Influence of Fiber Inclination Angle on the Mechanical and Thermal Properties of a Composite
DOI:
https://doi.org/10.1590/jatm.v18.1419Keywords:
Polymeric composites, Finite element method, Effective material properties, Solid rocket motorAbstract
Polymer composites have been adopted as a structural materials for solid rocket motor envelopes. The mechanical and thermal properties of these composites are strongly influenced by the orientation angle of the fibers. Due to the aerodynamic heating, accurate assessment of the effective heat and mechanical properties is crucial to the success of rocket engine designs. In this work, heat transfer simulation in the wall of a solid rocket engine envelope made of polymeric composite through the finite element method was employed to evaluate the effect of fiber inclination relative to the axis on effective thermal conductivity and effective specific heat, in conjunction with an inverse analysis technique. The results of thermal simulations improved the results and reduced the root mean square error by 12-15% in the mass loss rate, when compared to experimental results for ablation, allowing considering the methodology to be considered validated. The effective modulus of elasticity and the effective Poisson’s ratio are also evaluated, presenting an average deviation of 15.3% compared to experimental results. The results obtained show the dependence of these properties on this geometric parameter, allowing this methodology to be used as a reliable design tool for those systems.
References
Andrianov IV, Danishevs KVV,Kalamkarov AL (2010) Analysis of the effective conductivity of composite materials in the entire range of volume fractions of inclusions up to the percolation threshold. Compos Part B Eng 41(6):503-507. https://doi.org/10.1016/j.compositesb.2010.05.001
Bathe KW (1996) Finite element procedures. Englewood Cliffs: Prentice Hall.
Cook RD, Malkus DS,Plesha ME,Witt RJ (2002) Concepts and applications of finite element analysis. 4th ed. New York: John Wiley & Sons.
Cotta CPN (2009) Problemas inversos de condução de calor em meios heterogêneos: analise teórico-experimental via transformação integral, inferência bayesiana e termografia por infravermelho (PhD thesis). Rio de Janeiro: COPPE/UFRJ. In Portuguese. https://w1files.solucaoatrio.net.br/atrio/ufrj-pem_upl/THESIS/1359/carolinapalmanaveiracotta1_20200512160147541.pdf
Gou JJ, Dai YJ, Li S,Tao WQ (2015) Numerical study of effective thermal conductivities of plain woven composites by unit cells of different sizes. Int J Heat Mass Transf 91:829-840. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.074
Hu J,Wu G, Zhang Q,Gou H (2014) Mechanical properties and damping capacity of SiCp/TiNif/Al composite with different volume fraction of SiC particle. Compos Part B Eng 66:400-406. https://doi.org/10.1016/j.compositesb.2014.06.013
Jena H,Pradhan P, Purohit A (2023) Dielectric properties, thermal analysis, and conductivity studies of biodegradable and biocompatible polymer nanocomposites. In: Deshmukh K, Pandey M, editors. Biodegradable and biocompatible polymer nanocomposites: Processing, characterization, and applications. Elsevier. p. 113-140. https://doi.org/10.1016/B978-0-323-91696-7.00011-8
Kai D, Kui L, Qian Z, Bohong G,Bazhong S (2016) Experimental and numerical analyses on the thermal conductive behaviors of carbon fiber/epoxy plain woven composites. Int J Heat Mass Transf 102:501-517. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.035
Kursa M, Kowalczyk-Gajewska K,Petryk H (2014) Multi-objective optimization of thermo-mechanical properties of metalceramic composites. Compos Part B Eng 60:586-596. https://doi.org/10.1016/j.compositesb.2014.01.009
Li H, Li S,Wang Y (2011) Prediction of effective thermal conductivities of woven fabric composites using unit cells at multiple length scales.J Mater Res 26:384-394. https://doi.org/10.1557/jmr.2010.51
Lijia Q, Xming P, Jianqiu Z, Jingxin Y, Shishun L,David H (2017) Theoretical model and finite element simulation on the effective thermal conductivity of particulate composite materials. Compos Part B Eng116:291-297. https://doi.org/10.1016/j.compositesb.2016.10.067
Machado HA (2016) Análise inversa na transferência de calor em veículos espaciais e sub-orbitais. Rio de Janeiro: CNPq.
