Lunar Regolith Classification Using Discrete Element Method on Single-Deck Vibrating Screen
DOI:
https://doi.org/10.1590/jatm.v18.1417Keywords:
Vibrating screen, Discrete element method, Lunar gravitational environmentAbstract
The sustainable use of lunar resources requires efficient processing of lunar regolith, particularly for advanced manufacturing techniques such as selective laser melting and laser engineered net shaping, which demand particles ≤ 100 μm. This research employs the discrete element method (DEM) to simulate a vibrating screen operating in the Moon’s environment, specifically investigating and providing insights into the effects of vibration parameters and screen inclination on screening efficiency, reaching a maximum efficiency of 76.9%. Additionally, the study explores the feasibility of transporting a vibrating screen from Earth to the Moon, considering its mass and the actual capabilities of the Space Launch System Block 1 Cargo, concluding that the screen can be transported to the Moon. Although the simulated efficiency is over 70%, better results are likely achievable by studying other configurations of motion or different geometries for the screen and deck. This work represents the first DEM-based study of vibrating screens under lunar gravity and provides essential insights for in situ resource utilization strategies.
References
Adachi M, Moroka HK, Wakabayashi S, Hoshino T (2017) Particle-size sorting system of lunar regolith using electrostatic traveling wave. J Electrostat 89:69-76. https://doi.org/10.1016/j.elstat.2017.08.002
Aghlmandi AA, Caner Orhan E, Levent Ergun S (2018) Discrete element modelling of vibrating screens. Miner Eng 121: 107-121. https://doi.org/10.1016/j.mineng.2018.03.010
Cannon KM, Dreyer CB, Sowers GF, Schmit J, Nguyen T, Sanny K, Schertz J (2022) Working with lunar surface materials: review and analysis of dust mitigation and regolith conveyance technologies. Acta Astronaut 196:259-274. https://doi.org/10.1016/j.actaastro.2022.04.037
Coetzee C (2019) Particle upscaling: calibration and validation of the discrete element method. Powder Technol 344:487-503. https://doi.org/10.1016/j.powtec.2018.12.022
Colwell J, Batiste S, Horányi M, Robertson S, Sture S (2007) Lunar surface: dust dynamics and regolith mechanics. Rev Geophys 45:RG2006. https://doi.org/10.1029/2005RG000184
Crawford IA (2015) Lunar resources: a review. Prog Phys Geogr Earth Environ 39:137-167. https://doi.org/10.1177/0309133314567585
Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Géotechnique 19(1):47-65. https://doi.org/10.1680/geot.1979.29.1.47
Dreyer CB, Walton O, Riedel EP (2012) Centrifugal sieve for size-segregation and beneficiation of regolith. Paper presented 2012 Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments. ASCE; Pasadena, USA. https://doi.org/10.1061/9780784412190.004
[ESSS] Engineering Simulation and Scientific Software (2020) Rocky 4.4 DEM technical manual. Florianópolis: Brazil.
He X, Liu C (2009) Dynamics and screening characteristics of vibrating screen with variable elliptical trace. Min Sci Technol 19:508-513. https://doi.org/10.1016/S1674-5264(09)60095-8
Isachenkov M, Chugunov S, Akhatov I, Shishkovsky I (2021) Regolith-based additive manufacturing for sustainable development of lunar infrastructure – an overview. Acta Astronaut 180:650-678. https://doi.org/10.1016/j.actaastro.2021.01.005
Kawamoto H, Uchiyama M, Cooper B, McKay D (2011) Mitigation of lunar dust on solar panels and optical elements utilizing electrostatic traveling-wave. J Electrostat 69:370-379. https://doi.org/10.1016/j.elstat.2011.04.016
Li C, Zuo W, Wen W, Zeng X, Gao X, Liu Y, Ouyang Z (2021) Overview of the Chang’e-4 mission: opening the frontier of scientific exploration of the lunar far side. Space Sci Rev 217(35). https://doi.org/10.1007/s11214-021-00793-z
Li Z, Si Q, Jia P, Xiao G, Tong X (2023) Research on particle swarm screening mechanism and performance optimization based on simulated lunar microgravity. Adv Space Res 73(4). https://doi.org/10.1016/j.asr.2023.01.063
Lommen S, Schott D, Lodewijks G (2014) DEM speedup: stiffness effects on behavior of bulk material. Particuology 12: 107-112. https://doi.org/10.1016/j.partic.2013.03.006
McKay DS, Heiken G, Basu A, Blnford G, Steven S, Reedy R, Papike J (1991) The lunar regolith. Cambridge: Cambridge University. In: Lunar sourcebook; p 285-356.
Moncada M, Rodríguez C (2018) Dynamic modeling of a vibrating screen considering the ore inertia and force of the ore over the screen calculated with discrete element method. Shock Vib 2018:1-13. https://doi.org/10.1155/2018/1714738
Nitano R, Yamato S, Tanaka K, Kanamori H, Adachi M (2025) Cleaning performance of an electrodynamic dust shield under low-frequency vibrations. Powder Technol 457:120845. https://doi.org/10.1016/j.powtec.2025.120845
Otto H, Kerst K, Roloff C, Janiga G, Katterfeld A (2018) CFD-DEM simulation and experimental investigation of the flow behavior of lunar regolith JSC-1A. Particuology 36:164-177. https://doi.org/10.1016/j.partic.2017.12.003
Ozaki SI, Ishigami G, Otsuki M, Miyamoto H, Wada K, Watanabe Y, Nishino T, Kojima H, Soda K, Nakao Y, et al. (2023) Granular flow experiment using artificial gravity generator at International Space Station. npj Microgravity 9:61. https://doi. org/10.1038/s41526-023-00308-w
Pickrell J (2022) These six countries are about to go to the Moon – here’s why. Nature 605(7909):208-211. https://doi.org/10.1038/d41586-022-01252-7
Sanders GB, Larson WE (2013) Progress made in lunar in situ resource utilization under NASA’s exploration technology and development program. J Aerosp Eng 26:5-17. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000208
Toledo P, Moncada M, Ruiz C, Betancourt F, Rodríguez C, Vicuña C (2025) A review of the application of the discrete element method in comminution circuits. Powder Technol 121027. https://doi.org/10.1016/j.powtec.2025.121027
Walton OR, Braun RL (1986) Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J Rheol 30(5):949. https://doi.org/10.1122/1.549893
Zanon P, Dunn M, Brooks G (2023) Current lunar dust mitigation techniques and future directions. Acta Astronaut 213: 627-644. https://doi.org/10.1016/j.actaastro.2023.09.031
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Pedro Cáceres, Alejandro Lopez-Telgie, Cristian G Rodríguez, Cristián Vicuña, Manuel Moncada M

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0. Authors are free to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially). JATM allow the authors to retain publishing rights without restrictions.








