Influence of Fiber Inclination Angle on the Mechanical and Thermal Properties of a Composite

Authors

  • Jimes de Lima Percy Departamento de Ciência e Tecnologia Aeroespacial – Instituto Tecnológico de Aeronáutica – Programa de Pós-Graduação em Ciências e Engenharia Espacial – São José dos Campos/SP – Brazil|Departamento de Ciência e Tecnologia Aeroespacial – Instituto de Aeronáutica e Espaço – Divisão de Aerodinâmica, Controle e Estruturas– São José dos Campos/SP – Brazil. https://orcid.org/0009-0007-8699-9335
  • Pedro Guilherme Silva Pesci Departamento de Ciência e Tecnologia Aeroespacial – Instituto Tecnológico de Aeronáutica – Programa de Pós-Graduação em Ciências e Engenharia Espacial – São José dos Campos/SP – Brazil|Departamento de Ciência e Tecnologia Aeroespacial – Instituto de Aeronáutica e Espaço – Divisão de Aerodinâmica, Controle e Estruturas– São José dos Campos/SP – Brazil. https://orcid.org/0000-0002-8113-7230
  • Carlos Eduardo Grossi Campos Departamento de Ciência e Tecnologia Aeroespacial – Instituto Tecnológico de Aeronáutica – Programa de Pós-Graduação em Ciências e Engenharia Espacial – São José dos Campos/SP – Brazil|Departamento de Ciência e Tecnologia Aeroespacial – Instituto de Aeronáutica e Espaço – Divisão de Aerodinâmica, Controle e Estruturas– São José dos Campos/SP – Brazil. https://orcid.org/0000-0003-3179-8468
  • Humberto Araújo Machado Departamento de Ciência e Tecnologia Aeroespacial – Instituto Tecnológico de Aeronáutica – Programa de Pós-Graduação em Ciências e Engenharia Espacial – São José dos Campos/SP – Brazil|Departamento de Ciência e Tecnologia Aeroespacial – Instituto de Aeronáutica e Espaço – Divisão de Aerodinâmica, Controle e Estruturas– São José dos Campos/SP – Brazil|Universidade do Estado do Rio de Janeiro – Faculdade de Tecnologia – Departamento de Mecânica e Energia – Resende/RJ – Brazil. https://orcid.org/0000-0002-1046-1770

DOI:

https://doi.org/10.1590/jatm.v18.1419

Keywords:

Polymeric composites, Finite element method, Effective material properties, Solid rocket motor

Abstract

Polymer composites have been adopted as a structural materials for solid rocket motor envelopes. The mechanical and thermal properties of these composites are strongly influenced by the orientation angle of the fibers. Due to the aerodynamic heating, accurate assessment of the effective heat and mechanical properties is crucial to the success of rocket engine designs. In this work, heat transfer simulation in the wall of a solid rocket engine envelope made of polymeric composite through the finite element method was employed to evaluate the effect of fiber inclination relative to the axis on effective thermal conductivity and effective specific heat, in conjunction with an inverse analysis technique. The results of thermal simulations improved the results and reduced the root mean square error by 12-15% in the mass loss rate, when compared to experimental results for ablation, allowing considering the methodology to be considered validated. The effective modulus of elasticity and the effective Poisson’s ratio are also evaluated, presenting an average deviation of 15.3% compared to experimental results. The results obtained show the dependence of these properties on this geometric parameter, allowing this methodology to be used as a reliable design tool for those systems.


References

Andrianov IV, Danishevs KVV,Kalamkarov AL (2010) Analysis of the effective conductivity of composite materials in the entire range of volume fractions of inclusions up to the percolation threshold. Compos Part B Eng 41(6):503-507. https://doi.org/10.1016/j.compositesb.2010.05.001

Bathe KW (1996) Finite element procedures. Englewood Cliffs: Prentice Hall.

Cook RD, Malkus DS,Plesha ME,Witt RJ (2002) Concepts and applications of finite element analysis. 4th ed. New York: John Wiley & Sons.

Cotta CPN (2009) Problemas inversos de condução de calor em meios heterogêneos: analise teórico-experimental via transformação integral, inferência bayesiana e termografia por infravermelho (PhD thesis). Rio de Janeiro: COPPE/UFRJ. In Portuguese. https://w1files.solucaoatrio.net.br/atrio/ufrj-pem_upl/THESIS/1359/carolinapalmanaveiracotta1_20200512160147541.pdf

Gou JJ, Dai YJ, Li S,Tao WQ (2015) Numerical study of effective thermal conductivities of plain woven composites by unit cells of different sizes. Int J Heat Mass Transf 91:829-840. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.074

Hu J,Wu G, Zhang Q,Gou H (2014) Mechanical properties and damping capacity of SiCp/TiNif/Al composite with different volume fraction of SiC particle. Compos Part B Eng 66:400-406. https://doi.org/10.1016/j.compositesb.2014.06.013

Jena H,Pradhan P, Purohit A (2023) Dielectric properties, thermal analysis, and conductivity studies of biodegradable and biocompatible polymer nanocomposites. In: Deshmukh K, Pandey M, editors. Biodegradable and biocompatible polymer nanocomposites: Processing, characterization, and applications. Elsevier. p. 113-140. https://doi.org/10.1016/B978-0-323-91696-7.00011-8

