geo-localization via feature recombination. Proceedings of the AAAI Conference on Artificial Intelligence 38(7):7251-7259. https://doi.org/10.1609/AAAI.V38I7.28554

Zhang X, Li X, Sultani W, Zhou Y, Wshah S (2023) Cross-view geo-localization via learning disentangled geometric layout correspondence. Proceedings of the AAAI Conference on Artificial Intelligence 37(3):3480-3488. https://doi.org/10.1609/AAAI.V37I3.25457

Zhang Y, Shi Y, Wang S, Vora A, Perincherry A, Chen Y, Li H (2024) Increasing SLAM pose accuracy by ground-to-satellite image registration. Paper presented 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE; Yokohama, Japan. https://doi.org/10.1109/ICRA57147.2024.10611079

Zhao J, Zhai Q, Zhao P, Huang R, Cheng H (2023) Co-visual pattern-augmented generative transformer learning for automobile geo-localization. Remote Sens 15(9):2221. https://doi.org/10.3390/RS15092221

Zhou B, Gu Z, Gu F, Wu P, Yang C, Liu X, Li L, Li Y, Li Q (2022) DeepVIP: Deep learning-based vehicle indoor positioning using smartphones. IEEE Trans Veh Technol 71(12):13299-13309. https://doi.org/10.1109/tvt.2022.3199507

Zhou B, Krahenbuhl P (2022) Cross-view transformers for real-time map-view semantic segmentation. Paper presented 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; New Orleans, USA. https://doi.org/10.1109/CVPR52688.2022.01339

Zhou L, Jiang Y, Jia H, Zhang L, Xu F, Tian Y, Ma Z, Liu X, Guo S, Wu Y, et al. (2024) UAV vision-based crack quantification and visualization of bridges: system design and engineering application. Struct Health Monit 24(2):1083-1100. https://doi.org/10.1177/14759217241251778

Zhu S, Shah M, Chen C (2022) TransGeo: Transformer is all you need for cross-view image geo-localization. Paper presented 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; New Orleans, USA. https://doi.org/10.1109/CVPR52688.2022.00123

Zhu S, Yang T, Chen C (2021a) Revisiting street-to-aerial view image geo-localization and orientation estimation. Paper presented 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE; Waikoloa, USA. https://doi.org/10.1109/WACV48630.2021.00080

Zhu S, Yang T, Chen C (2021b) VIGOR: Cross-view image geo-localization beyond one-to-one retrieval. Paper presented 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; Nashville, USA. https://doi.org/10.1109/CVPR46437.2021.00364

Zhu Y, Sun B, Lu X, Jia S (2022) Geographic semantic network for cross-view image geo-localization. IEEE Trans Geosci Remote Sens 60:1-15. https://doi.org/10.1109/TGRS.2021.3121337

Zocca S, Minetto A, Dovis F (2021) Adaptive bayesian state estimation integrating non-stationary DGNSS inter-agent distances. Paper presented 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). IEEE; Helsinki, Finland. https://doi.org/10.1109/vtc2021-spring51267.2021.9448952

Zou Z, Huang T, Ye L, Song K (2020) CNN based adaptive Kalman filter in high-dynamic condition for low cost navigation system on highspeed UAV. Paper presented 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). IEEE; Singapore, Singapore. https://doi.org/10.1109/acirs49895.2020.9162601

Downloads

Published

2026-02-06

Issue

Section

Original Paper