Reduced Order Modeling of Composite Laminates Through Solid-Shell Coupling
Keywords:
Composite structures, Reduced order modeling, Solid-shell coupling.Abstract
Composite laminates display a complex mechanical behavior due to their microstructure, with a through-thickness variation of the displacement and stress fields that depends on the fiber orientation in each layer. Aiming to develop reduced-order numerical models mimicking the real response of composite structures, we investigated the capability and accuracy of finite element analyses coupling layered shell and solid kinematics. This study represents the first step of a work with the goal of accurately matching stress evolution in regions close to possible impact locations, where delamination is expected to take place, with reduced computational costs. Close to such locations, a 3-D modeling is adopted, whereas in the remainder of the structure, a less computationally demanding shell modeling is chosen. To test the coupled approach, results of numerical simulations are presented for a quasi-statically loaded cross-ply orthotropic plate, either simply supported or fully clamped along its boundary.Downloads
Published
2017-08-07
Issue
Section
Original Papers
License
This work is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0. Authors are free to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially). JATM allow the authors to retain publishing rights without restrictions.