Kai D, Kui L, Qian Z, Bohong G,Bazhong S (2016) Experimental and numerical analyses on the thermal conductive behaviors of carbon fiber/epoxy plain woven composites. Int J Heat Mass Transf 102:501-517. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.035

Kursa M, Kowalczyk-Gajewska K,Petryk H (2014) Multi-objective optimization of thermo-mechanical properties of metalceramic composites. Compos Part B Eng 60:586-596. https://doi.org/10.1016/j.compositesb.2014.01.009

Li H, Li S,Wang Y (2011) Prediction of effective thermal conductivities of woven fabric composites using unit cells at multiple length scales.J Mater Res 26:384-394. https://doi.org/10.1557/jmr.2010.51

Lijia Q, Xming P, Jianqiu Z, Jingxin Y, Shishun L,David H (2017) Theoretical model and finite element simulation on the effective thermal conductivity of particulate composite materials. Compos Part B Eng116:291-297. https://doi.org/10.1016/j.compositesb.2016.10.067

Machado HA (2016) Análise inversa na transferência de calor em veículos espaciais e sub-orbitais. Rio de Janeiro: CNPq.

Miranda G, Buciumeanu M, Carvalho O, Soares D,Silva FS (2015) Interface analysis and wear behavior of Ni particulate reinforced aluminum-silicon composites produced by PM. Compos Part B Eng 69:101-110. https://doi.org/10.1016/j.compositesb.2014.09.017

Mohamed Y, Abdelbary A (2023) Theoretical and experimental study on the influence of fiber orientation on the tensile properties of unidirectional carbon fiber/epoxy composite.Alexandria Eng J 67(6):693-705. https://doi.org/10.1016/j.aej.2022.12.058

Mosanenzadeh SG,Naguib HE (2016) Effect of filler arrangement and networking of hexagonal boron nitride on the conductivity of new thermal management polymeric composites. Compos Part B Eng 85:24-30. https://doi.org/10.1016/j.compositesb.2015.09.021

Özisik MN,Orlande HRB (2000) Inverse heat transfer. London: Taylor & Francis.

Pesci PGS (2021) Estudo de ablação em materiais de proteção térmica para veículos espaciais (PhD thesis).São José dos Campos: ITA. In Portuguese. https://sucupira-legado.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=11080255

Pradhan P, Purohit A, Mohapatra SS, Subudhi C, Das M,Singh NK, Sahoo BB (2022) A computational investigation for the impact of particle size on the mechanical and thermal properties of teak wood dust (TWD)-filled polyester composites. Mater Today Proc 63:756-763. https://doi.org/10.1016/j.matpr.2022.05.136

Pradhan P, Purohit A,Jena H, Sing J, Sahoo BB (2025) Effects of spherical fillers reinforcement on the efficacy of thermal conductivity in epoxy and polyester matrices: Experimental validation and prediction using finite element method.J Vinyl Addit Technol 31(1):109-120. https://doi.org/10.1002/vnl.22159

Purohit A, Pradhan P, Palanimuthu S, Kumar A, Chauhan PK (2024) A novel study on the stacking sequence and mechanical properties of jute–Kevlar–epoxy composites.J Radioanal Nucl Chem Interactions245:100. https://doi.org/10.1007/s10751-024-01946-6

Purohit A, Pradhan P, Palanimuthu S, Kumar A,Chauhan PK (2025) Mechanical and tribological characteristics of glass fiber and rice stubble-filled epoxy–LD sludge hybrid composites.J Elastomers Plast 57(1):113-131. https://doi.org/10.1177/00952443241305709

Quanjin MA, Rejab MRM, Kaige J, Idris MS,Harith MN (2018) Filament winding technique, experiment and simulation analysis on tubular structure. IOP Conf Ser Mater Sci Eng 342:012029. https://doi.org/10.1088/1757-899X/342/1/012029

Reddy JN (1989) Mechanics of composite materials and structures. Dordrecht: Springer.

Sahoo B, Pradhan P, Purohit A, Jena H, Sahoo BB (2025) Dielectric and thermal behavior analysis of polyester composites filled with pineapple wood dust using finite element method. Int J Polym Anal Charact 30(6):666-674. https://doi.org/10.1080/1023666X.2025.2496319

Sburlati R,Monetto I (2016) Effect of an inhomogeneous interphase zone on the bulk modulus of a particulate composite containing spherical inclusions.Compos Part B Eng 97:309-316. https://doi.org/10.1016/j.compositesb.2016.04.038

Schwartz MM (1984) Composite materials handbook. New York: McGraw-Hill.

Silva SFC, Machado HA,Bittencourt E (2015) Effect of the fiber orientation relatively to the plasma flow direction in the ablation process of a carbon-phenolic composite. J Aerosp Technol Manag7(1). https://doi.org/10.5028/jatm.v7i1.437

Xing J, Radovic M,Muliana A (2016) Thermal properties of BaTiO3/Ag composites at different. Compos Part B Eng 90(1). https://doi.org/10.1016/j.compositesb.2015.12.014

Zhang Y,Liu J,Chen X (2021) Numerical modeling of fiber–matrix interfacial behavior in composite materials. Compos Sci Technol 213:108949. https://doi.org/10.1016/j.compscitech.2021.108949

Zienkiewicz OC, Taylor RL (2000) The finite element method: Volume 1 – The basis. 5th ed. Oxford: Butterworth-Heinemann.

Downloads

Published

2026-02-09

Issue

Section

Original Paper