Copper/Iron Brake Friction for Military Aircraft Application
Keywords:
Friciton, Sintering, Aircraft brakesAbstract
The present study assesses the infl uence of non-metallic constituents and manufacturing parameters, such as compaction pressure and sintering temperature, to produce a metal matrix composite (MMC) of copper/iron, based on the brake disc of aircraft AT-29 SuperTucano. The samples were produced with six different compositions, by varying the amount of abrasive particles (quartz and zirconia silicate) and the solid lubricant (graphite), with one of the compositions manufactured without the addition of graphite. The compaction pressures were 210 and 420 MPa, with sintering temperatures of 950°C and 1050°C in a furnace with controlled atmosphere of argon + 10% H2. After sintering, the effectiveness of the sintering process was evaluated through the apparent density (Archimedes’s method), Brinell and Vickers hardness, and the microstructure by Scanning Electron Microscopy (SEM). The sintering process was severely affected by the solid lubricant (graphite): its reduction resulted in a density increase near 18%, and the hardness of the compound up to 62%. The hardness values demonstrated significant variation with compaction pressure, with a pronounced effect on compounds with less non-metallic elements. SEM analysis demonstrated that not only graphite, but also the ceramic particles affected the sintering process through the agglomeration of inclusions into the metal-metal interface. The samples without graphite exhibited almost the same value of pores after sintering, regardless of the compaction pressure, indicating that the graphite content affects directly the sintering process, regardless of the compaction pressure.Downloads
Published
2018-05-03
Issue
Section
Communications
License
This work is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0. Authors are free to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially). JATM allow the authors to retain publishing rights without restrictions.