NUMERICAL SIMULATION OF PERFORMANCE OF AN AXIAL TURBINE FIRST STAGE DOI 10.5028/jatm.2012.04025411
Keywords:
Axial Turbines, Gas Turbines, Computational Fluid Dynamics, Numerical Simulation, Performance.Abstract
This work has presented the first stage performance at design and off-design operating points of an axial turbine, with two stages using a numerical simulation. Experimental methods of predicting the performance of axial turbine is costly and time consuming compared to the computational fluid dynamics approach. Therefore, computational techniques were adopted to determine the stage performance. This study analyzed the first stage performance of an axial flow turbine, using a computational tool for simulating the steady state two/three-dimensional viscous flow. A computational fluid dynamics software was used to solve the rans equations with the spalart-allmaras turbulence model. The computational fluid dynamics results were compared with those obtained from the mean line loss model code. The comparisons have been conducted to provide a pretest performance for the turbine first stage.Downloads
Published
2012-09-13
Issue
Section
Original Papers
License
This work is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0. Authors are free to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially). JATM allow the authors to retain publishing rights without restrictions.