Miranda G, Buciumeanu M, Carvalho O, Soares D,Silva FS (2015) Interface analysis and wear behavior of Ni particulate reinforced aluminum-silicon composites produced by PM. Compos Part B Eng 69:101-110. https://doi.org/10.1016/j.compositesb.2014.09.017
Mohamed Y, Abdelbary A (2023) Theoretical and experimental study on the influence of fiber orientation on the tensile properties of unidirectional carbon fiber/epoxy composite.Alexandria Eng J 67(6):693-705. https://doi.org/10.1016/j.aej.2022.12.058
Mosanenzadeh SG,Naguib HE (2016) Effect of filler arrangement and networking of hexagonal boron nitride on the conductivity of new thermal management polymeric composites. Compos Part B Eng 85:24-30. https://doi.org/10.1016/j.compositesb.2015.09.021
Özisik MN,Orlande HRB (2000) Inverse heat transfer. London: Taylor & Francis.
Pesci PGS (2021) Estudo de ablação em materiais de proteção térmica para veículos espaciais (PhD thesis).São José dos Campos: ITA. In Portuguese. https://sucupira-legado.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=11080255
Pradhan P, Purohit A, Mohapatra SS, Subudhi C, Das M,Singh NK, Sahoo BB (2022) A computational investigation for the impact of particle size on the mechanical and thermal properties of teak wood dust (TWD)-filled polyester composites. Mater Today Proc 63:756-763. https://doi.org/10.1016/j.matpr.2022.05.136
Pradhan P, Purohit A,Jena H, Sing J, Sahoo BB (2025) Effects of spherical fillers reinforcement on the efficacy of thermal conductivity in epoxy and polyester matrices: Experimental validation and prediction using finite element method.J Vinyl Addit Technol 31(1):109-120. https://doi.org/10.1002/vnl.22159
Purohit A, Pradhan P, Palanimuthu S, Kumar A, Chauhan PK (2024) A novel study on the stacking sequence and mechanical properties of jute–Kevlar–epoxy composites.J Radioanal Nucl Chem Interactions245:100. https://doi.org/10.1007/s10751-024-01946-6
Purohit A, Pradhan P, Palanimuthu S, Kumar A,Chauhan PK (2025) Mechanical and tribological characteristics of glass fiber and rice stubble-filled epoxy–LD sludge hybrid composites.J Elastomers Plast 57(1):113-131. https://doi.org/10.1177/00952443241305709
Quanjin MA, Rejab MRM, Kaige J, Idris MS,Harith MN (2018) Filament winding technique, experiment and simulation analysis on tubular structure. IOP Conf Ser Mater Sci Eng 342:012029. https://doi.org/10.1088/1757-899X/342/1/012029
Reddy JN (1989) Mechanics of composite materials and structures. Dordrecht: Springer.
Sahoo B, Pradhan P, Purohit A, Jena H, Sahoo BB (2025) Dielectric and thermal behavior analysis of polyester composites filled with pineapple wood dust using finite element method. Int J Polym Anal Charact 30(6):666-674. https://doi.org/10.1080/1023666X.2025.2496319
Sburlati R,Monetto I (2016) Effect of an inhomogeneous interphase zone on the bulk modulus of a particulate composite containing spherical inclusions.Compos Part B Eng 97:309-316. https://doi.org/10.1016/j.compositesb.2016.04.038
Schwartz MM (1984) Composite materials handbook. New York: McGraw-Hill.
Silva SFC, Machado HA,Bittencourt E (2015) Effect of the fiber orientation relatively to the plasma flow direction in the ablation process of a carbon-phenolic composite. J Aerosp Technol Manag7(1). https://doi.org/10.5028/jatm.v7i1.437
Xing J, Radovic M,Muliana A (2016) Thermal properties of BaTiO3/Ag composites at different. Compos Part B Eng 90(1). https://doi.org/10.1016/j.compositesb.2015.12.014
Zhang Y,Liu J,Chen X (2021) Numerical modeling of fiber–matrix interfacial behavior in composite materials. Compos Sci Technol 213:108949. https://doi.org/10.1016/j.compscitech.2021.108949
Zienkiewicz OC, Taylor RL (2000) The finite element method: Volume 1 – The basis. 5th ed. Oxford: Butterworth-Heinemann.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jimes de Lima Percy, Pedro Guilherme Silva Pesci, Carlos Eduardo Grossi Campos, Humberto Araújo Machado

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0. Authors are free to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially). JATM allow the authors to retain publishing rights without restrictions.








